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CONTRACTIONS AND THE SPECTRAL CONTINUITY

FOR k–QUASI–PARANORMAL OPERATORS

FUGEN GAO AND XIAOCHUN LI

Abstract. For a positive integer k , an operator T ∈ B(H ) is called k -quasi-paranormal if
‖Tk+1x‖2 � ‖Tk+2x‖‖T kx‖ for all x∈H , which is a common generalization of paranormal and
quasi-paranormal. In this paper, firstly we prove that if T is a contraction of k -quasi-paranormal
operators, then either T has a nontrivial invariant subspace or T is a proper contraction and the
nonnegative operator Dλ = T ∗k(|T 2|2 − 2λ |T |2 + λ 2I)T k for 0 < λ � 1 is a strongly stable
contraction; secondly we prove that k -quasi-paranormal operators are not supercyclic; at last we
prove that the spectrum is continuous on the class of all k -quasi-paranormal operators.
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