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INEQUALITIES FOR DUAL QUERMASSINTEGRALS

OF THE p–CROSS–SECTION BODIES

WEIDONG WANG AND LI YAN

(Communicated by J. Pečarić)

Abstract. Gardner and Giannopoulos defined the p -cross-section body CpK ( p > −1) of con-
vex body K in Euclidean space E

n . In this paper, we obtain inequalities for dual quermassin-
tegrals of the p -cross-section body CpK . Further, two monotonic inequalities concerning the
CpK are given.

1. Introduction

Let K n denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space E

n , for the set of convex bodies containing the origin in
their interiors in E

n by K n
o . Let V (K) denote the n -dimensional volume of body K .

For the unit sphere in E
n , denotes by Sn−1 .

If K is a compact star-shaped (about the origin) in E
n , its radial function, ρK =

ρ(K, ·) , is defined by (see [3, 22])

ρ(K,u) = max{λ � 0 : λu ∈ K},

for all u ∈ Sn−1 . If ρK is positive and continuous, K will be called a star body (about
the origin). Let S n

o denote the set of star bodies (about the origin) in E
n . Two star

bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is independent
of u ∈ Sn−1 .

In mid 1990s, Lutwak in [12, 13] showed that the Firey sum (see [2]) of convex
bodies led to the Brunn-Minkowski theory for each p � 1, and established an embry-
onic Lp -Brunn-Minkowski theory. This theory has expanded rapidly (see [4, 5, 7, 8, 9,
14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 29, 30]).

In 1999, Gardner and Giannopoulos in [4] introduced the notion of p -cross-section
body as follows: For K ∈ K n and nonzero p > −1, the p -cross-section body, CpK ,
of K is defined by

ρ p
CpK

(u) =
1

V (K)

∫
K
Vn−1(K∩ (u⊥ + x))pdx, (1.1)
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for all u ∈ Sn−1 . They also defined that for each u ∈ Sn−1 ,

ρC0K(u) = exp

(
1

V (K)

∫
K

logVn−1(K∩ (u⊥ + x))dx

)

and
ρC∞K(u) = max

x∈K
Vn−1(K ∩ (u⊥ + x)).

Note that the classical cross-section body CK of K ∈ K n is defined by (see [3])

ρCK(u) = max
x∈K

Vn−1(K ∩ (u⊥ + x)),

for each u ∈ Sn−1 . Compare to above definitions of CK and C∞K , we know

C∞K = CK. (1.2)

Further, Gardner and Giannopoulos ([4]) proved that for K ∈ K n , −1 < p < q ,
then

CK ⊆ an,qCqK ⊆ an,pCpK, (1.3)

in each inclusion equality holds if and only if n = 2 and K is a triangle. Where

an,p =
(

np+n− p
n

) 1
p

,

for nonzero p > −1, and

an,0 = lim
p→0

an,p = e(n−1)/n.

Recall that intersection body IK of K ∈ S n
o is a centered body defined by (see

[3])

ρIK(u) = Vn−1(K∩u⊥) =
1

n−1

∫
Sn−1∩u⊥

ρn−1
K (v)dv, (1.4)

for each u ∈ Sn−1 . Here Vn−1(M) denotes the n−1-dimensional volume of body M .
Because of K∩ (u⊥ + x) = (K− x)∩u⊥ , then by (1.4) and (1.1) we know that for

nonzero p > −1,

ρ p
CpK

(u) =
1

V (K)

∫
K

ρ p
I(K−x)(u)dx. (1.5)

For the classical cross-section body, Busemann’s theorem shows that if K is cen-
trally symmetric with center x , then CK is convex. Meyer (see [21]) proved that CK
is convex when n = 3, but Brehm in [1] showed that when n � 4, CK is not convex
when K is a simplex.

According to the definition of p -cross-section body, Gardner and Giannopoulos
in [4] pointed out that ρCpK is continuous for K ∈ K n . Further, they (see [4]) showed
that C1K is convex, and CpK is convex when n = 2 and p > 0 or n = 3 and p = ∞ .

For the p -cross-section bodies, Wang and Zhou in [28] gave the following result:
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THEOREM 1.A. If K ∈ K n , p > −1 , then exists x0 ∈ K such that for −1 < p <
n,

V (CpK) � V (I(K− x0)), (1.6)

for p > n,
V (CpK) � V (I(K− x0)). (1.7)

In every inequality with equality if and only if CpK = I(K− x0) . For p = n, (1.6) (or
(1.7)) is identic.

Further, they ([28]) established the following monotony inequalities of CpK .

THEOREM 1.B. For K,L ∈ K n , p > 0 , if K ⊆ L, then

V (K)
n
pV (CpK) � V (L)

n
pV (CpL),

with equality if and only if K = L.

THEOREM 1.C. For K,L∈K n , nonzero p >−1 , if CpK ⊆CpL, then there exist
x0 ∈ K and y0 ∈ L such that

V (I(K− x0)) � V (I(L− y0)),

with equality if and only if p = n and CpK = CpL or p �= n and CpK = CpL and
I(K− x0) = I(L− y0) .

Except [28], the reports of p -cross-section bodies are few since this notion was
introduced. In this paper, we continue to research the p -cross-section bodies. First, we
extend Theorem 1.A from volume to dual quermassintegrals form.

THEOREM 1.1. If K ∈ K n , p > 0 , real i �= n, then exists x0 ∈ K such that for
i < n− p or i > n,

W̃i(CpK) � W̃i(I(K− x0)); (1.8)

for n− p < i < n,
W̃i(CpK) � W̃i(I(K− x0)). (1.9)

In every case with equality if and only if CpK = I(K − x0) . For i = n− p, (1.8) (or
(1.9)) is identic.

Here, W̃i(K) denotes the dual quermassintegrals of star body K . Obviously, let
i = 0 in Theorem 1.1 and notice W̃0(K) = V (K) , we easily get Theorem 1.A.

As the application of inequality (1.8), and notice that CK ⊆ an,pCpK by (1.3), we
have that

COROLLARY 1.1. If K ∈ K n , p > 0 , real i < n− p or i > n, then there exists
x0 ∈ K such that

W̃i(CK) � an−i
n,p W̃i(I(K− x0)),

with equality if and only if n = 2 and K is a triangle and CK = an,pI(K− x0) .

Let p → +∞ in inequality (1.9) and use (1.2), we obtain the following result.
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COROLLARY 1.2. If K ∈ K n , real i < n, then there exists x0 ∈ K such that

W̃i(CK) � W̃i(I(K− x0)),

with equality if and only if CK = I(K− x0) .

Next, we obtain the following stronger results than Theorem 1.B and Theorem
1.C.

THEOREM 1.2. Let K,L ∈ K n , p > −1 . If K ⊆ L, then

V (K)1/pCpK ⊆V (L)1/pCpL. (1.10)

Equality hold if and only if K = L and there exist x0 ∈ K and y0 ∈ L such that I(K −
x0) = I(L− y0) .

THEOREM 1.3. Let K,L ∈ K n , p > −1 . If CpK ⊆CpL, then there exist x0 ∈ K
and y0 ∈ L such that

I(K− x0) ⊆ I(L− y0), (1.11)
with equality if and only if CpK = CpL and I(K− x0) = I(L− y0) .

Let p −→ +∞ in Theorem 1.3 and use (1.2), we get that

COROLLARY 1.3. Let K,L∈K n , if CK ⊆CL, then there exist x0 ∈K and y0 ∈ L
such that

I(K− x0) ⊆ I(L− y0),
with equality if and only if CK = CL and I(K− x0) = I(L− y0) .

2. Lp -dual mixed quermassintegrals

The notion of dual quermassintegrals was given by Lutwak (see [11]). For K ∈
S n

o , i is any real, the dual quermassintegrals, W̃i(K) , of K are defined by

W̃i(K) =
1
n

∫
Sn−1

ρ(K,u)n−idu. (2.1)

Obviously, let i = 0 in (2.1), then

W̃0(K) =
1
n

∫
Sn−1

ρ(K,u)ndu = V (K).

If K,L ∈ S n
o , p > 0, λ ,μ � 0 (not both zero), the Lp -radial combination, λ ·

K+̃pμ ·L ∈ S n
o , of K and L is defined by (see [6, 7])

ρ(λ ·K+̃pμ ·L, ·)p = λ ρ(K, ·)p + μρ(L, ·)p. (2.2)

Associated with (2.1) and (2.2), we define a kind of Lp -dual mixed quermassinte-
grals as follows: For K,L ∈ S n

o and real i �= n , the Lp -dual mixed quermassintegrals,
W̃p,i(K,L) , of K and L are defined by

n− i
p

W̃p,i(K,L) = lim
ε−→0+

W̃i(K+̃pε ·L)−W̃i(K)
ε

. (2.3)

From definition (2.3), the integral representation of Lp -dual mixed quermassinte-
grals can be established as follows:
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THEOREM 2.1. If K,L ∈ S n
o , p > 0 , and real i �= n, then

W̃p,i(K,L) =
1
n

∫
Sn−1

ρn−p−i
K (u)ρ p

L (u)du. (2.4)

Proof. From (2.2) and (2.3), for i �= n , we have that

lim
ε−→0+

W̃i(K+̃pε ·L)−W̃i(K)
ε

= lim
ε−→0+

1
n

∫
Sn−1

ρ(K+̃pε ·L,u)n−i−ρ(K,u)n−i

ε
du

= lim
ε−→0+

1
n

∫
Sn−1

[ρ(K,u)p + ερ(L,u)p]
n−i
p −ρ(K,u)n−i

ε
du.

By Hospital’s rule we see that

lim
ε−→0+

[ρ(K, ·)p + ερ(L, ·)p]
n−i
p −ρ(K, ·)n−i

ε

= lim
ε−→0+

ρn−i
K

[1+ ε(ρK/ρL)p]
n−i
p −1

ε

=
n− i

p
ρn−p−i

K ρ p
L ,

thus we get formula (2.4) by definition (2.3). �

From (2.4), we easily know that

W̃p,i(K,K) =
1
n

∫
Sn−1

ρ(K,u)n−idu = W̃i(K), (2.5)

W̃p,n−p(K,L) = W̃n−p(L). (2.6)

The Minkowski’s inequality for the Lp -dual mixed quermassintegrals is given that

THEOREM 2.2. Let K,L ∈ S n
o , p > 0 , and real i �= n. If i < n− p, then

W̃p,i(K,L) � W̃i(K)(n−p−i)/(n−i)W̃i(L)p/(n−i); (2.7)

if n− p < i < n or i > n, then

W̃p,i(K,L) � W̃i(K)(n−p−i)/(n−i)W̃i(L)p/(n−i). (2.8)

In every case, equality holds in every inequality if and only if K and L are dilates. For
i = n− p, (2.7) (or (2.8)) is identic.
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Proof. For i < n− p , from (2.4) and together with Hölder inequality (see [10]),
we have that

W̃p,i(K,L) =
1
n

∫
Sn−1

ρn−p−i
K (u)ρ p

L (u)du

�
[
1
n

∫
Sn−1

[ρn−p−i
K (u)]

n−i
n−p−i du

] n−p−i
n−i

[
1
n

∫
Sn−1

[ρ p
L (u)]

n−i
p du

] p
n−i

=
[
1
n

∫
Sn−1

ρn−i
K (u)du

] n−p−i
n−i

[
1
n

∫
Sn−1

ρn−i
L (u)du

] p
n−i

= W̃i(K)
n−p−i

n−i W̃i(L)
p

n−i ,

this give inequality (2.7) when i < n− p . According to the condition of equality holds
in the Hölder inequality, we know the equality holds in inequality (2.7) if and only if K
and L are dilates.

Similarly, we can prove for n− p < i < n or i > n , inequality (2.8) is true.
For i = n− p , by (2.1) and (2.6) then

W̃p,i(K,L)n−i = W̃p,n−p(K,L)p = W̃n−p(L)p,

and
W̃i(K)n−p−iW̃i(L)p = W̃n−p(K)n−p−(n−p)W̃n−p(L)p = W̃n−p(L)p,

thus (2.7) (or (2.8)) is identic when i = n− p . �

3. Proofs of the Theorems

LEMMA 3.1. If K ∈ K n , p > 0 and real i �= n, then for any Q ∈ S n
o ,

W̃p,i(Q,CpK) =
1

V (K)

∫
K
W̃p,i(Q, I(K− x))dx. (3.1)

Proof. From (1.5) and (2.4), then for any Q ∈ S n
o and p > 0, we have that

W̃p,i(Q,CpK) =
1
n

∫
Sn−1

ρQ(u)n−p−iρCpK(u)pdu

=
1

nV (K)

∫
Sn−1

∫
K

ρQ(u)n−p−iρI(K−x)(u)pdxdu

=
1

V (K)

∫
K

[
1
n

∫
Sn−1

ρQ(u)n−p−iρI(K−x)(u)pdu

]
dx

=
1

V (K)

∫
K
W̃p,i(Q, I(K− x))dx. �

Proof of Theorem 1.1. Let Q = CpK in (3.1) and use (2.5), we have that

W̃i(CpK) =
1

V (K)

∫
K
W̃p,i(CpK, I(K− x))dx.
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This together with the integral mean value theorem, then there exists xo ∈ K such that

W̃i(CpK) =
1

V (K)
W̃p,i(CpK, I(K− xo))

∫
K

dx = W̃p,i(CpK, I(K− xo)). (3.2)

Hence for i < n− p , by (3.2) and inequality (2.7), we get that

W̃i(CpK) � W̃i(CpK)
n−p−i

n−i W̃i(I(K− xo))
p

n−i ,

i.e.,
W̃i(CpK)

p
n−i � W̃i(I(K− xo))

p
n−i ,

this yields inequality (1.8) when i < n− p .
For n− p < i < n or i > n , associated with (3.2) and inequality (2.8), then

W̃i(CpK) � W̃i(CpK)
n−p−i

n−i W̃i(I(K− xo))
p

n−i ,

i.e.,
W̃i(CpK)

p
n−i � W̃i(I(K− xo))

p
n−i .

Thus for i > n ,
W̃i(CpK) � W̃i(I(K− xo));

for n− p < i < n ,
W̃i(CpK) � W̃i(I(K− xo)).

From this, inequalities (1.8) and (1.9) are obtained, respectively.
According to the conditions of equality hold in inequalities (2.7) and (2.8), we see

that equality hold in (1.8) and (1.9) if and only if CpK and I(K− xo) are dilates. But
W̃i(CpK) = W̃i(I(K − xo)) , this means that CpK = I(K − xo) . Hence equality hold in
(1.8) and (1.9) if and only if CpK = I(K− xo) .

For i = n− p , by (2.6) we see (1.8) (or (1.9)) is identic. �

Proof of Theorem 1.2. Since K ⊆ L , then K− x ⊆ L− x for all x ∈ K . According
to definition (2.3), we have that

ρI(K−x)(u) = Vn−1((K− x)∩u⊥) � Vn−1((L− x)∩u⊥) = ρI(L−x)(u) (3.3)

for all u ∈ Sn−1 . This together with (1.5), we know that for p > 0 and all u ∈ Sn−1 ,

V (K)ρ p
CpK

(u) � V (L)ρ p
CpL(u).

Because of p > 0, hence (1.10) is given.
For −1 < p < 0, according to (3.3) and (1.5), we get

V (K)ρ p
CpK

(u) � V (L)ρ p
CpL(u),

for all u ∈ Sn−1 . Therefore, if −1 < p < 0, then for all u ∈ Sn−1 ,

V (K)1/pρCpK(u) � V (L)1/pρCpL(u).
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This still gives (1.10).
Now we give the equality conditions of Theorem 1.2. Obviously, if K = L , then

equality holds in (1.10). Conversely, equality holds in (1.10) equivalent to∫
K

ρ p
I(K−x)(u)dx =

∫
L

ρ p
I(L−y)(u)dy.

Thus, by the integral mean value theorem, there exist x0 ∈ K and y0 ∈ L such that for
all u ∈ Sn−1 ,

ρ p
I(K−x0)(u)

∫
K

dx = ρ p
I(L−y0)

(u)
∫

L
dy,

i.e.,

V (K)
1
p I(K− x0) = V (L)

1
p I(L− y0).

Due to K = L implies V (K) =V (L) . From this, we see that equality holds in Theorem
1.2 if and only if K = L and there exist x0 ∈ K and y0 ∈ L such that I(K − x0) =
I(L− y0) . �

Proof of Theorem 1.3. Since CpK ⊆CpL , thus by (1.5), we have that for p > 0,

1
V (K)

∫
K

ρ p
I(K−x)(u)dx � 1

V (L)

∫
L

ρ p
I(L−y)(u)dy.

According to the integral mean value theorem, there exist x0 ∈ K and y0 ∈ L such that

1
V (K)

ρ p
I(K−x0)(u)

∫
K

dx � 1
V (L)

ρ p
I(L−y0)(u)

∫
L
dy,

i.e.
ρ p

I(K−x0)(u) � ρ p
I(L−y0)(u),

for all u ∈ Sn−1 . Hence, for p > 0,

I(K− x0) ⊆ I(L− y0).

For −1 < p < 0, due to CpK ⊆CpL , then by (1.5) and above proof, we know that
there exist x0 ∈ K and y0 ∈ L such that

ρ p
I(K−x0)(u) � ρ p

I(L−y0)(u),

for all u ∈ Sn−1 . Therefore, for −1 < p < 0, we still get

I(K− x0) ⊆ I(L− y0).

To sum up, we obtain (1.11) whether p > 0 or −1 < p < 0. Clearly, equality
holds in Theorem 1.3 if and only if CpK = CpL and I(K− x0) = I(L− y0) . �
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