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EMBEDDINGS BETWEEN WEIGHTED LOCAL MORREY-TYPE
SPACES AND WEIGHTED LEBESGUE SPACES

R. CH. MUSTAFAYEV AND T. UNVER

(Communicated by J. Pecari¢)

Abstract. In this paper, the embeddings between weighted local Morrey-type spaces and weighted
Lebesgue spaces are investigated.

1. Introduction

Throughout the paper, we always denote by ¢ and C a positive constant, which is
independent of main parameters but it may vary from line to line. However a constant
with subscript or superscript such as ¢; does not change in different occurrences. By
a<Sb, (b2 a)wemean that « < Ab, where A > 0 depends on inessential parameters.
If a <b and b < a, we write a ~ b and say that a and b are equivalent. We will denote
by 1 the function 1(x) =1, x € R"”. For x € R"” and r > 0, let B(x,r) be the open ball
centered at x of radius r and ‘B(x,r) := R"\B(x,r).

Let A, B be some sets and ¢, ¥ be non-negative functions defined on A x B (It
may happen that @(o,3) = or y(a, ) = for some o € A, € B). We say that
¢ is dominated by y (or ¥ dominates ¢) on A X B uniformly in @ € A and write

o(o,B) Sy(a,B) uniformly in oa€EA

or
y(e,B) 2 o(a,B) uniformly in o €A,

if for each 8 € B there exists C(f3) > 0 such that

¢(a.B) <C(B)w(a,B)

for all o € A. We also say that ¢ is equivalentto ¥ on A X B uniformly in o € A and
write
o(a,pB) = y(o,p) uniformly in o €A,

if ¢ and y dominate each other on A x B uniformly in o € A (see, for instance, [3]).
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Given two quasi-normed vector spaces X and ¥, we write X =Y if X and ¥ are
equal in the algebraic and the topological sense (their quasi-norms are equivalent). The
symbol X — Y (Y <= X ) means that X C ¥ and the natural embedding I of X in Y is
continuous, that is, there exist a constant ¢ > 0 such that ||z|]|y < c||z|x forall z € X.
The best constant of the embedding X — Y is ||I||x—v.

Let A be any measurable subset of R”, n > 1. By 9t(A) we denote the set
of all measurable functions on A. The symbol 9" (A) stands for the collection of all
f € 9M(A) which are non-negative on A. The family of all weight functions (also called
just weights) on A, that is, measurable, positive and finite a.e. on A, is given by W(A).

For p € (0,o0] and w € M " (A), we define the functional || - ||, .4 on M(A) by

(L F@Pw)dn)? it p<e,
”pr,w,A = { .
esssupy | f(x)|w(x) if  p=co.

If, in addition, w € W(A), then the weighted Lebesgue space L,(A,w) is given by
Lpw(A) =Ly(A,w) :={f € MA) : [|f]lpwa <o}

and it is equipped with the quasi-norm || - |y, -

When w=1 on A, we write simply L,(A) and || - |, instead of L,(A,w) and
| - Il p,w.a » respectively.

We adopt the following usual conventions.

CONVENTION 1.1. (i) Throughout the paper we put 0/0 =0, 0+ () =0 and
1/(+e)=0.
(i1) We put
Lif 0<p<l,

, 4o if p=1,
Lif 1< p < oo,
1 if p=co.

(iii) If I = (a,b) C R and g is a monotone function on 7, then by g(a) and g(b)
we mean the limits limy_.,+ g(x) and lim,_,;,_ g(x), respectively.

Local Morrey-type spaces were widely investigated during last decades. The re-
search includes the study of classical operators of Harmonic and Real Analysis — maxi-
mal, singular and potential operators — in these spaces (see, for instance, [18]-[20] and
[1]-[11]), and the investigation of the functional-analytic properties of local Morrey-
type spaces and relation of these spaces with other known function spaces (see, for
instance, [12], [15] and [17]). We refer the reader to the surveys [1] and [2] for a
comprehensive discussion of the history of local Morrey-type spaces.

The weighted local Morrey-type spaces and weighted complementary local Mor-
rey-type spaces are defined as follows.
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DEFINITION 1.2. Let 0 < p,0 < oo, @ € MM T(0,0) and v € W(R"). We denote
by LM, »(R",v) the weighted local Morrey-type space, the set of all f € Lﬁ;’ﬁ,(R")
with

11 2t g () = ||w(r)Hf||p7v.,B(0.,i’)||97(07°<’) <

DEFINITION 1.3. Let 0 < p,0 < oo, @ € MM T (0,0) and v € W(R"). We denote
by LM 1»6,0(R",v) the weighted complementary local Morrey-type space, the set of all
functions such that f € L, ,(‘B(0,)) forall £ > 0 with

< oo,
6,(0,)

1 ety o) 1= || @)A1 m0,

REMARK 1.4. In [5] and [7] it were proved that the spaces LM ,(R") :=
LMy »(R",1) and CLMpeﬁw(R”) = CLMpg’w(R”,l) are non-trivial, i.e. consists not
only of functions equivalent to 0 on R”, if and only if

(t00) < for some t >0, (1.1)

and
||a)||97(07,) < oo, for some t>0, (1.2)

respectively. The same conclusion is true for LM, ,,(R",v) and CLMpeﬁw(Rn,V) for

any v € W(R").

DEFINITION 1.5. Let 0 < p,0 < . We denote by Qg the set all functions w €
MT(0,0) such that
0<|[@]lg,(00) <o, >0,

and by "Qy the set all functions @ € M (0,e0) such that

(0,) <0 t>0.

Let v € W(R"). 1t is easy to see that LMpg ,(R",v) and LM,q o(R",v) are
quasi-normed vector spaces when @ € Qg and ® € ‘Qg, respectively.
Let f € LI°°(R"). The maximal operator M is defined for all x € R" by

M = )| d
S ) z>o |th |/xt )1y,

where |B(x,7)| is the Lebesgue measure of the ball B(x,7).

The boundedness of the maximal operator from LM,q, o, (R") to LM, o, (R")
for general w; and w, was studied in [4]-[6], [9] and [3]. In [4]-[6] and [9], for
a certain range of the parameters p, 6; and 6,, necessary and sufficient conditions
on w; and @, were obtained ensuring the boundedness of M from LMg, o (R") to
LM 6, o, (R"), namely the following statement was proved.
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THEOREM 1.6. IfneN, 1<p<oo, 0< 0 <6 <o, 0 €Qy,, and w, € Qg,,

then the condition
ro\"/P
()

uniformly in t € (0,%) is necessary and sufficient for the boundedness of M from
LM 6, o, (R") to LM g, o, (R"). Moreover,
PN
an(r) (H——r)

Note that in [4]-[6] this was proved under the additional assumption 6; < p.

If 6, < 6, then sufficient conditions on ®; and @, for the boundedness of M
from LM,p, o, (R") to LM, o, (R") are given in [9]. However, the problem of finding
necessary and sufficient condition on @; and @, ensuring the boundedness of M from
LMy, o, (R") to LM, «, (R") for the case 6, < 6 is still open. In [3] the solution of
this problem is given for very particular case in which 6; = e and @, (r) = 1. In other
words, for all admissible values of the parameters p;, p, and 6 authors find necessary
and sufficient conditions on @ ensuring the boundedness of the maximal operator from
Ly, (R") = LM . 1(R") to LM, »(R").

S ||le91,(t,°<>) (1.3)

6,(0,00)

-1
1M 0, ) BT LM, 0y (R) = SUP [[@1][g ;)

1€(0,00) 62,(0,%0)

uniformly in o) € Qg and w, € Qy,.

THEOREM 1.7. ([3],see also [1]) Let ne N, 0 < pr < p; oo, 0 < O < oo, and
e Q.
LIfl<py=p;,0<0<L00r0<p, <pi, 1 <pp, 0 =co, then

~ 1/pr—1
”M”Lm(R")—’LMPZG@(R") ~ Hrn( /p2 /Pl)w(r)Ha(OM) (1.4)

uniformly in @ € Qg.
In particular, if 1 < p < oo, 0< 0 < oo, then
1ML, (&)~ LM, o (B7) = (| @]9 (0,00)

uniformly in @ € Qg.
2.If0< py<pi, L <pj and 6 < o, then

(1 p2=1/p)=1/s|

L,(o,w) (1.5)

o\ /P2
— o}
( r+t ) ()
uniformly in @ € Qg, where

B i e<p 1.6)
oo if 0=p:.

1ML, (Br) L0, (") = |@llg,(1.)

1/ pa=1/p1)=1/s

~
~

8,(0,00) ll5,(0,00)
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The idea used in [3] is mainly based on the following theorems.

THEOREM 1.8. ([3],seealso [1]) Let n€ N, 0 < py < p; < o0, 0 < 0 < oo, and
w e Q.
LIfppo=p1, 0<0 <oo0or0< py<py, 8 =co, then

~

2, Ry —LM,, g o (R7) &

n(1/pa=1/py) H 1.7
r o(r) 0.00) (1.7)
uniformly in @ € Qg.

2.If0 < py < py and B < oo, then

~

H 1 HLI’l (Rn)—’LMI)ZGA,w(R") = tn(l/pz_l/pl)_l/SH(D‘

0.t) H.y,(o,oo) (1-8)
uniformly in @ € Qg, where s is defined by (1.6).

THEOREM 1.9. Let X,Y be a quasi-normed vector spaces of measurable func-
tions on R" and let M is bounded on X . Moreover, assume that Y satisfies the mono-
tonicity property, that is,

0<g<f = lslr <Al
Then M is bounded from X to Y if and only if X — Y, and
M|l x—y ~ |[]lx—y-

Note that in [3], Theorem 1.9 was proved for X = L,, (R") and Y = LM,  ,(R").
The proof of Theorem 1.9 is straightforward and we omit it.

The aim of this paper is to characterize the embeddings between weighted local
Morrey-type spaces and weighted Lebesgue spaces, that is, the embeddings

Ly, (R",v)) = LM, »(R",v7), (1.9)
Ly, (R v;) < LM 0 (R",v2), (1.10)
Ly, (R",v1) <= LM, »(R", 1), (1.11)
Ly, (R",v1) < ‘LM 0 o(R",v2). (1.12)

The method of investigation is based on using the characterizations of the direct and
reverse multidimensional Hardy inequalities.

Our main results are Theorems 3.1, 3.2, 4.1 and 4.2. Note that Theorem 3.1 is
a generalization of Theorem 1.8 to the weighted case. Theorems 3.2, 4.1 and 4.2 are
characterizations of embeddings (1.10), (1.11) and (1.12), respectively. Using Theo-
rems 3.1 and 3.2 we are able to calculate the norms ||M||Lpl (R 1) —LM, g o (R",1) and

|M]|| Ly (R 00) LM, (B 2) when v is a weight function from the Muckenhoupt

class A, , 1 < p; < oo (see Corollaries 3.3 and 3.4). Theorems 4.1 and 4.2 make it
possible to describe the associate spaces of LM ,,(R",v) and CLMpeﬁw(Rn,V) (see
Theorems 4.4 and 4.5).

The paper is organized as follows. Section 2 contains some preliminaries along
with the standard ingredients used in the proofs. In Sections 3 and 4 we give the char-
acterizations of the embeddings (1.9), (1.10) and (1.11), (1.12), respectively.



282 R. CH. MUSTAFAYEV AND T. UNVER

2. Some Hardy-type inequalities

In [13], M. Christ and L. Grafakos showed that the n-dimensional Hardy inequal-
ity

/( : ), f()d)pd<<L>p fePdx,  1<p<o
re \ |B(0, |x]) J/B(0,x)) V) S GT1) Jpa V5 p <o,

holds for all f € 9™ (R"), the constant (%)p being again the best possible. In [14],
P. Drabek, H. P. Heining and A. Kufner extended this Hardy inequality to general n-
dimensional weights u, w and to the whole range of the parameters p, g, 1 < p < oo,
0 < g < e=. The necessary and sufficient conditions for the validity of the inequality

(/ </B(0.,|x|)f(y>dy>q u(x) dx) . <C (/R F(x)Pw(x) dx) v (2.1)

for all f € M (R") are exactly the analogous of the corresponding conditions for
dimension one. It is easy to see that if u is a function on R” such that u(x) =
v(|x)/|x|"~!, x € R", for some function v € 9" (0,0), then (2.1) is equivalent to
the following inequality

( I ( Bmﬂf(y)dy)q v(z)dr)

According to the above remark, we can formulate the following theorems.

1/q I/p

<c< [T w(x)dx) .2

THEOREM 2.1. Let 1 < p< oo, 0 < g < oo, vEIMT(0,00) and w € MH(R").
Denote by

(Hf)(t)::/ fdx,  fEMTRY,  13>0.

B(0.)

Then the inequality

||Hqu,v7(O7o<>) < CHf p.w,R" (2.3)

holds for all f € M+ (R") if and only if A(p,q) < oo, and the best constant in (2.3),
that is,

B(paq) = sup HHf”q,\@(O,oo)/Hpr,WJR”
fem* (R

satisfies B(p,q) =~ A(p,q), where
(@) for 1 <p < q<oo,

o 1/q , 1/p'
A(p,q) = sup (/ V(S)dS) </ w(x)=P dx) ;
>0 ! B(0,r)

(b)for l<p<e, 0<g<pandl/r=1/q—1/p,
1/r

A(p.a)i= ( (o) " ([, weorar)” ’ dt) ;
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(c)for 1 <p <o, g=rco,

, 1/p
A(p,q) == sup (esssupv(s)) (/ W(x)l—p dx) .
>0 \ 1<s<eo B(0)

(d) for p=gq =,

dx
A(p,q) :=sup | esssupv(s / —_—
(p.9) t>g<t<s<£ ( )) B(0.) w(x)

(€) for p=-o0, 0 < g <o,

A(p.q) = (/:v(t) </B<o,t)%)th>l/q;

(O forp=1,1<q<eo,

oo 1/q
A(p,q) := sup (/ v(s)ds) esssupw(x)';
) t

te(0,00 xeB(0,)

(g)forp=1,0<g<1,

y q 1/4
A(p,q) = / (/ v(s)ds) v(t) | esssupw(x)~' | dr ;
0 t x€B(0,r)

(h) for p=1, g =ee,

A(p,q) :== sup (esssupv(s)) (esssupw(x)_l>.

1€(0,00) \ 1<5<e0 xeB(0,)

THEOREM 2.2. Let 1 < p< oo, 0 < g< oo, vEM(0,0) and w € M (R").
Denote by

(H*f)(t)::/c fdx,  feM(RY, >0

B(0,t)
Then the inequality
HH*f||q7v7(O7oo) g c ||pr7w7R" (24)

holds for all f € M (R") if and only if A*(p,q) < =, and the best constant in (2.4),
that is,

B* (p7q) = sup HH*f”q,v,(O,oo) / ||f||p,w,]R”
fem* (R

satisfies B*(p,q) =~ A*(p,q). Here
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(@) for 1 <p < g <eo,

! 1/a , 1/
A*(Pﬂ) = sup (/ v(s) ds) (/ W(x)l—p dx) :
t>0 0 °B(01)

(b)for l<p<e, 0<g<pandl/r=1/q—1/p,

A*(p,q) == (/Om (/Ot V(s)ds> ” V(1) (/CB(O,t) w(x)' 7 dx) " dz) v ;

(c)for 1 < p <oo, g=-oo,

, 1/p'
A*(p,q) :=sup (esssup v(s)) (/ w(x)' P dx) ;
>0 \ 0<s<t B(0,t)

(d) for p=gq = o,

A*(p,q) :=sup (esssupv(s))/c ( _dx
B

>0 \ 0<s<t 0,) W(x)

(e)for p=co, 0 <q <o,

A (p.g) = (/va(t) (ﬁg(o,t)%ym)w;

O forp=1,1<g<eo,

t 1/q
A*(p,q) == sup (/ v(s)ds) esssup w(x) !
) \Jo

1€(0,00 x€°B(0,1)

(@forp=10<qg<l,

/ 1/q
o q q
A*(p,q) = (/ (/tv(s) ds) v(t) (esssup w(x)‘1> dt) ;
0 0 x€°B(0,1)
(h)for p=1, g=-eo,

A*(p,q) == sup (esssupv(s)) (esssup w(x)_1> .

t€(0,00) \ 0<s<r xe“B(0t)

THEOREM 2.3. Let 0 < g < oo, v € IMT(0,00) and w € M*(R"). Denote by

(Sf)(1) :=esssupf(x),  feM (R"), >0
x€B(0,1)
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Then the inequality
1(SFIVIlg,0.00) < €N Wl en

holds for all f € IMT(R™) if and only if

< oo,
q:(0,0)

o) (esssupnt) )

x€B(0,r)

and

o) esssupt )

sup  [[(SS)IVll g 000) / NS Wleo en = soup
xeB(0,r

fEMH(R") 4,(0,00) .
THEOREM 2.4. Let 0 < g < oo, v € IMT(0,00) and w € M*(R"). Denote by

(S*f)(t) := esssup f(x), femt (R, t>0.
x€°B(0,1)

Then the inequality

IS Il 0.00) < N Wleo
holds for all f € IM*(R") if and only if
v(r)( esssup w(x)_1> < oo,
xecB(O,r) q,(0,%0)

and

sup  [[(S"f)lly 0.00) / 1 fWlloo e &
femt(rRY)

o) esssup win) )

x€ CB(O,r) q,(0,00)

For the convenience of the reader we repeat the relevant material from [16] without
proofs, thus making our exposition self-contained.

Let ¢ be non-decreasing and finite function on the interval I := (a,b) C R. We
assign to ¢ the function A defined on subintervals of I by

A»2) = o(z+) — o (y—),
A([12) = o(z—) — o(y—), (2.5)
A(2) = o(z+) — o (y+),
A1) =0(z—) —o(+)

A is a non-negative, additive and regular function of intervals. Thus (cf. [24], Chapter
10), it admits a unique extension to a non-negative Borel measure A on 1.
Note also that the associated Borel measure can be determined, e.g., only by
putting
Ad) =@(z+)—@(y—)  forany  [nz]CI

(since the Borel subsets of I can be generated by subintervals [y,z] C I).
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If J C I, then the Lebesgue-Stieltjes integral [, fd¢ is defined as [, fdA. We
shall also use the Lebesgue-Stieltjes integral [, fd¢ when ¢ is a non-increasing and
finite on the interval /. In such a case we put

[ raoi=— [ ra-

We adopt the following conventions.

CONVENTION 2.5. Let I = (a,b) CR, f:1—[0,00] and h:1— [0,°0]. Assume
that & is non-decreasing and left-continuous on 1. If 4 : I — [0,), then the symbol
J; f dh means the usual Lebesgue-Stieltjes integral (with the measure A associated to
is given by A([er,)) = h(B) — () if [a,B) C (a,b) —cf. (2.5)). However, if h = e
on some subinterval (c,b) with ¢ € I, then we define [, fdh only if f =0 on [c,b)

and we put
/fdh = / fdh.
1 (a,c)

CONVENTION 2.6. Let I = (a,b) CR, f:1—[0,+e0] and i : [ — [—e0,0]. As-
sume that /4 is non-decreasing and right-continuous on /. If 4 : I — (—e0,0], then the
symbol [; fdh means the usual Lebesgue-Stieltjes integral. However, if 7 = —eo on
some subinterval (a,c) with ¢ € I, then we define [, fdh only if f =0 on (a,c| and

we put
/fdh :/ fdh.
1 (e,b)

THEOREM 2.7. Let w € M*(R") and u € M*(0,0) be such that ||ul|y ) < o
Sforall t € (0,0).
(a) Assume that 0 < g < p < 1. Then

lgwllprr < cl[(Hg)ullg (0.00) (2.6)
holds for all g € M™ (R") if and only if
Cp.q) = sup |[wll,y <o llull, () <o 2.7)
1€(0,00)

The best possible constant in (2.6), that is,

D(p,q):= sup |lgw|prn/||(Hg)u
geEMH(R")

4,(0,%)

satisfies D(p,q) =~ C(p,q).
b)Let 0<p< 1, p<g<ooand 1/r=1/p—1/q. Then (2.6) holds if and only
if

U wl g
c<p7q>::(/(0 1 <m0y @ (Wl ) ) il =
and D(p,q) ~ C(p,q), where

(=) = hm 1 |l 5,00) t € (0,).
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THEOREM 2.8. Let w € M*(R") and u € M*(0,0) be such that |lul|, ) < o
Sforall t € (0,0).
(a) Assume that 0 < g < p < 1. Then

lgwllpre < cl|(H"g)ully (0,0) (2.8)
holds for all g € M™(R") if and only if

C'(p,a):= sup Wil sonlull, o, < 2.9)

1€(0,00)

The best possible constant in (2.8), that is,

D*(p,q) == sup |[gwlpre/[l(H g)ully 0.
gEMH(RM)

satisfies D*(p,q) = C*(p,q).
b)Let 0< p< 1, p<g<ooand 1/r=1/p—1/q. Then (2.8) holds if and only

U | w e
- Iwllr, lull, ) Tl e <
( p'.B(01)) ( 0t+>> [l ,(0.00)
and D*(p,q) ~C*(p.q )Where

if

el 0= Jim g 0., 1€ (0,09).

REMARK 2.9. Let g < oo in Theorems 2.7 and 2.8. Then

(t,00) and

ullg044) = llullg s  forall 7€ (0,0),

[llg,(6—e0)

which implies that

Ve ]l
Cp,q:(/ w||”, < u’m> o
)= (], 715 00 d (11l .oy oo

U e
C*qu:</ wl|”) d | —|\ul>7 ) +¢
)= ( [, W00 (~lll 7o) o

3. Characterizations of L, (R",v|) — LM, »,(R",v;) and
Ly, (Rn,vl) — CLMng’w (R"ﬂ/z)

and

In this section we characterize (1.9) and (1.10).

THEOREM 3.1. Let 0 < p; < o0, 0 < pp < oo, 0 < 0 < o0, vy, vy € W(R") and
e Q.
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(1) If p2 < p1 < 0 < oo, then

—1 1
HI”L,,I(R".,W)—’LM 5 0.0(R",12) =S SuoprHG,(t,oo) Hvl /Plv /P2
1>

P1P2
P B(0,t)

uniformly in @ € Qg.
(i) If p2 < p1 <e°, 0< 0 < py, then

6 —1/p_ 1
HI”LI)I(R":VI)—’LMzew(R" ) H(DH /Pl Hvl /p1 2/1’2 e o
P1=p2’ P16 (000
pl,ng +(0,00)
uniformly in ® € Qg.
@1i1) If p2 < p1 < oo, O = oo, then
1/p1 1/pa
1Ty )20y 1) = S0P 0,y 7 /7
pi (R"v1) 2 0,0(R".12) =0 (o) M1 2 I’T*pl%z B(0,0)
uniformly in ® € Qg.
@iv) If p1 = 0 =0, 0 < py < oo, then
1.1/p2
Wy, ) )~ S0P g [0
uniformly in ® € Qg.
(W) If pr =00, 0 < py <o, 0< 0 < oo, then
~ -1, 1/p>
”IHLm (R"v1)—=LMp, 9.0 (R"v2) ™~ Hw(t) Hvl "2 p2:B(0) [, (0,00)
uniformly in @ € Qg.
(V) If p:=p1 =p2 < 0 < oo, then
1/p 1
||I||LPI(R",V1)4>LM 50, (R, Vz) J(t,00 ||vl /p /pH
uniformly in ® € Qg.
vi)IfO<p:=p; =pr <o, 0< 0 < p, then
9/17 H ~1/p l/pH
1 n 0]
110y 50~ 1018 o o
uniformly in @ € Qg.
i) If 0 < p:=p| = py < oo, OB = oo, then
Iz, (R 1) LM, 6. (B2,2) (oo lvr /e /pr 0.)
uniformly in @ € Qg.
(x)If p:=p1=p2r =00, 0< 0 < oo, then
~ ~1
Wl )=t = [ @O0l 01 0.

uniformly in @ € Qg.
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Proof. (i)—(viii). Denote by
q1:=p1/p2,  @:=0/py,  wii=vp, ", wri=0
Since

(P11 p2,02,80.) | g 0.0y

1 Rivi)— R1.p,) = SUP
H ||LI)1( "vy) LMpzeﬁw( "v2) 20 Hf”PthRn

1/p2
IH (18D 45,01, (0,00

— ( sup q2:w2,(0,%0) 7
8740 HquhWLR”

it remains to apply Theorem 2.1.
(ix). Note that

|01l .80, ] (0.0

Tl LR 1) LM o (R7,02) = SUP

A0 Hf||oo,v17R"
B pH(S(IgD)wHe,(o,m)
g#0 ||gWH°<’~R"

where w = vy /v,. The statement follows by Theorem 2.3. [J

THEOREM 3.2. Let 0 < py, 8 <o, 0< py < oo, v, vy € W(R") and o € ‘Qy.
(i) If p2 < p1 < 0 < oo, then

—1/p1 1/p2
Vi vy

H I HLPl (R”,VI)HCLMPZG‘O,(R"NZ) ~ fgg || w”e,(o,l) PP CB(O,[)

r1—pr2’

uniformly in ® € ‘Qq.
(i) If p2 < p1 <e°, 0< 0 < py, then

~ 6/p1 ||, ~1/p1 1/p2
HIHLm (R"7V1)_’CLMI)20@(R"7V2) -~ HwHev(OJ) ‘vl v2 pp'f,f “B(0,t) Op1 0
17P2 1,17,9760 ,(0,00)
uniformly in ® € “Qg.
@1i1) If p2 < p1 < oo, O = oo, then
~ =1/p1 1/p2
HIHL,,I (R 1)~ LMy, 6. (R" 12) ~§1>1103||w||e,(o,z) Vi Y 21y
17pP2° :
uniformly in ® € “Qg.
@iv) If p1 = 0 =0, 0 < py < oo, then
~ -1 1/p2
Wz, )= 1,0, ) &S9P [ @16, 01) "’1 v <son
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uniformly in ® € “Qg.
(V) If p1=-c0, 0 < py <o, 0< 0 < oo, then

-1, 1/p>
I n c n ) || O(F Hv Ly
e Gl s NN I
uniformly in ® € “Qg.
(V) If p:=p1 =p2 < 0 < oo, then
—1/p 1/p

I n n ~ su w v \%
et T e

uniformly in ® € “Qg.
(Vi) IfO< p:=p1 =p2<eo, 0< O < p, then

- 0/p
Tl (R 1)L, g o (R102) & H”“’”e,(o,:)

=1/p 1/p
VioVa .

B(O,[) %:wea(oam)

uniformly in ® € “Qg.
i) If 0 < p:=p| = pa < oo, OB = oo, then

=1/p 1/p
I n < n ~
[ ||L,,1(R V1)= LM, 6.0 (R"12) fgg HwHe,(o,t) v Ty s
uniformly in ® € “Qg.
(x)If p:=p1=pr =00, 0< 0 < oo, then
~ —1
||IHL,,1 (R,v1)— LM ) 6.0 (R"v2) ™ Hw(’) vy "2||oo,CB(o,r) 6,(0.)

uniformly in ® € “Qg.

Theorem 1.9 reduces the problem of boundedness of M from L, (R",v;) to
LM, 6, o, (R",v2) and from Ly, (R",v1) to LM g, o, (R", 1) to the characterizations
of (1.9) and (1.10), respectively, when we know the boundedness of M on L, (R",vy).
The latter happens exactly when vi €A, , 1 < py <eo.

Let w be a weight function and 1 < p < eo. We say that w € A,, if there exists a
constant ¢, > 0 such that, for every ball B C R",

</Bw(x>dx) </Bw(x>l”/dX)pl <cplBIP.

It is well known that the Muckenhoupt classes characterize the boundedness of M on
weighted Lebesgue spaces. Namely, M is bounded on L,(R",w) if and only if w € A,
1 < p < oo (see, for instance, [22]).

The following statements are consequences of combination of Theorems 3.1 and
3.2 with Theorem 1.9.
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COROLLARY 3.3. Let 1 < pj < oo, 0 < pp <o, 0 <O oo, vy € W(R") and
o € Qqg. Moreover, assume that vi € Ap,.
(i) If p2 < p1 < 6 < oo, then

=1/p1 1/p>
IV 80200y g 1) % 59D |0,y [ 771
py (R?v1) 29(»( v2) >0 (t,2) 2 p[ilffgz B(0)
uniformly in @ € Qg.
@11) If po < p1 < oo, 0< 0 < py, then
) 1/p1 1
M1y, o)t o) = |00 oy [ 02| iy
P1— pz ’e_f’% ©9,(0,00)
5 —5:0%,(0,
uniformly in ® € Qg.
@1ii) If p2 < p1 < oo, O = oo, then
1/py 1
101y 5t 01 53100 V7752
r1—r2’ ’
uniformly in @ € Qg.
(V) If p:=p1 = p2 < 0 < oo, then
1
Ml 20.0) 281 ) SR @l 1173 7V5 10
uniformly in @ € Qg.
W If p:=p1=p2, 0<0 < p, then
9/17 H ~1/p I/PH
M n 0]
[ e [T o
uniformly in ® € Qg.
(Vi) If p:=p1 = p2, 6 = oo, then
1/p.1
My 20.0) 20t ) 59D @l 1 17775 Pl 0

uniformly in @ € Qg.

COROLLARY 3.4. Let 1 < p; < oo, 0 < pp <o, 0 <O oo, vy € W(R") and
wE CQ@. Moreover, assume that vi € Ap, .
(1) If p2 < p1 < 0 < oo, then

1/p 1/P2
"’1 Va

M “L,, R ,v1)— LM, 6.0(R" v2) ~ SuprHG (01) PIP2_ Cp(( 1)
prpy BO,

uniformly in ® € “Qg.
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(i) If p2 < p1 <eo, 0< 0 < py, then

9/P1 =1/p1 1/p2
”M”Lpl(R”,VI)HCLMPZQM(R” ) ||a)|| ‘V1 V2 2 egonll
P1—r2’ ’ plL—le’we’(O’N)

uniformly in ® € “Qg.

(ii1) If p2 < p1 < oo, O = oo, then

1/py 1/p2
M1y, 010) 2 500) S0P [0 01 [ 17102 P

uniformly in ® € “Qg.

(V) If p:=p1 = p2 < 0 < oo, then

/17 1/17
H HLP1 R7vp)—© LM, 0.0(R" 1) ~ SuP”w”e (0,) 500
B(0

uniformly in ® € “Qg.

W If p:=p1=p2, 0<0 < p, then

ol ~ [llolg/, v

Ly (R" )= LM, . (R",v2) B(04) ep 0 (0)

uniformly in ® € “Qg.

(Vi) If p:=p1 =p2, 0 =co, then

1 )t @00 57753
pr (R7v1)—= LM, .o (R v2) e 8(01) oo (0.00)

uniformly in ® € “Qg.
4. Characteriza:tions of LM, »(R",v2) — L, (R",v;) and
LMPzeaw(an V2) - LP1 (anvl)
In this section we characterize the embeddings (1.11) and (1.12).

THEOREM 4.1. Let 0 < py < pp <00, 0< 0 oo, vy, vy € W(R") and @ € Qy.
@ If0< 0 < p; <py<eco,then

_ 1 —1
U0ty 8 ) 30~ SR @]y o112
1>

PP c
2 <p(0,)

uniformly in ® € Qg.
O IfO< O < pp=pr=:p<eco,then

T, g g (R ), (R, v1>~suP||w||e 10) Hv1v21||w B(0.)
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uniformly in @ € Qg.
(©If0< p1 < p2 <o, p1 <O L oo, then

6!’1;91 _Plg P19
~ - !
02y e = | i cpon 191075

_ 1 -1
g o |17z 17

1/p1 ~1/p2
H"l V2

Ao
uniformly in ® € Qg.

(IfO<p =pr=:p<0O <o, then

~ P -
ity -t = [ 055" 1250,04 (Hollaf2,))
013400 7192 L5

uniformly in ® € Qg.

Proof. Since

[Lf 1]y, R

H ||LM R vp)—Lp, (R"
2 6.0 (R"v2) =Ly, (R"v1) 760HW Hf”vaVZvB(Ovr)H67(O700)

el )"
q1,w1,R"

= Sup )
<g740 ||H(|g|)q2,w2,(0,°°)>

it remains to apply Theorem 2.7. O
THEOREM 4.2. Let 0 < p; < pa < o0, 0< 0 < oo, v, v2 € W(R") and o € Q.
(@ If0< 0 < p| < py<eo, then

1/p; —1
vl/m /p2

1 ~ sup||o|;}
| HCLMI’29~‘“(R”’V2)_>L”1(Rn’vl) r>g“ He’(o’[ r’I; oo BO)

uniformly in ® € “Qg.
®IfO0< O < pp=pr=:p<eco,then

L e e R J L X% v 150

ple f’le [716
[ Tllepps ~ / Hvl/m\fl/p2 o —lo||, 0
0 w R
LM ) 0,0 (R v2)—Lp; (R vy) Oyl 12 a2 (o, ) 6,(0.4+)

_ 1 —1
0l oy 1119572

uniformly in @ € Qg.
(©If0< p1 < p2 <o, p1 < 6O L oo, then

_P1P2 on
P2—r1 R
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uniformly in ® € “Qg.
(@D IfO<pr=pa=:p<0 <o, then

1 AN
”I”LMpze,w(R”Wz)—’Lm(R”,Vl)% /(0 HVlVZ ||ooBOt ”w”é) Ot+)
- 1
+||w||6 HV]V2 HNRH
uniformly in ® € Qg.
Proof. Tt suffices to note that
[Lf 1]y, 1 R

HIHCLM R vy)—L,, (R" -
pze#w( v2)=Lp, (R"vy) f?éOHW ||fH

p2.v2,“B(0,r) 0.(0.50)

lel v
q1,w1,R"

= | sup :
( AR 7>>

and apply Theorem 2.8. [

DEFINITION 4.3. Let X be a set of functions from 9t(R"), endowed with a pos-
itively homogeneous functional || -||x, defined for every f € 9M(R") and such that
feX ifand only if ||f]|x < eo. We define the associate space X’ of X as the set of all

functions f € 9MM(R") such that || f||xs < e, where

e =sup{ [ 170elrs gl <1},

In [16], the associate spaces of local Morrey-type and complementary local Mor-
rey-type spaces were calculated. In particular, Theorems 4.1 and 4.2 allow us to give
a characterization of the associate spaces of weighted local Morrey-type and comple-

mentary local Morrey-type spaces.

THEOREM 4.4. Assume 1 < p <oo, 0 <0 < oo. Let ® € Qg and v e W(R").

Set
X =LM,g »(R",v).

(i)Let 0 < 8 < 1. Then

1 lxr = sup (F 1y - g0 1000w
1€ (0) p' V=P "B(0,r) Lg(t,00)?

with the positive constants in equivalence independent of f.
(i) Let 1 < 6 < oo. Then

e ([ 1 a(lolgy ) + s
f X ~ (Ooo) f p’7v1*1’,7cB(07t) 97([7700) ||w||e7(07m) )

B}

with the positive constants in equivalence independent of f.
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THEOREM 4.5. Assume 1 < p <o, 0< 0 oo, Let @ € Qg and v € W(R").

X = LMg »(R",v).
(i) Let 0 < 6 < 1. Then

Il = sup N1l v gon @I,
1€(0,00) Py po(OJ) Lg(0,1)°

with the positive constants in equivalence independent of f.

@ii) Let 1 < 6 < . Then

o e 1/6' ||pr,’V1,p,’Rn
e O A (T Y R e

|| 0,(0,0)

with the positive constants in equivalence independent of f.
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