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SHARP INEQUALITIES FOR TRIGONOMETRIC

AND HYPERBOLIC FUNCTIONS

CHAO-PING CHEN AND JÓZSEF SÁNDOR

(Communicated by J. Pečarić)

Abstract. We establish several sharp inequalities for trigonometric and hyperbolic functions.
Our results sharpen some known inequalities.

1. Introduction

The main object of this paper is to present several sharp inequalities for trigono-
metric and hyperbolic functions. We also indicate relevant connections of the results
presented here with those derived in earlier works.

We begin by listing some preliminaries. The following elementary power series
expansions are useful in the sequel.

sinx =
∞

∑
n=0

(−1)n x2n+1

(2n+1)!
, |x| < ∞, (1.1)

cosx =
∞

∑
n=0

(−1)n x2n

(2n)!
, |x| < ∞, (1.2)

ln

(
tanx

x

)
=

∞

∑
n=1

22n(22n−1−1) |B2n|
n(2n)!

x2n , 0 < |x| < π
2

, (1.3)

ln(secx) =
∞

∑
n=1

22n−1(22n−1) |B2n|
n(2n)!

x2n , |x| < π
2

, (1.4)

where Bn (n = 0,1,2, . . .) are Bernoulli numbers, defined by

t
et −1

=
∞

∑
n=0

Bn
tn

n!
.

It is known [1, p. 805] that

2(2n)!
(2π)2n < |B2n| < 2(2n)!

(2π)2n(1−21−2n)
, n � 1. (1.5)

The following lemmas are also needed in the sequel.
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LEMMA 1.1. ([2, 3, 4]) Let −∞ < a < b < ∞ , and f ,g : [a,b]→ R be continuous
on [a,b] and differentiable in (a,b) . Suppose g′ �= 0 on (a,b) . If f ′(x)/g′(x) is
increasing (decreasing) on (a,b) , then so are

[ f (x)− f (a)]/[g(x)−g(a)] and [ f (x)− f (b)]/[g(x)−g(b)] .

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

LEMMA 1.2. ([13]) Let an ∈ R and bn > 0 , n = 0,1,2, . . . be real numbers with{ an
bn

}∞
n=1 being strictly increasing (respectively, decreasing). If the power series A(x) :=

∑∞
n=0 anxn and B(x) := ∑∞

n=0 bnxn are convergent for |x|< R, then the function A(x)/B(x)
is strictly increasing (respectively, decreasing) on (0,R) .

2. Becker-Stark inequality

Becker and Stark [5] proved the following inequality:

8
π2−4x2 <

tanx
x

<
π2

π2−4x2 , 0 < x <
π
2

. (2.1)

The constant 8 and π2 are the best possible.
Zhu and Hua [17] established a general refinement of the Becker-Stark inequalities

by using the power series expansion of the tangent function via Bernoulli numbers and
the property of a function involving Riemann’s zeta one. Zhu [18] extended the tangent
function to Bessel functions.

In view of the second inequality in (2.1), the following question can be posed:
What are the largest number α and the smallest number β such that the inequalities(

π2

π2−4x2

)α

<
tanx

x
<

(
π2

π2−4x2

)β

(2.2)

are valid for all 0 < |x| < π/2? Theorem 2.1 below answers this question. We remark
that, in fact, Chen and Chueng [6] have proved Theorem 2.1 by using the method given
by Malešević [9]. Very recently, Malešević et al. [10] presented a similar proof of this
theorem based on finite Taylor approximations. Here we provide a new proof.

THEOREM 2.1. For 0 < |x| < π/2 , inequality (2.2) holds with best possible con-
stants

α =
π2

12
= 0.822467033 . . . and β = 1. (2.3)

Proof. Without a loss of generality, we may assume that 0 < x < π/2. Clearly, the
second inequality in (2.2) holds for β = 1. Now we are in a position to prove the first
inequality in (2.2) for α = π2/12. To this end, we consider the function f (x) defined
by

f (x) = ln

(
tanx

x

)
− π2

12
ln

(
π2

π2−4x2

)
, 0 < x <

π
2

.
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By using (1.3), we obtain

f (x) = ln

(
tanx

x

)
+

π2

12
ln

(
1−
(

2x
π

)2
)

=
∞

∑
n=1

22n(22n−1−1) |B2n|
n(2n)!

x2n − π2

12

∞

∑
n=1

1
n

(
2
π

)2n

x2n

=
∞

∑
n=2

(
(22n−1−1) |B2n|

(2n)!
− π2

12

(
1
π

)2n
)

(2x)2n

n
.

By (1.5), we find that for n � 2,

(22n−1−1) |B2n|
(2n)!

− π2

12

(
1
π

)2n

>
(22n−1−1)

(2n)!
2(2n)!
(2π)2n −

π2

12

(
1
π

)2n

=
(

1− 1
22n−1 −

π2

12

)
1

π2n > 0.

Hence, f (x) > 0 for 0 < x < π/2, and thus, the first inequality in (2.2) holds.
The inequality (2.2) can be rewritten as

α <

ln

(
tanx

x

)

ln

(
π2

π2−4x2

) < β , 0 < x <
π
2

.

Elementary calculations reveal that

lim
x→0+

ln

(
tanx

x

)

ln

(
π2

π2−4x2

) =
π2

12
and lim

x→(π/2)−

ln

(
tanx

x

)

ln

(
π2

π2−4x2

) = 1.

Hence, inequality (2.2) holds with best possible constants given in (2.3). �

REMARK 2.2. There is no strict comparison between the two lower bounds 8
π2−4x2

and
(

π2

π2−4x2

)π2/12
in (2.1) and (2.2).

REMARK 2.3. By using the Maple software, we find that

tanx
x

−
(

π2

π2−4x2

)π2/12

=
7π2−60

90π2 x4 +O(x6), x → 0

and
tanx

x
− π2

π2−4x2 =
π2−12

3π2 x2 +O(x4), x → 0.
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This shows that as x → 0, the lower-approximation
(

π2

π2−4x2

)π2/12
is better than the

upper-approximation π2

π2−4x2 in (2.2).

3. Sharp bounds for the secant function

Theorem 3.1 establishes sharp bounds of the secant function. The proof of Theo-
rem 3.1 makes use of the first inequality in (2.1).

THEOREM 3.1. (i) For 0 < |x| < π/2 ,

π2

π2−4x2 < secx <
4π

π2−4x2 . (3.1)

The constant π2 and 4π are best possible.
(ii) For 0 < |x| < π/2 ,(

π2

π2−4x2

)λ

< secx <

(
π2

π2−4x2

)μ

(3.2)

with best possible constants

λ = 1 and μ =
π2

8
. (3.3)

Proof. Without a loss of generality, we may assume that 0 < x < π/2. Let

f1(x) = (π2−4x2)secx, 0 < x <
π
2

.

By differentiating and using the first inequality in (2.1), we obtain

cosx
x(π2−4x2)

f ′1(x) =
tanx

x
− 8

π2−4x2 > 0.

Therefore, the function f1(x) is strictly increasing on (0,π/2) . Noting that

lim
t→0+

f1(t) = π2 and lim
t→(π/2)−

f1(t) = 4π ,

we have

π2 = f1(0) < f1(x) = (π2−4x2)secx < lim
x→(π/2)−

f1(x) = 4π

for all x ∈ (0,π/2) , with the constants π2 and 4π being best possible.
Clearly, the first inequality in (3.2) holds for λ = 1. Now we are in a position to

prove the second inequality in (3.2) for μ = π2/8. To this end, we consider the function
f2(x) defined by

f2(x) = ln(secx)− π2

8
ln

(
π2

π2−4x2

)
, 0 < x <

π
2

.
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By using (1.4), we obtain

f2(x) = ln(secx)+
π2

8
ln

(
1−
(

2x
π

)2
)

=
∞

∑
n=1

22n−1(22n−1) |B2n|
n(2n)!

x2n− π2

8

∞

∑
n=1

1
n

(
2
π

)2n

x2n

= −
(

12−π2

12π2

)
x4 +

∞

∑
n=2

(
(22n−1) |B2n|

(2n)!
− π2

4

(
1
π

)2n
)

(2x)2n

2n
.

By (1.5), we find that for n � 2,

(22n−1) |B2n|
(2n)!

− π2

4

(
1
π

)2n

<
(22n−1)

(2n)!
2(2n)!

(2π)2n(1−21−2n)
− π2

4

(
1
π

)2n

= 2

(
4n−1
4n−2

− π2

8

)
1

π2n < 0.

Hence, f2(x) < 0 for 0 < x < π/2, and thus, the second inequality in (3.2) holds for
μ = π2/8.

The inequality (3.2) can be rewritten as

λ <
ln(secx)

ln

(
π2

π2−4x2

) < μ , 0 < x <
π
2

.

Elementary calculations reveal that

lim
x→0+

ln(secx)

ln

(
π2

π2−4x2

) =
π2

8
and lim

x→(π/2)−
ln(secx)

ln

(
π2

π2−4x2

) = 1.

Hence, inequality (3.2) holds with best possible constants given in (3.3). �

REMARK 3.1. There is no strict comparison between the two upper bounds 4π
π2−4x2

and
(

π2

π2−4x2

)π2/8
in (3.1) and (3.2).

REMARK 3.2. By using the Maple software, we find that

secx− π2

π2−4x2 =
π2−8
2π2 x2 +O(x4), x → 0

and

secx−
(

π2

π2−4x2

)π2/8

=
π2−12
12π2 x4 +O(x6), x → 0.

This shows that as x → 0, the upper-approximation
(

π2

π2−4x2

)π2/8
is better than the

lower-approximation π2

π2−4x2 in (3.2).
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4. Inequalities involving the sine and cosine functions

Another inequality which is of interest to us is Huygens inequality [8], which
asserts that

2

(
sinx
x

)
+

tanx
x

> 3 for all 0 < x <
π
2

. (4.1)

Zhu [16] showed some new inequalities of the Huygens type for trigonometric and
hyperbolic functions. A simple algebra shows that (4.1) can be written as follows

3cosx
1+2cosx

<
sinx
x

for all 0 < x <
π
2

. (4.2)

In view of inequality (4.2), we now define the function P(x) by

P(x) =
a+bcosx
1+ ccosx

, 0 < x <
π
2

. (4.3)

We are interested in finding the values of the parameters a , b and c such that P(x)
approximates as fast as possible to sinx/x as x → 0. This is addressed in Theorem
4.1. Motivated by the result of Theorem 4.1, we establish sharp bounds for sinx/x in
Theorem 4.2.

THEOREM 4.1. Let P(x) be defined by (4.3). Then for

a =
9
14

, b =
3
7

and c =
1
14

, (4.4)

we have

lim
x→0

sinx
x −P(x)

x6 = − 1
2100

. (4.5)

In particular, the speed of the function P(x) approximating sinx/x is given by the order
estimate O

(
x6
)

as x → 0 .

Proof. The power series expansion of sinx
x −P(x) near 0 is

sinx
x

−P(x) =
1+ c−a−b

1+ c
+

3b−3ca−1−2c− c2

6(1+ c)2 x2

+
−5b+25bc+5ca−25c2a+3c+3c2+ c3 +1

120(1+ c)3 x4

+
7b−196bc+427bc2−7ca+196c2a−427c3a−4c−6c2−4c3−c4−1

5040(1+ c)4 x6

+O(x8). (4.6)

It is easy to check that for a , b , c as defined in (4.4), we have⎧⎪⎨
⎪⎩

1+ c−a−b= 0

3b−3ca−1−2c− c2 = 0

−5b+25bc+5ca−25c2a+3c+3c2+ c3 +1 = 0,
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and so

sinx
x

−P(x) =
sinx
x

− 9+6cosx
14+ cosx

= − 1
2100

x6 +O(x8), x → 0.

This completes the proof of Theorem 4.1. �

THEOREM 4.2. Let 0 < |x| < π/2 . Then
(i) the inequality

p+6cosx
14+ cosx

<
sinx
x

<
q+6cosx
14+ cosx

(4.7)

holds with best possible constants

p =
28
π

= 8.91267681 . . . and q = 9; (4.8)

(ii) the inequality(
9+6cosx
14+ cosx

)r

<
sinx
x

<

(
9+6cosx
14+ cosx

)s

(4.9)

holds with best possible constants

r =
ln(π/2)
ln(14/9)

= 1.02206706 . . . and s = 1. (4.10)

Proof. Without a loss of generality, we may assume that 0 < x < π/2. Let

g(x) =
sinx(14+ cosx)

x
−6cosx, 0 < x <

π
2

.

Differentiating and using (1.1) and (1.2), we obtain

−x2g′(x) = (14−6x2)sinx+
1
2

sin(2x)− xcos(2x)−14xcosx

=
∞

∑
n=3

(−1)n 2n(4n−12n+8)
(2n+1)!

x2n+1 =
∞

∑
n=3

(−1)nun(x),

where

un(x) =
2n(4n−12n+8)

(2n+1)!
x2n+1.

Elementary calculations reveal that for 0 < x < π/2 and n � 3,

un+1(x)
un(x)

=
x2(4n+1−12n−4)

2n(2n+3)(4n−12n+8)
<

(π/2)2(4n+1−12n−4)
2n(2n+3)(4n−12n+8)

=
π2(4n+1−12n−4)

8n(2n+3)(4n−12n+8)
<

π2

8n
< 1.



210 C.-P. CHEN AND J. SÁNDOR

Therefore, for fixed x ∈ (0,π/2) , the sequence n �−→ un(x) is strictly decreasing with
regard to n � 3. Hence, for 0 < x < π/2,

−x2g′(x) > u3(x)−u4(x) =
3
70

x7 − 1
210

x9 > 0 ,

and then g(x) is strictly decreasing on (0,π/2) . Noting that

lim
x→0+

g(x) = 9 and lim
x→(π/2)−

g(x) =
28
π

,

we have

28
π

= lim
x→(π/2)−

g(x) < g(x) =
sinx(14+ cosx)

x
−6cosx < lim

x→0+
g(x) = 9

for all x ∈ (0, π
2

)
, with the constants 28

π and 9 being best possible.
Let

h(x) =
ln
( sinx

x

)
ln
( 9+6cosx

14+cosx

) , 0 < x <
π
2

and h(0) = 1, (4.11)

and let

h1(x) = ln

(
sinx
x

)
, 0 < x <

π
2

and h1(0) = 0,

h2(x) = ln

(
9+6cosx
14+ cosx

)
, 0 � x <

π
2

.

Then, for 0 < x < π/2,

h′1(x)
h′2(x)

=
(42+31cosx+2cos2 x)(sinx− xcosx)

25xsin2 x
= h3(x).

Elementary calculations reveal that

25x2 sin3 xh′3(x) = −23xsin(2x)−31xsinx+ xsin(2x)cos2 x

+(40+48x2)cos2 x+(2−2x2)cos4 x

+(62x2−31)cosx+31cos3 x+42x2−42

= −31xsinx− 45
2

xsin(2x)+
1
4
xsin(4x)

+
(

62x2− 31
4

)
cos(x)+ (21+23x2)cos(2x)

+
31
4

cos(3x)+
(

1− x2

4

)
cos(4x)+

261
4

x2− 85
4

=
6
7
x8 − 11

35
x10 +

∞

∑
n=6

(−1)nvn(x),

(4.12)
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where

vn(x) =
(4n2−10n+16)16n−1+31 ·9n−(23n2−34n−21)4n+1−992n2+744n−31

4 · (2n)!
x2n.

Elementary calculations reveal that

vn+1(x)
vn(x)

=
4x2

2n+1
αn,

where

αn=
(4n2−2n+10) ·16n+279 ·9n−(368n2+192n−512)4n−992n2−1240n−279

(n+1)((2n2−5n+8)16n+248 ·9n−(736n2−1088n−672)4n−7936n2+5952n−248)
.

It is not difficult to show that

0 < αn < 1 for n � 6.

Hence, for 0 < x < π/2 and n � 6, we have

vn+1(x)
vn(x)

<
4
(π

2

)2
2n+1

=
π2

2n+1
< 1.

Therefore, for fixed x ∈ (0,π/2) , the sequence n �−→ vn(x) is strictly decreasing for
n � 6. It follows from (4.12) that

25x2 sin3 xh′3(x) >
6
7
x8 − 11

35
x10 > 0, 0 < x <

π
2

,

and therefore, h3(x) = h′1(x)
h′2(x)

is strictly increasing on (0,π/2) . By Lemma 1.1, the

function

h(x) =
h1(x)
h2(x)

=
h1(x)−h1(0)
h2(x)−h2(0)

is strictly increasing on (0,π/2) . Noting that

lim
x→0+

h(x) = 1 and lim
x→(π/2)−

h(x) =
ln(π/2)
ln(14/9)

,

we have

1 = lim
x→0+

h(x) < h(x) =
ln
(

sinx
x

)
ln
( 9+6cosx

14+cosx

) < lim
x→(π/2)−

h(x) =
ln(π/2)
ln(14/9)

for all x ∈ (0,π/2) , with the constants ln(π/2)
ln(14/9) and 1 being best possible. The proof of

Theorem 4.2 is complete. �
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REMARK 4.1. The lower bound
( 9+6cosx

14+cosx

) ln(π/2)
ln(14/9) in (4.9) is a bit sharper than one

(28/π)+6cosx
14+cosx in (4.7).

REMARK 4.2. By using the Maple software, we find that

sinx
x

−
(

9+6cosx
14+ cosx

) ln(π/2)
ln(14/9)

=
ln(9π/28)
6ln(14/9)

x2 +O(x4), x → 0

and
sinx
x

− 9+6cosx
14+ cosx

= − 1
2100

x6 +O(x8), x → 0.

This shows that as x → 0, the upper-approximation 9+6cosx
14+cosx is better than the lower-

approximation
( 9+6cosx

14+cosx

) ln(π/2)
ln(14/9) in (4.9).

5. Frame’s inequalities

Frame [7] proved that for 0 < x < 5,(
3+(x2/11)

)
sinhx

2+ coshx+(x2/11)
< x <

(
3+(x2/10)

)
sinhx

2+ coshx+(x2/10)
, (5.1)

which should be called Frame’s inequality.
In view of inequality (5.1), the following question can be posed: What are the best

possible constants ρ1 and ρ2 such that the inequalities

(3+ ρ1x2)sinhx
2+ coshx+ ρ1x2 < x <

(3+ ρ2x2)sinhx
2+ coshx+ ρ2x2 (5.2)

are valid for all x > 0? The following Theorem 5.1 answers this question.

THEOREM 5.1. For x > 0 , inequality (5.2) holds with best possible constants

ρ1 = 0 and ρ2 =
1
10

. (5.3)

Proof. Inequality (5.2) can be written for x > 0 as

ρ1 <
2x+ xcoshx−3sinhx

x2(sinhx− x)
< ρ2.

Let

G(x) =
2x+ xcoshx−3sinhx

x2(sinhx− x)
=

A(x)
B(x)

,



SHARP INEQUALITIES FOR TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 213

where

A(x) = 2x+ xcoshx−3sinhx =
∞

∑
n=2

2(n−1)
(2n+1)!

x2n+1 =
∞

∑
n=2

anx
2n+1,

with

an =
2(n−1)
(2n+1)!

,

and

B(x) = x2(sinhx− x) =
∞

∑
n=2

1
(2n−1)!

x2n+4 =
∞

∑
n=2

bnx
2n+4,

with

bn =
1

(2n−1)!
.

Clearly, the sequence

an

bn
=

n−1
n(2n+1)

, n � 2

is strictly decreasing. By Lemma 1.2, the function G(x) is strictly decreasing on (0,∞) .
Noting that

lim
x→0+

G(x) =
1
10

and lim
x→∞

G(x) = 0,

we have

0 = lim
x→∞

G(x) < G(x) =
2x+ xcoshx−3sinhx

x2(sinhx− x)
< lim

x→0+
G(x) =

1
10

for all x ∈ (0,∞) , with the constants 0 and 1/10 being best possible. The proof of
Theorem 5.1 is complete. �

Theorem 5.2 establishes a trigonometric version of inequality (5.2).

THEOREM 5.2. For 0 < x < π/2 ,

(3−ρ1x2)sinx
2+ cosx−ρ1x2 < x <

(3−ρ2x2)sinx
2+ cosx−ρ2x2 (5.4)

with best possible constants

ρ1 =
1
10

and ρ2 =
8π −24
π3−2π2 = 0.100535582 . . ..
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Proof. Inequality (5.4) can be written for 0 < x < π/2 as

ρ1 <
2x+ xcosx−3sinx

x2(x− sinx)
< ρ2.

Let

H(x) =
2x+ xcosx−3sinx

x2(x− sinx)
, 0 < x <

π
2

.

Differentiation yields

x3H ′(x) =
(11x− x3)sinx+ 1

2xsin(2x)−3x2 cosx+3cos(2x)−3x2−3

x2 + sin2 x−2xsinx

=
C(x)
D(x)

,

where

C(x) = (11x− x3)sinx+
1
2
xsin(2x)−3x2 cosx+3cos(2x)−3x2−3

=
∞

∑
n=5

(−1)n−1 32n+8n3−24n2 +(n−6)22n−1

(2n)!
x2n

=
1

75600
x10− 1

453600
x12 +

∞

∑
n=7

(−1)n−1cn(x),

(5.5)

with

cn(x) =
32n+8n3−24n2 +(n−6)22n−1

(2n)!
x2n,

and

D(x) = x2 + sin2 x−2xsinx =
∞

∑
n=3

(−1)n−1 22n−1−4n
(2n)!

x2n

=
∞

∑
n=3

(−1)n−1dn(x),
(5.6)

with

dn(x) =
22n−1−4n

(2n)!
x2n.
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Elementary calculations reveal that for 0 < x < π/2 and n � 7,

cn+1(x)
cn(x)

=
2x2
(
4n+8+4n3+(n−5)4n

)
(2n+1)(n+1)

(
64n+16n3−48n2 +(n−6)4n

)

<
2(π/2)2

(
4n+8+4n3+(n−5)4n

)
(2n+1)(n+1)

(
64n+16n3−48n2 +(n−6)4n

)
=

π2

2(2n+1)
4n+8+4n3+(n−5)4n

(n+1)
(
64n+16n3−48n2 +(n−6)4n

)
<

π2

2(2n+1)
< 1.

Therefore, for fixed x ∈ (0,π/2) , the sequence n �−→ cn(x) is strictly decreasing with
regard to n � 7. It follows from (5.5) that

C(x) >
1

75600
x10− 1

453600
x12 > 0, 0 < x <

π
2

.

Elementary calculations reveal that for 0 < x < π/2 and n � 3,

dn+1(x)
dn(x)

=
2x2(4n−2n−2)

(2n+1)(n+1)(4n−8n)
<

2(π/2)2(4n−2n−2)
(2n+1)(n+1)(4n−8n)

=
π2(4n−2n−2)

2(2n+1)(n+1)(4n−8n)
<

π2

2(2n+1)
< 1.

Therefore, for fixed x ∈ (0,π/2) , the sequence n �−→ dn(x) is strictly decreasing with
regard to n � 3. It follows from (5.6) that

D(x) > d3(x)−d4(x) =
1
36

x6 − 1
360

x8 > 0, 0 < x <
π
2

.

Hence,

H ′(x) =
1
x3

C(x)
D(x)

> 0, 0 < x <
π
2

,

and therefore, H(x) is strictly increasing on (0,π/2) . Noting that

lim
x→0+

H(x) =
1
10

and lim
x→(π/2)−

H(x) =
8π −24
π3−2π2 ,

we have

1
10

= lim
x→0+

H(x) < H(x) =
2x+ xcosx−3sinx

x2(x− sinx)

< lim
x→(π/2)−

H(x) =
8π −24
π3−2π2



216 C.-P. CHEN AND J. SÁNDOR

for all x ∈ (0,π/2) , with the constants 1/10 and (8π − 24)/(π3 − π2) being best
possible. The proof of Theorem 5.2 is complete. �

REMARK 5.1. (i) For 0 < |x| < π/2, it is known in the literature that

sinx
x

<
2+ cosx

3
. (5.7)

Inequality (5.7) was first mentioned by the German philosopher and theologian Nico-
laus de Cusa (1401-1464), by a geometrical method. A rigorous proof of inequality
(5.7) was given by Huygens [8], who used (5.7) to estimate the number π . The in-
equality is now known as Cusa’s inequality (see [11, 12, 14, 15]). Further interesting
historical facts about inequality (5.7) can be found in [14].

(ii) Taking ρ1 = 1/10 and ρ2 = (8π − 24)/(π3 − π2) , inequality (5.4) can be
written for 0 < |x| < π/2 as

2+ cosx− ((8π −24)/(π3−π2)
)
x2

3− ((8π −24)/(π3−π2)
)
x2

<
sinx
x

<
2+ cosx− (x2/10)

3− (x2/10)
. (5.8)

The second inequality in (5.8) is sharper than inequality (5.7). In fact, the right side of
inequality (5.4) is better than (5.7) for any 0 < ρ1 < 1, (not only for ρ1 = 1/10), as
this is equivalent to 0 < cosx < 1 (simple computations).

(iii) Taking ρ1 = 0 and ρ2 = 1/10, inequality (5.2) can be written for x �= 0 as

2+ coshx+(x2/10)
3+(x2/10)

<
sinhx

x
<

2+ coshx
3

. (5.9)

The second inequality in (5.9) is hyperbolic version of inequality (5.7). The second
inequality in (5.9) appears in [12].

Acknowledgements. The authors thank the referees for the careful reading of the
manuscript and for their valuable remarks and suggestions.

RE F ER EN C ES

[1] M. ABRAMOWITZ AND I. A. STEGUN (EDS), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th
printing, Washington, 1965, 1972.

[2] G. D. ANDERSON, M. K. VAMANAMURTHY AND M. VUORINEN, Inequalities for quasiconformal
mappings in space, Pacific J. Math. 160 (1993), 1–18.

[3] G. D. ANDERSON, S.-L. QIU, M. K. VAMANAMURTHY AND M. VUORINEN, Generalized elliptic
integral and modular equations, Pacific J. Math. 192 (2000), 1–37.

[4] G. D. ANDERSON, M. K. VAMANAMURTHY AND M. VUORINEN, Conformal Invariants, Inequali-
ties, and Quasiconformal Maps, New York, 1997.

[5] M. BECKER AND E. L. STRAK, On a hierarchy of quolynomial inequalities for tanx, Univ. Beograd.
Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 602-633 (1978), 133–138.

[6] C.-P. CHEN AND W.-S. CHEUNG, Sharp Cusa and Becker-Stark inequalities, J. Inequal. Appl. 2011:
136 (2011), doi:10.1186/1029-242X-2011-136.



SHARP INEQUALITIES FOR TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 217

[7] J. S. FRAME, Some trigonometric, hyperbolic and elliptic approximations, Amer. Math. Monthly 61
(1954), 623–626.

[8] C. HUYGENS, Oeuvres Completes 1888-1940, Société Hollondaise des Science, Haga.
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