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ON SCHUR mmmm–POWER CONVEXITY FOR RATIOS OF SOME MEANS

HONG-PING YIN, HUAN-NAN SHI AND FENG QI

(Communicated by J. Pečarić)

Abstract. In the paper, the authors discuss the Schur m -power convexity on (0,∞)× (0,∞) for
ratios of some famous means, such as the arithmetic, geometric, harmonic, root-square means,
and the like, and obtain some inequalities related to ratios of means.

1. Introduction

In [7], a chain of inequalities for several means of two positive numbers is given
as follows.

THEOREM 1.1. ([7]) Let a,b ∈ R+ = (0,∞) . Then

H(a,b) � G(a,b) � N1(a,b) � N3(a,b) � N2(a,b) � A(a,b) � S(a,b), (1.1)

where

A(a,b) =
a+b

2
, G(a,b) =

√
ab , H(a,b) =

2ab
a+b

,

S(a,b) =

√
a2 +b2

2
, N1(a,b) =

(√
a +

√
b

2

)2

,

N2(a,b) =
√

a +
√

b
2

√
a+b

2
, N3(a,b) =

a+
√

ab +b
3

The means A(a,b) , G(a,b) , H(a,b) , S(a,b) , N1(a,b) , and N3(a,b) are called
the arithmetic, geometric, harmonic, root-square, square-root, and Heron means respec-
tively. The mean N2(a,b) can be found in [6].

Furthermore, the differences of means

MSA(a,b) = S(a,b)−A(a,b), MSN2(a,b) = S(a,b)−N2(a,b), (1.2)

MSN3(a,b) = S(a,b)−N3(a,b), MSN1(a,b) = S(a,b)−N1(a,b), (1.3)

MSG(a,b) = S(a,b)−G(a,b), MSH(a,b) = S(a,b)−H(a,b), (1.4)

MAN2(a,b) = A(a,b)−N2(a,b), MAG(a,b) = A(a,b)−G(a,b), (1.5)

Mathematics subject classification (2010): Primary 26B25; Secondary 26E60, 26D20.
Keywords and phrases: Schur m -power convexity, quotient, mean, arithmetic mean, geometric mean,

harmonic mean.

c© � � , Zagreb
Paper JMI-09-14

145

http://dx.doi.org/10.7153/jmi-09-14


146 H.-P. YIN, H.-N. SHI AND F. QI

MAH(a,b) = A(a,b)−H(a,b), MN2N1(a,b) = N2(a,b)−N1(a,b), (1.6)

MN2G(a,b) = N2(a,b)−G(a,b) (1.7)

were considered in [7] and obtained the following theorem.

THEOREM 1.2. ([7]) The differences of means defined by (1.2) to (1.7) are non-
negative and convex in R

2
+ .

Hereafter, the above differences were investigated once again [4].

THEOREM 1.3. ([4]) The differences given in (1.2) to (1.7) are Schur-geometrically
convex in R

2
+ .

Recently, the differences of means

MAN3(a,b) = A(a,b)−N3(a,b), MAN1(a,b) = A(a,b)−N1(a,b), (1.8)

MN2N3(a,b) = N2(a,b)−N3(a,b), MN2H(a,b) = N2(a,b)−H(a,b), (1.9)

MN3N1(a,b) = N3(a,b)−N1(a,b), MN3G(a,b) = N3(a,b)−G(a,b), (1.10)

MN3H(a,b) = N3(a,b)−H(a,b), MN1G(a,b) = N1(a,b)−G(a,b), (1.11)

MN1H(a,b) = N1(a,b)−H(a,b), MGH(a,b) = G(a,b)−H(a,b), (1.12)

and

DSH−SA(a,b) =
MSH(a,b)

3
−MSA(a,b), (1.13)

DAH−SH(a,b) =
MAH(a,b)

2
− MSH(a,b)

3
, (1.14)

DSG−AH(a,b) = MSG(a,b)−MAH(a,b), (1.15)

DAG−SG(a,b) = MAG(a,b)− MSG(a,b)
2

, (1.16)

DN2N1−AH(a,b) = MN2N1(a,b)− MAH(a,b)
8

, (1.17)

DN2G−N2N1(a,b) =
MN2G(a,b)

3
−MN2N1(a,b), (1.18)

DAG−N2G(a,b) =
MAG(a,b)

4
− MN2G(a,b)

3
, (1.19)

DAN2−AG(a,b) = MAN2(a,b)− MAG(a,b)
4

, (1.20)

DSN2−SA(a,b) =
4MSN2(a,b)

5
−MSA(a,b), (1.21)

DAN2−SN2(a,b) = 4MAN2(a,b)− 4MSN2(a,b)
5

, (1.22)

DSN1−SH(a,b) = 2MSN1(a,b)−MSH(a,b), (1.23)

DSG−SN1(a,b) =
3MSG(a,b)

2
−2MSN1(a,b), (1.24)
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DSN3−SA(a,b) =
3MSN3(a,b)

4
−MSA(a,b), (1.25)

DSN1−SN3(a,b) =
2MSN1(a,b)

3
− 3MSN3(a,b)

4
. (1.26)

were introduced in [11, 12] and obtained the following results.

THEOREM 1.4. ([11, Theorem 3.1]) The differences of means listed in equations
(1.2) to (1.12) are Schur-harmonically convex on R

2
+ .

THEOREM 1.5. ([12, Theorem 3.1]) The differences given by (1.13) to (1.26) are
Schur-harmonically convex functions in R

2
+ .

Motivated by the above differences of means, we now introduce the following
twenty one ratios of means:

QSA(a,b) =
S(a,b)
A(a,b)

, QSN2(a,b) =
S(a,b)
N2(a,b)

, QSN3(a,b) =
S(a,b)
N3(a,b)

, (1.27)

QSN1(a,b) =
S(a,b)
N1(a,b)

, QSG(a,b) =
S(a,b)
G(a,b)

, QSH(a,b) =
S(a,b)
H(a,b)

, (1.28)

QAN2(a,b) =
A(a,b)
N2(a,b)

, QAN3(a,b) =
A(a,b)
N3(a,b)

, QAN1(a,b) =
A(a,b)
N1(a,b)

, (1.29)

QAG(a,b) =
A(a,b)
G(a,b)

, QAH(a,b) =
A(a,b)
H(a,b)

, QN2N3(a,b) =
N2(a,b)
N3(a,b)

, (1.30)

QN2N1(a,b) =
N2(a,b)
N1(a,b)

, QN2G(a,b) =
N2(a,b)
G(a,b)

, QN2H(a,b) =
N2(a,b)
H(a,b)

, (1.31)

QN3N1(a,b) =
N3(a,b)
N1(a,b)

, QN3G(a,b) =
N3(a,b)
G(a,b)

, QN3H(a,b) =
N3(a,b)
H(a,b)

, (1.32)

QN1G(a,b) =
N1(a,b)
G(a,b)

, QN1H(a,b) =
N1(a,b)
H(a,b)

, QGH(a,b) =
G(a,b)
H(a,b)

. (1.33)

In this paper, we will prove that the ratios (1.27) to (1.33) are Schur m-power
convex and Schur-geometrically convex in R

2
+ and establish some inequalities of the

ratios of means.

2. Definitions and lemmas

In order to verify our main results, the following definitions and lemmas are nec-
essary.

It is general knowledge that a set Ω ⊆ R
n is said to be convex if

λxxxx+(1−λ )yyyy = (λx1 +(1−λ )y1, . . . ,λxn +(1−λ )yn) ∈ Ω

for every xxxx,yyyy ∈ Ω and λ ∈ [0,1] .
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DEFINITION 2.1. ([2, pp. 8 and 80], [3, pp. 2313–2314], and [10]) Let

xxxx = (x1, . . . ,xn) and yyyy = (y1, . . . ,yn) ∈ R
n.

1. The tuple xxxx is said to be majorized by yyyy , in symbols xxxx≺ yyyy , if ∑k
i=1 x[i] � ∑k

i=1 y[i]
for k = 1,2, . . . ,n− 1 and ∑n

i=1 xi = ∑n
i=1 yi , where x[1] � · · · � x[n] and y[1] �

· · · � y[n] are rearrangements of xxxx and yyyy in a descending order.

2. A function ϕ : Ω ⊆ R
n → R is said to be Schur-convex on Ω if xxxx ≺ yyyy on Ω

implies ϕ(xxxx) � ϕ(yyyy) . A function ϕ is said to be Schur-concave on Ω if and
only if −ϕ is Schur-convex.

DEFINITION 2.2. ([1]) Let Ω ⊂ R
n
+ .

1. The set Ω is said to be geometrically convex if
(
xλ
1 y1−λ

1 , . . . ,xλ
n y1−λ

n

) ∈ Ω for
every xxxx,yyyy ∈ Ω and λ ∈ [0,1] .

2. A function ϕ : Ω → R+ is said to be Schur-geometrically convex on Ω if lnxxxx =
(lnx1, · · · , lnxn) ≺ lnyyyy = (lny1, · · · , lnyn) implies ϕ(xxxx) � ϕ(yyyy) for every xxxx,yyyy ∈
Ω .

DEFINITION 2.3. ([13, Definition 1.3]) Let Ω ⊂ R
n
+ .

1. A set Ω is said to be harmonically convex if xyxyxyxy
λ xxxx+(1−λ )yyyy ∈ Ω for every xxxx,yyyy ∈ Ω

and λ ∈ [0,1] , where xyxyxyxy = ∑n
i=1 xiyi and 1

xxxx =
( 1

x1
, · · · , 1

xn

)
.

2. A function ϕ : Ω → R+ is said to be Schur-harmonically convex on Ω if 1
xxxx ≺ 1

yyyy
implies ϕ(xxxx) � ϕ(yyyy) .

DEFINITION 2.4. ([14]) Let f : R+ → R be defined by

f (x) =

⎧⎨
⎩

xm −1
m

, m �= 0;

lnx, m = 0.
(2.1)

Then a function φ : Ω ⊂ R
n
+ → R is said to be Schur m-power convex on Ω if

( f (x1), f (x2), . . . , f (xn)) ≺ ( f (y1), f (y2), . . . , f (yn))

for all (x1,x2, . . . ,xn) ∈ Ω and (y1,y2, . . . ,yn) ∈ Ω implies φ(x) � φ(y) .
If −φ is Schur m-power convex, then we say that φ is Schur m-power concave.

If putting f (x) = x, lnx, 1
x in Definition 2.4, then definitions of the Schur-convex,

Schur-geometrically convex, and Schur-harmonically convex functions can be deduced
respectively.

LEMMA 2.1. ([2, 10]) Let Ω ⊂ R
n
+ be a symmetric and geometrically convex set

with inner point and ϕ : Ω → R+ be a symmetric and differentiable function in Ω◦ .
Then ϕ is a Schur-convex function on Ω if and only if

(x1− x2)
[

∂ϕ(xxxx)
∂x1

− ∂ϕ(xxxx)
∂x2

]
� 0, xxxx ∈ Ω◦. (2.2)
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LEMMA 2.2. ([1]) Let Ω⊂R
n
+ be a symmetric and geometrically convex set with

inner point and ϕ : Ω → R+ be a symmetric and differentiable function in Ω◦ . Then
ϕ is a Schur-geometrically convex function on Ω if and only if

(lnx1− lnx2)
[
x1

∂ϕ(xxxx)
∂x1

− x2
∂ϕ(xxxx)

∂x2

]
� 0, xxxx ∈ Ω◦. (2.3)

LEMMA 2.3. ([13, Lemma 2.4]) Let Ω ⊂ R
n
+ be a symmetric and harmonically

convex set with inner points and let ϕ : Ω → R+ be a continuously symmetric function
which is differentiable on Ω◦ . Then ϕ is Schur-harmonically convex on Ω if and only
if

(x1− x2)
[
x2
1

∂ϕ(xxxx)
∂x1

− x2
2

∂ϕ(xxxx)
∂x2

]
� 0, xxxx ∈ Ω◦. (2.4)

LEMMA 2.4. ([14]) Let Ω ⊂ R
n
+ be a symmetric set with nonempty interior Ω◦

and ϕ : Ω → R+ be continuous on Ω and differentiable in Ω◦ . Then ϕ is Schur
m-power convex on Ω if and only if ϕ is symmetric on Ω and

xm
1 − xm

2

m

[
x1−m
1

∂ϕ(xxxx)
∂x1

− x1−m
2

∂ϕ(xxxx)
∂x2

]
� 0, if m �= 0 (2.5)

and

(lnx1− lnx2)
[
x1

∂ϕ(xxxx)
∂x1

− x2
∂ϕ(xxxx)

∂x2

]
� 0, if m = 0 (2.6)

for all xxxx ∈ Ω◦ .

3. Main results

Now we set off to prove our main results.

THEOREM 3.1. For m �= 0 , the ratios of means given in (1.27) to (1.33) are Schur
m-power convex functions in R

2
+ .

Proof. It is easy to show that

am−bm

m

[
a1−m ∂QGH(a,b)

∂a
−b1−m ∂QGH(a,b)

∂b

]

=
(a−b)(am−bm)

4m
√

ab

(
1
am +

1
bm

)
� 0,

am−bm

m

[
a1−m ∂QN1G(a,b)

∂a
−b1−m ∂QN1G(a,b)

∂b

]

=
(a−b)(am−bm)

4m
√

ab

(
1
am +

1
bm

)
� 0,
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am−bm

m

[
a1−m ∂QN3N1(a,b)

∂a
−b1−m ∂QN3N1(a,b)

∂b

]

=
2
√

ab(a−b)(am−bm)

3m
(√

a +
√

b
)4

(
1
am +

1
bm

)
� 0.

Therefore, by Lemma 2.4, it follows that QGH(a,b) , QN1G(a,b) , and QN3N1(a,b) are
Schur m-power convex functions on R

2
+ .

A direct calculation yields

am−bm

m

[
a1−m ∂QN2N3(a,b)

∂a
−b1−m ∂QN2N3(a,b)

∂b

]

=
am −bm

m

[
3
√

2ab
(√

a −√
b
)
a1−m

8
(
a+b+

√
ab

)2√
ab(a+b)

− 3
√

2ba
(√

b −√
a
)
b1−m

8
(
a+b+

√
ab

)2√
ab(a+b)

]

=
3
√

2ab
(√

a −√
b
)
(am −bm)

8m
(
a+b+

√
ab

)2√
a+b

(
1
am +

1
bm

)
� 0,

am−bm

m

[
a1−m ∂QAN2(a,b)

∂a
−b1−m ∂QAN2(a,b)

∂b

]

=
am −bm

m

[ √
2b

(√
a −√

b
)
a1−m

2
(√

a +
√

b
)2√

ab(a+b)
−

√
2a

(√
b −√

a
)
b1−m

2
(√

a +
√

b
)2√

ab(a+b)

]

=
√

2ab(a−b)(am−bm)

2m
(√

a +
√

b
)3√

a+b

(
1
am +

1
bm

)
� 0,

and

am−bm

m

[
a1−m ∂QSA(a,b)

∂a
−b1−m ∂QSA(a,b)

∂b

]

=
am −bm

m

[
a1−m

√
2b(a−b)

(a+b)2
√

a2 +b2
−b1−m

√
2a(b−a)

(a+b)2
√

a2 +b2

]

=
√

2ab(a−b)(am−bm)
m(a+b)2

√
a2 +b2

(
1
am +

1
bm

)
� 0.

From Lemma 2.4, it follows that the ratios QN2N3(a,b) , QAN2(a,b) , and QSA(a,b) are
Schur m-power convex functions in R

2
+ .

Notice that

QN1H(a,b) = QN1G(a,b)QGH(a,b), QN3G(a,b) = QN3N1(a,b)QN1G(a,b), (3.1)

QN3H(a,b) = QN3N1(a,b)QN1H(a,b), QN2N1(a,b) = QN2N3(a,b)QN3N1(a,b), (3.2)

QN2G(a,b) = QN2N3(a,b)QN3G(a,b), QN2H(a,b) = QN2N3(a,b)QN3H(a,b), (3.3)

QAN3(a,b) = QAN2(a,b)QN2N3(a,b), QAN1(a,b) = QAN2(a,b)QN2N1(a,b), (3.4)

QAG(a,b) = QAN2(a,b)QN2G(a,b), QAH(a,b) = QAN2(a,b)QN2H(a,b), (3.5)
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QSN2(a,b) = QSA(a,b)QAN2(a,b), QSN3(a,b) = QSA(a,b)QAN3(a,b), (3.6)

QSN1(a,b) = QSA(a,b)QAN1(a,b), QSG(a,b) = QSA(a,b)QAG(a,b), (3.7)

QSH(a,b) = QSA(a,b)QAH(a,b) (3.8)

and that a quotient of finitely many Schur m-power convex functions is also Schur m-
power convex. Conclusively, the rest ratios listed in (1.27) to (1.33) are Schur m-power
convex in R

2
+ . The proof of Theorem 3.1 is complete. �

COROLLARY 3.1. Under the conditions of Theorem 3.1, if m = ±1 , then the ra-
tios of means given in (1.27) to (1.33) are Schur-convex and Schur-harmonically convex
in R

2
+ .

COROLLARY 3.2. For a,b ∈ R+ and m ∈ R with m �= 0 , let pa,b,m(t) = (1−
t)am + tbm for 0 � t � 1 . Then

S
(
am,bm

)
A
(
am,bm

) � S(pa,b;m(t), pa,b;m(1− t))
A(pa,b;m(t), pa,b;m(1− t))

� 0,

A
(
am,bm

)
N2

(
am,bm

) � A(pa,b;m(t), pa,b;m(1− t))
N2(pa,b;m(t), pa,b;m(1− t))

� 0,

N2
(
am,bm

)
N3

(
am,bm

) � N2(pa,b;m(t), pa,b;m(1− t))
N3(pa,b;m(t), pa,b;m(1− t))

� 0,

N3
(
am,bm

)
N1

(
am,bm

) � N3(pa,b;m(t), pa,b;m(1− t))
N1(pa,b;m(t), pa,b;m(1− t))

� 0,

N1
(
am,bm

)
G

(
am,bm

) � N1(pa,b;m(t), pa,b;m(1− t))
G(pa,b;m(t), pa,b;m(1− t))

� 0,

G
(
am,bm

)
H

(
am,bm

) � G(pa,b;m(t), pa,b;m(1− t))
H(pa,b;m(t), pa,b;m(1− t))

� 0.

Proof. It is easy to see that(
am +bm

2
,
am +bm

2

)
≺ (

(1− t)am + tbm,tam +(1− t)bm) ≺ (
am,bm)

, 0 � t � 1.

Further by Theorem 3.1 and Definition 2.4, the proof of Corollary 3.2 is complete. �

THEOREM 3.2. The ratios of means given in (1.27) to (1.33) are Schur-geometri-
cally convex functions in R

2
+ .

Proof. It is easy to see that

(lna− lnb)
[
a

∂QGH(a,b)
∂a

−b
∂QGH(a,b)

∂b

]
=

(lna− lnb)(a−b)
2
√

ab
� 0,

(lna− lnb)
[
a

∂QN1G(a,b)
∂a

−b
∂QN1G(a,b)

∂b

]
=

(lna− lnb)(a−b)
2
√

ab
� 0,
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(lna− lnb)
[
a

∂QN3N1(a,b)
∂a

−b
∂QN3N1(a,b)

∂b

]
=

4
√

ab(lna− lnb)(a−b)

3
(√

a +
√

b
)4 � 0,

(lna− lnb)
[
a

∂QAN2(a,b)
∂a

−b
∂QAN2(a,b)

∂b

]
=

√
2ab(lna− lnb)(a−b)(√

a +
√

b
)3√

a+b
� 0,

(lna− lnb)
[
a

∂QSA(a,b)
∂a

−b
∂QSA(a,b)

∂b

]
=

2
√

2ab(lna− lnb)(a−b)
(a+b)2

√
a2 +b2

� 0,

and

(lna− lnb)
[
a

∂QN2N3(a,b)
∂a

−b
∂QN2N3(a,b)

∂b

]

=
3
√

2ab(lna− lnb)(a−b)

4
(√

a +
√

b
)(

a+b+
√

ab
)2√

a+b
� 0.

By the equalities (3.1) and (3.8), it follows that the ratios (1.27) to (1.33) are Schur-
geometrically convex in R

2
+ . The proof of Theorem 3.2 is complete. �

COROLLARY 3.3. For a,b ∈ R+ and 0 � t � 1 , let ga,b(t) = a1−tbt . Then

S(a,b)
A(a,b)

� S(ga,b(t),ga,b(1− t))
A(ga,b(t),ga,b(1− t))

� 0,
A(a,b)
N2(a,b)

� A(ga,b(t),ga,b(1− t))
N2(ga,b(t),ga,b(1− t))

� 0,

N2(a,b)
N3(a,b)

� N2(ga,b(t),ga,b(1− t))
N3(ga,b(t),ga,b(1− t))

� 0,
N3(a,b)
N1(a,b)

� N3(ga,b(t),ga,b(1− t))
N1(ga,b(t),ga,b(1− t))

� 0,

N1(a,b)
G(a,b)

� N1(ga,b(t),ga,b(1− t))
G(ga,b(t),ga,b(1− t))

� 0,
G(a,b)
H(a,b)

� G(ga,b(t),ga,b(1− t))
H(ga,b(t),ga,b(1− t))

� 0.

Proof. This follows from

(ln
√

ab, ln
√

ab) ≺ (ln(a1−tbt), ln(atb1−t)) ≺ (lna, lnb), 0 � t � 1

and making use of Theorem 3.2 and Definition 2.4. The proof of Corollary 3.3 is
complete. �
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