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MULTI-WEIGHTED BOUNDEDNESS FOR MULTILINEAR ROUGH
FRACTIONAL INTEGRALS AND MAXIMAL OPERATORS

XIANGXING TAO AND YANLONG SHI

(Communicated by J. Pecari¢)

Abstract. In this article, several sufficient conditions on the weights (V,u) are given such that
the multilinear rough fractional integrals Ig’ 2! and the rough multi-sublinear fractional maximal

operators Ms(ln.?): are bounded from the product spaces L) (R") x L2 (R") x -+ x L™ (R") to the
space L{(IR"). The weak multi-weighted boundedness has also been derived. These results will
extend the early and recent works in this direction.

1. Introduction

The fractional type operators and their weighted boundedness theory play impor-
tant roles in harmonic analysis and other fields, and the multilinear operators arise
in numerous situations involving product-like operations, see [5], [6], [7], [8], [9]
for instance. In this paper we will study the weighted boundedness for the rough

multi(sub)linear fractional operators Mg'_') and Ig"g(, which are the more generaliza-
tions of the classical setting. Let m and n be the nonnegative integers with n > 2 and
m > 1, and let S™~! denote the unit sphere of R"", and suppose that € is a homo-
geneous function of degree zero on R™ only with the condition Q € L(S™~!) for
some s > 1. We consider the rough multi-sublinear fractional maximal operator Mgg
defined by

BalF)0 =sup i [ 1Rl (1)

|<r

and the rough multilinear fractional integral Igfg defined by

Qﬁﬁw=/@ﬂwmanﬁxyl (12)

where ¥ = (y1,y2,-++,ym) and x,y1,y2,--+,ym €R", dy = dyidy,---dyn, and [ de-
notes the m-tuple (f1, /2, fm)-
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In case m =1, we denote Mg)a and Is()l)a by Mg o and Ig 4, which are the rough
fractional maximal operator and the rough fractional integral respectively. In case Q =
1, we denote M, (m ) and I, (m) o by Mgy ") and I&m) , which are the multi-sublinear fractional
max1mal operator and the multilinear fractional integral respectively. If Q =1 and
m = 1, then they become the classical fractional maximal operator M, and the classical
fractional integral I .

Historically, in 1974 Muckenhoupt and Wheeden [11] proved that the fractional
maximal operator M,, and the fractional integral operator I, were of weak type (L! (),
Lia (@na)) and of strong type (LP(w”),L4(w9)) for 1/g=1/p—a/n,0<a <n
and 1 < p <n/a, if the positive weight w € A, ;, which means that

1 1/q 1 o /v
ngﬂgn (a/Qw(x)qu) (@/Qw(x> pdx) < oo, (1.3)

where Q denotes the cube in R” with the sides parallel to the coordinate axes and
the supremum is taken over all cubes, and as usual, p’ is the exponent conjugate
to p satisfying 1/p+1/p’ = 1. In 1998, Ding and Lu [3] extended Muckenhoupt-
Wheeden’s result to get that, when s/(s— )= <p<n/aand 1/g=1/p—a/n,
andif Q € L(S" 1) and o(x) € Ay, q/s » then the two operators Mg o and Ig o are
all bounded from L%, (R") to LI, (R").

In 1992, Grafakos [5] first studied the multilinear type maximal function and mul-
tilinear type fractional integral. It is well known that the study of multilinear integral
operators has recently received increasing attentions, see, for example, [6], [7], [9], [14]
and [15]. Recently, following the work of [&], the A( F.q) Was introduced in [2] and [10]

by
d . (x) Pid " oo
5?£n<g|/j o)’ x) L 1<|Q/1w x) <

where vg = [1/L; w;. They proved that, if 0 < o <mn, 1 < py,---,pu < o and
1/g=1/p1+--+1/pm—a/n, one has & € Ay;, if and only if the multilinear

operators MY" and 1" are bounded from LPY(of") x -+« x LPm(wh™) to LI(v().
Further, the following multi(sub)linear fractional operators with homogeneous kernels
were considered in [2],

mmmmwwma/nm%wam

i=1
[¥|<r

Hi=1 ()’i)fi(x—}’i) v

®")" ||

I, o(F)(x) = :
and the sufficient conditions for the (L7 (@!") x -+ x LPm(wh™), L9(vg)) boundedness
were given, see Theorem 2.5 and 2.6 in [2] for details. But for the rough multi(sub)linear
fractional operators Mg"gC and Ig"g( defined by (1.1) and (1.2), the similar weighted es-
timates remain unknown. Our first purpose is to study some weighted estimates for the
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operators MézmgC and Is(lmg‘ related to the A, ; weights and A ;) weights, we obtain the
following two theorems.

THEOREM 1.1. Let 0 < o0 < mn and € be homogeneous of degree zero on R™

with Q € LS(S™1) for s > 1. Let 1/q=1/py+++-+1/pm—o/n > 0. Assume that

o
w® EA(E 9y
S/7S/

(a) If each p; > s, then there is a constant C independent of f such that

(b) If each p; > s', then there is a constant C independent of f such that

. H I £l e

e

qu CH || fi HL”t (Rn)

Here, and henceforth, L9 (R") denotes the weak L1(R") space.

THEOREM 1.2. Let 0 < o0 < mn and Q be homogeneous of degree zero on R™
with Q € LS(S™1) for s > 1, and let 1/q=1/p;+1/p2+-+1/pn—ot/n > 0.
Assume that the weights a)l‘-"/ €A, /s gy With some q; > p; satisfying 1/q1+1/q2+
1 gn=1/g. )
(a) If each p; > s', then there is a constant C independent of | such that

M )|, 2P0

m
o (R") H (&) \CHlHﬁHLg;;_(Rn);
=
w w

(b) If p; > 5, then there is a constant C independent of f such that

HMm

27

H || fz HL”t (Rn)

L"°° (Rm) ‘
w

On the other hand, for the two-weighted boundedness of the classical fractional
operators, Chanillo, Watson and Wheeden [1], Garcia-Cuerva and Martell [4], Pérez
[12], Sawyer and Wheeden [13] showed that, when 0 < ¢ <n and 1 < p < g < oo, if
(u,v) € 7" for some r > 1, then

(/Rn |Maf(x)|‘1u(x)dx) . <C ( g If(x)”v(x)dx) l/p; (1.4)

and if (u,v) € o7,y for some r > 1, then

([ tesamcoar) “ <c( [ ywmoa)” s
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with the constant C independent of f € LY.

Itis natural to ask whether the conclusions above can be extended to the multilinear
cases with the rough kernels. This is our important objective of the paper, we will
derive some sufficient conditions on weighs (V,u) and establish the multi-weighted

norm inequalities for the rough multi(sub)linear operators Mgg and Ig"g( . To this end,

O(rt

we should introduce the notations .27, " as follows.

DEFINITION 1.3. Let 0 < a,rf <o and 1 < p, g < o, we call that the pair of
positive weights (u,v) satisfies the =7, condition, i.e. (u,v) € g, if

1 1
1,0 l iq l / i
sup |Q|i* (— / u(x)tdx> ’ (_ / V(x)r(l_p)dx) 7 oo,
OCRr 10| Jo 10| Jo

One notes that, in special case r=r=1and 1/g=1/p—a/n, (Wi,wP) € %1%171
if and only if w € A, ,. It’s easy to see that 75" C @' C oM and @y
M < M forany re> 1.

<

THEOREM 1.4. Let 0 < as’ <mn and Q be homogeneous of degree zero on R™
with Q € L*(S™~1) for s > 1. If for each i we assume that s' < p; < q; < >, and the

os' /myri 1

weights (u,v;) € < i/stq)s SO some ri > 1. Then for any f; € € LI (R™) it follows that

a7

L" R")

m
H 1fill 21 gy
=1
with the constant C > 0 independent of f, where é = qil + qiz 4+ 4 ql
THEOREM 1.5. Let 0 < as’ <mn and Q be homogeneous of degree zero on R™

with Q € L*(S™~1) for s > 1. If for each i we assume that s' < p; < q; < , and the

weights (u,v;) € sza/&s/r;/s Then for any f; € L (R") it follows that

[ (7

H 1fill 21 gy

L‘I s ]Rn
with the constant C > 0 independent of f, where é = qil + qiz 4+ 4 ql
m

THEOREM 1.6. Let 0 < as’ <mn and Q be homogeneous of degree zero on R™
with Q € L*(S™~1) for s > 1. If for each i we assume that s' < p; < q; < >, and the

O(\ ! mr t;

weights (u,v;) € /\ aly for some r; > 1 and t; > 1. Then for any f; € L}(R") it
follows that

HHfzIILP: RY)

with the constant C > 0 independent off, where 1 7= qil + qiz 4+ #

HIQ o L" R)
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THEOREM 1.7. Let 0 < as’ < mn and Q be homogeneous of degree zero on R™

with Q € L*(S™~1) for s > 1. If for each i we assume that s' < p; < q; < >, and the
as' /m,1

weights (u,v;) € < i/s' gy Jor some ti > 1. Then for any fi € LYI(R") it follows that

with the constant C > 0 independent off, where Ll] = % + é 4+ qu‘

alF)

LS | (e

This paper is organized as follows. In section 2, we will give some basic estimates

and the the unweighted boundedness for Méz gt and Iéz gz, i.e. Theorem 2.4 and 2.5.
In section 3, we will prove Theorem 1.1 and 1.2. Finally in section 4, we will derive

the slight stronger results on the multi-weighted boundedness for Méz gt and Iéz gz, see
Theorem 4.1 and 4.2, and Theorem 4.5 and 4.6, which will imply Theorem 1.4-1.7
above.

Throughout this paper, the letter C always remains to denote a positive constant
that may varies at each occurrence but is independent of the essential variable.

2. Elemental estimates for Mg"gC and Iézmgc

In this section, we give some elemental estimates and prove the unweighted bound-
edness for MézmgC and Igflgz, i.e., Theorem 2.4 and 2.5.

LEMMA 2.1. [9] Let O<o<mnand 1/q=1/p1+1/pa+---+1/pm—o0/n>

(a) If each p; > 1, then

(m) 7 o
)y < CTTI il
(b) If pi > 1, then
)| ey < CTLI i o)

LEMMA 2.2. Let Q be homogeneous of degree zero on R™ with Q € L*(S™~1)
for some s > 1, and let 1/s+1/s' = 1. Then there exists a constant C > 0 such that,
forany x e R" and f; € Lj,(R") (i=1,2,---,m),

Ms(lrtlgc(f)(x) <C [ s’ (|f1‘s |f2|5 ’|fm‘sr> (x)} 1/.\~"
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Proof. By the Holder inequality, we have

1 . m .
/ 25) 11~y lay
F [¥]<r i=1

1/.Y/ 1/S
< gz | [, TG woras ([, 1amras)
r [y<ri= Iyl<r

| m 1/s'
< Csup (W/M_Hllfi(x—yi)s d?)
=

r>0
s s’ s' 1/s
<C [ (AFRE 1l 0]
This completes the proof of the Lemma. [J

LEMMA 2.3. Let 0 < a < mn and 0 < € < min{a,mn — a}, then there is a
constant C > 0 such that, for any x € R" and f; € Lj,.(R") (i=1,2,---,m),

| <c . ] Mg F1w]°

Proof. This lemma can be seen by standard method. Fix x € R" and 0 < € <
min{o,mn— o}, for any § >0, we decompose as follows,

’Im () </| <8 /|>6> |y [ O‘H‘fl x s = b
y y

It’s easy to see that

oo Q m
11:2 / L}EqnaHflx vi)|dy

2-15<|y|<2/t1S

<X spra | OG-
[¥]<2-76
<O @81 MY), ()00 < oMY, (),
Jj=0
and

Q¥

L= ‘4‘mnaH|f1x yi)ldy

'M8

705 <[51<2it15

1 I .
. 2igyma / \Q(y)\g\fi(x—yi)\dy

Jj=0 |y\<2f+15

<cio(2f6> MEY, (F) ) < CoMEY, . (F)(x).

N
LM
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Thus we get

150 (FY )| < CEEMYY,_ o (F)(x) +C8 MG, o (F) ().

Now we take 6 > 0 such that

8 MG, o(F)() = 8 My o (F)(),
which implies the Lemma. O
THEOREM 2.4. Let 0 < o0 < mn and € be homogeneous of degree zero on R™

with Q € L° (S~ 1)fors> 1. Let 1/g=1/p1+1/p2+---+1/pmw—0t/n>0.
(a) If each p; > s, then there is a constant C independent of f such that

HMm

CH 1 fi lei eny -

L4(R™)

(b) If p; > 5, then there is a constant C independent of f such that

H mm

Proof. Fix xeR", 0 < o < mn, we have

1
e [ TNl < [ g T wlay.

|<rizg

Py < L e

Taking the supremum for » > 0 on both sides of the inequality above, we have

M (F)@) <17 (fil 1ol L) ).

Then, applying Lemma 2.1, we immediately obtain that

[ME ] H I i e 2.1)
ifeach p; > 1, and
(m) 2 m . -
[ME )] gy < TN e 22)

if some p; = 1.

Here we point out that, if each p; > s’, one can see from the assumption 1/p; +
1/pa+-+1/pm—a/n>0 that @ <nm/s',and so 0 < os’ < mn.

Now if each p; > s, we use Lemma 2.2 and the inequality (2.1) to get that

|7y

|S

L9(R™) LPils (R

SCIT I fi leri gy -
i=1
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If p; > ', we use Lemma 2.2 and (2.2) to get for any A > 0 that

’{x;\Mgmm(x)M}\
<l M AK 1AL Lt @I > 2|

| , q/s | m q
<C Fl} (NN HLPI'/-Y,(Rn) <C XH | fi llzri(mey | -
Thus we complete the proof of Theorem 2.4. [

THEOREM 2.5. Suppose the same conditions and notations as that in Theorem
2.4,

(a) if each p; > s', then there is a constant C independent of f such that

i

(b) if pi = s', then there is a constant C independent of f such that

Proof. Taking a small positive number € with 0 < &€ < min{ct, mn— o, n/q}, one
can then see that

eS| . H | fi iy

1500,

<C i i ny .
- g\\f 27 ()

1 1 1 1 o+E 1 €
_— = — —_ +__ + :___>07
q1 pP1 P2 Pm n q n
1 1 1 1 oa—¢e 1 &€
— ==t =+ F+— - =—+->0.
q2 P P2 Pm n q n

Now if each p; > s’, using Lemma 2.3, the Holder inequality for qu + qiz = 5 , and
applying Theorem 2.4, we obtain that

] ey <€ (L, Do) o] )™

() LZOANE] .

L91(RN)

m
<CTT I i lri oy -
i1
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241
Similarly, if p; = s’ for some i, we take A? = kqﬁ"z (H | fi llpi)©2%ar for any

A > 0, then applying Lemma 2.3 and Theorem 2.4, we give that

{1 Py > 2}
<|{x M- (D@1 > a2/ |+ [{a: Mo ()] > 22742}

| @ 2 ai
<Cl 1Tl | +C{ 55 TTI /i leein
A% A%
1 !
<C (IH | fi LPi(R")> :
=1

This yields the desired inequality of Theorem 2.5. Thus we complete the proof of
Theorem 2.5. [

3

3. Weighted estimates for operators Is()m()x and Mézmg(

In this section, we will prove the weighted norm inequalities for rough multi-
(sub)linear operators Mézm()x and I((Zg, i.e., Theorem 1.1 and 1.2.

A locally integrable nonnegative function @ on R” is said to belong to A, (1 <
p < o) if there exists C such that

1 1 S\
2 (g o) (g oo ee) <<

where Q denotes any cube in R". Recall (1.3), the definition of A, , weight defined
in the first section, one can see that @ € A, , if and only if w? € A, for 1 < p < .
Moreover, if 1/g=1/p—o/n with 1 < p <n/o and 0 < o < n, then it’s easy to
deduce that

O(x) €EAp g OX)T €Ayp_ayme OX)T €Ay
From the characterization of A, weights, one can shows that

LEMMA 3.1. [3] Let 0<a<n, 1<s <p<n/a, 1/g=1/p—a/n and
w(x)"' €A,5q/s- Then there exists a small positive number € with 0 < & < min{c,
n/p—a.n/q} such that o(x)*" €Ay qe )y and o(x)" € Ap)yg.)s» Where 1/qe =
l/p—(a+e)/nand1/qe=1/p—(0—g)/n

LEMMA 3.2, [11] Let O0<a<n, 1<p<n/o, 1/g=1/p—o/nand ® €A, ,.
Then there exists a constant C independent of f such that

1/q 1/p
(/ Mo f () |qu) <c</ £ (0) de> .
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LEMMA 3.3. [10] Let 0 < v <mn, ;= -4+ oo —% >0, and @ € Ayy.
(l) ifl<p17"'7pm<°°) then

(m) (7 7 5 :
M, <CITIAN gy
H a (f) Lil,‘i (R") (f) () 1 ”f”LZ)!,i(R )
(ii) if L< pi-+,pm <o, then
(m) 2 7 .
M \ 1 L ny»
) p— ) o Hi_ A2, e
with the absolute constant C independent of f,-, where vg =TI, w;.

The proof of Theorem 1.1. By Lemma 2.2 we have

1/s'

. .1
e OD

M,

m) e (1S s/
<
ey €M UAT AR Lt

This, together with Lemma 3.3 under the assumption o' €A (. , yields the theo-

"\\"m

q
4)

rem. [

The proof of Theorem 1.2. Noting the assumptions a)"'/ € Ap, /s /s imply that
& € A (B.4)° so the boundedness for Ms(z (l follows from Theorem 1.1, it’s left to show
(m)

the boundedness for IQ. o

We can choose o; satisfying L = 1 — O" and 0 < o;s’ < n. Since ®f ‘cA

we get from Lemma 3.1 that there exists a small positive number € such that

pils'qi/s' >

] 1 (X-+ & n
CO'}EA_/_/ h = daJr:(xl - < —,
i pi/s' Vi/s were%_ i n and ¢; +m o
and
/ 1 I o _
(Dl-s GApi/s/@/s/ whereg:;i— Y and o; =o——>0
Denote by
1 1 1 1 o+e 1 &€
T E =-_-Z>0,
B pm p2 Pm n qg n
1 1 1 1 o—€ 1 €
— =ttt — = =—+4+->0,
B p1 P2 Pm n

we have that

+o +-+oy =o+e,
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and
1 1 1 1 _ _ _
, 0 +0, +---Fa, =0—¢.

— = — 4 — 4 _
B & & Sm
Then, by Lemma 2.3 and the Holder inequality, and by Theorem 1.1 we get

1, () </R

< C( /R (Mo (F) Ve ()] f (M8, (F)e0va )] : dx) v

+

1/q

|5 (7)

15 (F)(x)ve (X)|qu>

< |
= Q.a+¢e f Lﬁ;ﬁ (R Qa—¢ f Lﬁzz(R")

m
< C_l_{”fiHL”ipi (R
= ;

which is the strong type estimate.
) 2 m By—By
Similarly, if p; >s', we take A2 =AP P (T] || f; ||, )PP forany A >0, then
i=1 wl.’)i
applying Lemma 2.3 and Theorem 1.1, we give that
Iva {x: 1130 (H) )] > 2 }|

<|va {x: MG (F))| > 22/C? |+ v {x: Mo (F)(0)] > A2/}
1 B A2 m B

= (FE I £ LZM(R"J e (ﬁg I LZM‘“”)
R !

e(iflong )

This finishes the proof of Theorem 1.2. [

4. Multi-weighted estimates for Mgg and Ig"g(

In this section, we will obtain the multi-weighted norm estimates for the fractional
multi-sublinear maximal operator Mgg and the multilinear fractional integral operator
Is(lmg‘. The slight stronger theorems will be proved here than stated in the Section one,
which will imply Theorem 1.4—1.7 respectively.

THEOREM 4.1. Let Q be homogeneous of degree zero on R™" with Q € L*(S™~1)
for s > 1. Assume, for each i =1,2,---,m, that 0 < o5’ <n, s < p; < q; < o and
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. O‘I\ iyl ; . 1 _ 1 1 1
the weights (u,v;) € sz'p I s’ with some r; > 1. Let c=atnt ot and

=0+ 0+ -+ 0y. Then for any f; € LV (R") it follows that

M)

Lq R")

HHﬁHLm (&) 4.1)
—1
with the constant C > 0 independent of f .

Proof. Using Lemma 2.2, the condition ocs =S + -+ s’ and the Holder
inequality for integral with the index 7 /ls s+ -+ 7, we have

111/5 am /S

M ()

<C(/R

Li(R")

DAL AE -l @)
1/q

u(x)dx

4 1/q
u(x)dx)

m | s
Mo (i)

1/s'
L‘it/Y (Rm)

<CIT M 1)

1=

Since (u,v;) € szpa’/i 2 )y foreach i =1,2,---.m, we apply the two-weighted bound-

edness for operators M,y , the inequality (1.4), we obtain that, for |f;|* € b (),

(m) 7 1
HM LY(R") CHHMOC,S’ |fl ) Lq'/° (R?)
<C H ,‘S/ jr/ <C il Pi ony -
T e gy < TS g

This proves the inequality (4.1). [

THEOREM 4.2. Let Q be homogeneous of degree zero on R™ with Q € L*(S™~1)
for s > 1. Assume, foreach i=1,2,---,m, that 0 < oys’ <n, s’ < p; < q; < > and the
weights (u,v;) € %a’/; Z’?S, with some r; > 1 andlt,- > 1. Let Lll = % + é +-o qu
and o = o + 0+ -+ + . Then for any f; € LV(R") it follows that

Jigeh

H il 7 g 4.2)

Li(R")

with the constant C > 0 independent of f .
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Proof. Under the conditions of Theorem 4.2, we can choose a positive number €
such that, foreach i=1,2,---,m

q’ qt!

0<s<min{a,mn—a,ﬁ,’—q’,7(n ’/S)q’,<ﬁ—1>n n}
q9 4 qs Di

Let % = é— g % = Ll] £t then - it lz . Applying Lemma 2.3 and the Holder
inequality, we get
) from a0 Y
7 g < ([, [0 [Mgﬂ,g(f)(x)} (o))
v . 1/2
(4.3)
H Qa+£ ) e (R") ‘ (f) Mz/ (R")

Now we choose here (xi+ = o+ €q/q; and o = o — €q/q; for each i, then
0<o s <os’<nand

o +o +ta =ate, of +o, ++a, =0—¢.

We also take g; = ¢;l1/q and h; = q;l»/q for each i. Then we have

and due to the way we choose €, we have s’ < p; < g; < o, s’ < p; < h; < e, and

moreover
I 1 1 1 1 1 1 1

E_g_l g_2 g_m7 l2_h1 h2 hm.
Observe that 1 <1;/q < t;, we have

!

+ S L
445 _i 1 I 8i 1 ] ri(pi/s')
\Q|f:1 D (—/u(x)qu —/v,-(x)r"(lf(p"/“))dx
0] Jo 0] Jo
o s (1 wp )i (] 1) g, ) T
|Q|q1 T @/ I/L(_X) idx @/ Vi(x) ! pi dx .
0 0

Thus, for each i, the pair of weights (ull/ ,v;) satisfies the szp ’/S'; ’/S, -condition when-
ever (ul/4,v;) € o a’/; Z’?S Then, Theorem 4.1 implies that Ms(lgc ¢ is bounded from

LYV (R") x LE2(R™) x -+ x LE™(R") to L'} e (RY).
On the other hand, we can see l,/q < 1 < and so

/

— 5" 1
SLHS S 1 L3 hj 1 (—(p:/s") ri(pi/s")
|Q‘hi+ i pp <Q| /Qu(x)qu) (a/Qvi(x)n(l (pi/: ))dx)

!

s 1
doad 8 ] Wi (1 ry ipifSY
<|o|s T T w ( /u(x)"idx> (_/v.(x)ri(l—(pi/S))dx) .
10l Jo 0l Jo ™
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. . . . ' ril
In this case, for each i, the pair of weights (u l/q ,vi) verifies P ’/S, b -condition

whenever (u2/9,v;) € A a’/‘s,;”?s, Then, Theorem 4.1 says that Ms(z (l .
operator from L' (R") x LE2(R") x -+ x LE™(R") to L'} /e (RT).

Combing the above estimates together, we get

is a bounded

1/2 n o oq1/2
MG ()1

u

H s(ggwre(f)’ R") X Cﬂ”fiL{,’i(Rn)-

I n
L) /@)

This and inequality (4.3) yield the desired inequality (4.2). The proof of Theorem 4.2
is complete. [l

Now if we put in Theorem 4.1 and 4.2 that o; = o¢/m for each i, then we obtain
Theorem 1.4 and 1.6.

Finally, we consider the two-weighted weak-type estimate for the operators MézmgC .
We recall the definition of the two weight (u,v) € <7, in Definition 1.3, and remark
that, in the special case p = 1, 42%1’2’” = %1‘?;” forany 0 < o1, < oo and 1 < g < oo,
which means that

1
sup |Q|q+__l (é/Qu(x)tdx> ! < Cv(x) fora.e. x € Q.

OCR~

LEMMA 4.3. [4] Let 1 < p< g <o and 0 < o < n. Suppose that (u,v) be a
pair of weights in ﬂﬁ(}l’l. Then for every A > 0,

W(fr R Mo f(x)] > A}) < (/ )P >dx)q/p.

LEMMA 4 .4. Let 0< Otl <n, 1 <pi<qi<e and (u,v;) € ;zfpa’;h’ for each
i=1,2,---,m. Let 1 7= a—f— - L. +q—m and ¢ = o + 0 + - - -+ Oy, Then for every
fi € LV'(R"), there is a constant C > 0, independent of f;, such that

~»

)

LI (R HHleLPt (R 4.4)

Proof. For any fixed A > 0, we denote by

m —4/4i
:“/qi”JCiHL'V’;(Rn) (;kaLCf(R")> , i=1,2--- m—1.
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Then we have

w({r: M (F)0] > 4}) <u<{x: lm_IlMa,-ﬁ(x) 2 )
S mfu({x: Mo fi(x)| > pi}) +u ({x: Ma, fon (%) > %m_lui‘1}>
i=1 al

3

qi m_1
< 2 C(“;l”ﬁ”L{,’?(Rn» +C<Al [H ”i] Hﬁn”LL’,;’j(R")
i=1 ! i=1

q
1 m
< C (I g kaf,f(R")) .
This yields the desired inequality (4.4). O

THEOREM 4.5. Let Q be homogeneous of degree zero on R™ with Q € L*(S™~1)
for s > 1. Assume, foreachi=1,2,---,m, that 0 < o; <n, s’ < p; < q; < o and the

; . s’ 1,1 r_ 1,1, .41 —
weights (u,v;) € ”pr,-/s’,qi/.v" Let i=a Tt ot and o0 = 01 + 0 + -+ + O,

Then for any f; € L (R") it follows that
(m) . m
M gy < CTTIA g
i=1 !

THEOREM 4.6. Let Q be homogeneous of degree zero on R™ with Q € L*(S™ 1)
for s > 1. Assume, for each i =1,2,---,m, that 0 < o; < n, § < p; < q; < oo and
. ) o' 1t . . r_ 1,1, .41
the weights (u,v;) € ﬂp,-/sﬁq,-/s’ with some t,.> 1. Let = tn Tt and
o=0oy+ 0+ -+ y. Then for any f; € L) (R") it follows that

6P gy < CTT Al g o
i=1 I

Applying Lemma 2.2 and Lemma 4.4, and by the method used in last sections, we
can prove the two theorems above, which imply Theorem 1.5 and 1.6 by simply letting
o; = o/m foreach i =1,2,---,m. We omit the details of the proof of Theorem 4.5 and
4.6.
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