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AN OPTIMAL INEQUALITIES CHAIN FOR BIVARIATE MEANS

ZHEN-HANG YANG AND YU-MING CHU

(Communicated by G. Toader)

Abstract. Let p € R, M be a bivariate mean, and M, be defined by M, (a,b) = M'/?(a?,b?)
(p #0) and My(a,b) = lim,_oM,(a,b). In this paper, we prove that the sharp inequali-
ties L (a,b) < P(a,b) < NS|jy(a,b) < He(a,b) < Ays3(a,b) <I(a,b) <Z3(a,b) <Y|(a,b)
hold for all a,b > 0 with a # b, where L(a,b) = (a — b)/(loga — logh), P(a,b) = (a —
b)/[2arcsin((a—b)/(a+D))], NS(a,b) = (a—b)/[2arcsinh ((a —b)/(a+Db))], He(a,b) = (a+
Vab+b)/3, Ala,b) = (a+b)/2, I(a,b) = 1/e(a®/b?)"/(@=D) | Z(a,b) = a®/(@+D) pb/(@+D) and
Y(a,b) = I(a,b)e' =/ L*(@b) gre respectively the logarithmic, first Seiffert, Neuman-Séndor,
Heronian, arithmetic, identric, power-exponential and exponential-geometric means of a and
b.

1. Introduction

A bivariate real valued function M : (0,e0) x (0,00) — (0,0) is said to be a bivari-
ate mean if

min(a,b) < M (a,b) < max (a,b)
for all a,b > 0. Clearly, each bivariate mean M is reflexive, that is,
M(a,a)=a
forany a > 0. M is symmetric if
M (a,b) =M (b,a)
for all a,b > 0, and M is said to be homogeneous (of degree one) if
M (La,Ab) =AM (a,b)
forany A,a,b> 0.
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There are many symmetric and homogeneous bivariate means, for example,

e the arithmetic mean A(a,b) is defined by

b
Alap) = 222, (1.1)
2
e the geometric mean G(a,b) is given by
G(a,b) = Vab; (1.2)

e the Heronian mean He(a,b) is defined by

b b
He(a,b) = #; (1.3)
e the logarithmic mean L(a,b) is given by
Lah) = —""" fazb and L(a,a)=a: (1.4)
" loga —logh A ’
e the identric (exponential) mean /(a,b) is defined by
a‘ 1/(a—b)
I(a,b)=¢! (b_”> ifa#b and I(a,a)=a; (1.5)
o the first Seiffert mean P(a,b) is defined in [21] as follows
P(a,b)= ———ifa#b and P(a,a)=a; (1.6)
2aresin {77
e the second Seiffert mean T (a,b) is defined in [22] and given by
a—>b .
T (a,b) = — if a#b and T(a,a)=a; (1.7)
2arctan {73

e the Neuman-Sdndor mean NS is introduced in [15] and given by

a—>b

NS(a,b) = ——
(a,5) 2arcsinh%

if a#b and NS(a,a)=a; (1.8)

e the power-exponential mean Z(a,b), or the special case of Gini means [9] is
defined by

Z(a,b) — @5 bt =

(1.9)
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e the exponential-geometric mean Y (a,b) is introduced in [24] and given by

2 a
Y(a,b):I(a7b)exp<l—gz((a’£))>. (1.10)

Let p € R be a real number and M be a bivariate mean. Then the function M, :
(0,00) x (0,00) — (0,00) defined by
My(a,b) =M"P(aP bP)if p£0 and Mo(a,b) = lim M, (a,b) (1.11)
[)4}
(see [3]) is likely to be a mean of positive numbers a and b. For instants, all Mp(a,b)
are means for M =A, He, L, I, P, T, NS, Z and Y . Itis well known that A, is the
classical power or Holder mean of a and b, which is strictly increasing with respect to
p € R for fixed a,b > 0 with a #b.
If M,(a,b) is proved to be a mean, then it is called “p-order M mean”. Since

the form of M),(a,b) is similar to power mean A,(a,b), so we also call it “power-type
mean”. Also, we note that

M} (a,b) = M"/P(a*? b*P) = M,y (a*, b*) (1.12)

forall A € R.

Recently, to find the inequalities between different bivariate means have attracted
the attention of many researchers. Lin [14] presented the best possible upper and lower
power mean bounds for the logarithmic mean as follows

Ao (a,b) < L(a,b) <Ay3(a,b). (1.13)

forall a,b >0 with a#b.
Jiao and Cao [13] established that

L(a,b) <Heyy(a,b) <Ay3(a,b) (1.14)
for all a,b > 0 with a # b, which is equivalent to
L (a,b) <He(a,b) <Ajy3(a,b) (1.15)

(also see [2]).
Stolarsky [18] and Pittenger [17] found that the double inequality

A2/3 (avb) <I(a7b) <A10g2(a7b) (1.16)

holds for all a,b > 0 and a # b with the best possible parameters 2/3 and log?2.
Jagers [12] (also see [10]) proved that

Ay (a,b) < P(a,b) <Ayz(a,b)
forall a,b > 0 with a # b. Histo [11] found that the double inequality

Alog2/logn(aab) <P(a,b) <A2/3 (a,b) (1.17)
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holds for all a@,b > 0 and a # b with the best possible parameters log2/logz and 2/3.
In 1995, Seiffert [22] presented that

A(a,b) <T(a,b) <Ay(a,b) (1.18)
for all a,b > 0 with a # b, it was improved by Yang [27] (also see [7]) as
Alog2/(logn—log2) (a,b) <T(a,b) < A5/3 (a,b) (1.19)

with the best possible parameters log2/(logm —log2) and 5/3. Utilizing (1.12) the
second inequality of 1.19 can be written as

Ty5(a,b) <Ays3(a,b). (1.20)
Chu et al. [4] found an optimal double inequality
Heyog3/(logn—1og2) (@,0) < T(a,b) < Hesy(a,b) (1.21)
for all a,b > 0 with a # b. The second inequality of (1.21) is equivalent to
Ty/s(a,b) < He(a,b). (1.22)

Yang [28] (also see [7], [5], [29]) presented the sharp bounds for the Neuman-
Sandor mean in terms of power means as follows

AlogZ/[log(log(3+2\/§))] (avb) < NS(CLb) < A4/3 (a7b) (1.23)
for all a,b > 0 with a # b. The second inequality of (1.23) implies that
NS1/2(a7b><A2/3(a7b>' (1.24)

For the power-exponential mean Z, it follows from the comparison theorem for
Gini means given by Péles [16] (also see [1], [20], [25]) that the optimal inequality

Z(a,b) > Ay (a,b) (1.25)
holds for all a,b > 0 with a # b, which can be rewritten as
Zy3(a,b) > Ayj3(a,b). (1.26)
Sandor [19] showed that
L(a,b) < P(a,b) < I(a,b) (1.27)

forall a,b >0 with a#b.
Neuman and Sandor [15] found that the inequalities

G(a,b) < L(a,b) < P(a,b) < A(a,b) < NS(a,b) < T(a,b) < Az(a,b)

hold for all a,b > 0 with a # b.
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For all a,b > 0 with a # b, the following chain of inequalities
Ly(a,b) < He(a,b) <Ay3(a,b) <I(a,b) <Z3(a,b) <Y p(a,b) (1.28)
is due to Yang [25, (5.17)]. Recently, Costin and Toader [8] proved that
G(a,b) < L(a,b) <Ay y(a,b) < P(a,b) < A(a,b) (1.29)
< NS(a,b) <Az(a,b) <T(a,b) <Az(a,b),
which was improved independently in [28] and [7] as
Ao(a,b) < L(a,b) <Ay 3(a,b) <Aigr/10gr(a;b) < Pa,b) (1.30)

< A2/3(a,b) <I(a,b) < Ajpga(a,b) < Alog2/10g[10g(3+2ﬁ)] (a,b)
< NS(a,b) < Ay3(a,b) <Aig2/(10gn-10g2)(@,b) < T(a,b) <As3(a,b).

The main purpose of this paper is to prove that the means P,(a,b), T,(a,b),
NSp(a,b) and Z,(a,b) are strictly increasing with respect to p € R for fixed a,b >0
with @ # b, and the sharp inequalities L»(a,b) < P(a,b) < NS|y(a,b) < He(a,b) <
Ayj3(a,b) <I(a,b) < Z,3(a,b) <Yy5(a,b) hold for all a,b >0 with a # b.

2. Monotonicity properties of power-type means

The following theorem shows that M), defined by (1.11) is indeed a mean, that is,
“power-type mean”.

THEOREM 1. Let M be a differentiable bivariate mean. Then M), defined by
(1.11) is also a bivariate mean. In particular, My = G if M is symmetric.

Proof. We divide the proof into two cases.

Case 1: p # 0. Without loss of generality, we assume that p > 0 and b >
a> 0. Since M is a mean, we have a? < M(a?,bP) < b”, which implies that a <
M'/P(aP bP) < b. Therefore, M, (a,b) is a mean.

Case 2: p=0. A simple calculation yields

oM (1,1 oM (1,1
My (a,b) = Ilji_I%Ml/p(a”,b”) =exp (% loga + %10&7) .
It has shown in [23] that
OM (x,x) IM (x,x)
ox 7 dy
which implies that My (a,b) is also a mean.

In particular, if M is symmetric, that is, M (x,y) = M (y,x), then we clearly see
that oM (x,y) /dx = dM (y,x) /dy, and so dM (x,x) /dx = M (x,x) /dy. It follows
from (2.1) that dM (x,x) /dx = IM (x,x) /dy = 1/2. Therefore, My = G.

This completes the proof. [l

IM (x,x) N oM (x,x) {

€[0,1] and ) % ,

2.1

The following sufficient condition for the monotonicity of p-order M mean M),
can be found in the literature [24].
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LEMMA 1. Let M be a homogeneous and differentiable bivariate mean. Then the
function M, (x,y) defined by (1.11) is strictly increasing (decreasing) with respect to
p € R for fixed x,y >0 with x #y if S (x,y) = (logM(x,y)),, < (>)0 for all x,y >0
with x #£ y. »

Yang [26] proved that % (x,y) = (logM(x,y)),, <O for all x,y >0 with x #y
in the case of M = A,He,L,1,Y . Therefore, the p-order arithmetic mean (i.e., power
mean) A,(x,y), p-order Heroian mean He,(x,y), p-order logarithmic mean L,(x,y),
p-order identric (exponential) mean /,(x,y) and p-order exponential-geometric mean
Y, (x,y) are strictly increasing with respect to p € R for fixed x,y > 0 with x # y. Next,
we prove that the p-order first Seiffert mean P,(x,y), p-order second Seiffert mean
Ty(x,y), p-order Neuman-Sdndor mean NS, (x,y) and p-order power-exponential
mean Z,(x,y) are also strictly increasing with respect to p € R for fixed x,y > 0 with

x#y.

THEOREM 2. The p-order first Seiffert mean P,(x,y), p-order second Seiffert
mean Ty(x,y), p-order Neuman-Sdndor mean NSy,(x,y) and p-order power-exponen-
tial mean Z,(x,y) are strictly increasing with respect to p € R for fixed x,y > 0 with

xX#y.

Proof. By Lemma 1, it suffices to show that for all x,y > 0 with x #y, .7 (x,y) =
(logM(x,y)),, <0 inthe case of M =P, T and NS, and 9 (log(Z,(x,y)) /dp > 0. We
divide the proof into four cases.

Case 1: M = P. Then elaborated computations lead to

1 1 A

S (x log P(x — =L
(x:3) = (ogP(.3)),y (x —y)*  arcsin’ e )’ 2 arcsin i v wty)?
1 4 1
= - Pz(x,y)—ip(x,y),
(=97 4y (=) (x+y)° V5
Making use of the well known inequality P(x,y) > G(x,y) = /Xy, we get
1 4 1
S (x,y) < - Xy — Vxy =0.
(=37 Gy =) )’ VA
Case 2: M =T . Then elaborated computations yield
1 y X 1 ¥ —y?
F(x,y) = (logT (x, =
( y) ( g ( y))xy (x—y) arctan2 ( +y ) arctan;% (x2+y2)2
1 4xy 2(x+y
= 2 ) N2 2T2(x7y)_%T(x7y)'
=y (P+y) (x—y) (o +y?)
Using the inequality T'(x,y) > A(x,y) = (x+y) /2, one has
1 4 P2
ny) < - );y i (x—i—y) B ()c—ky)2 <x+y)
(k=37 (243 (=) \ 2 (2 +y2)°\ 2
-2 <o

(2 +)2)?
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Case 3: M = NS. Then elaborated computations give

1 1

(x7y) ( 0g (xay))xy (.X B y>2 arcsinhzf% (X2+y2)(x+y)2
V(P ) xX—y
(v+y)? (\/m ) arcsinh 2 =
1 8xy 2 2\/§(X2+y2+xy)
- B : NS — NS (x,y).
(x_y)2 (X*y)z(x2+y2)(x+y)2 (X,)’) (X+y)2(\/m)3 (x,y)

Applying the inequality

2
Axy) (P
NS(x,y) > =
(6,3) Az (x,y) x24y2
2

given in [28] leads to

2
L 8xy (8| 22t ()
SN <=y (xy)z(ﬂﬂz)(xﬂ)Z( ) () VR

Case 4: It follows from (1.9) that

xP VP

xP 4y 171 gx+ xP + yP

logZ,(x,y) = logy

and 5
)) = Py (logx —logy) S0 O

d
— (logZ,(x,
3p( g P( y (xp+yp)2

3. Inequalities for certain power-type means

THEOREM 3. The inequality Ly(a,b) < P(a,b) holds for all a,b >0 with a # b
ifand only if p < 2.

Proof. Since both the means L, and P are symmetric, without loss of generality,
we assume that a < b. Let x =a/b € (0,1), then inequality L, (a,b) < P(a,b) is

equivalent to
P\ P ~1
(x ) < 3.1)
plogx 2 arcsin *—

x+1

Necessity. If L,(a,b) < P(a,b) forall a,b >0 with a # b, then inequality (3.1)

leads to
xP—1 I/p x—1
plogx " Darcsin & ke 1 1

lim L

x—1 (x—1)? P12 s
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which implies that p < 2.

Sufficiency. We prove that the inequality (3.1) holds if p < 2. By Theorem 2, it
suffices to show that the inequality (3.1) holds if p = 2. Let the function f; be defined
on (0,1) by

X X+

1 logx.

2 x—1
, arcsin” {77 —1 1 1
— 4 il gy -
fi(x) 1) + (arcsm 1) Ae=D x

(x— 11— 2\/)Earcs1n—)2
x(x—1)°

for all x € (0,1), which implies that f; is strictly decreasing on (0,1). Therefore,
fl (x) > limx~>l’ fl ()C) =0, and

| —1)?
x - (x—1)

2logx 4 (arcsin %)2

forall xe (0,1). O

REMARK 1. Recently, Chu et al. [6] gave a different proof of Theorem 3, but our
proof seems to be more simple.

THEOREM 4. The inequality P,(a,b) < NS(a,b) holds for a,b >0 with a # b if
and only if p < 2.

Proof. Without loss of generality, we assume that a < b. Let x =a/b € (0,1),
then inequality P, (a,b) < NS (a,b) is equivalent to

1/p
P—1 -1
) < al . (3.2)
2aresin iy x—14/2(x2+1)

2log x+1

Necessity. If P,(a,b) < NS(a,b) for a,b > 0 with a # b, then inequality (3.2)
leads to

1/p

xP—1 _ x—1

<2arcsm ,,JJ ) 210gx—1+,/2(x2+1) 1 1

lim 5 ol = <0
x—1 ()C— 1) 12

which implies that p < 2.
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Sufficiency. We prove that the inequality (3.2) holds if p < 2. By Theorem 2, it
suffices to show that the inequality (3.2) holds if p = 2. We define the function f, by

—1+4/2(x2+1
ngxi(x) 2

X . X
Hx)=2 x—Irl (x—!—l)—arcsmx2+1

, x€(0,1).

Differentiating f>(x) gives

x—144/2(x2+1 x—14,/2(x2+1
f2(x)__ (x_1>2 + x—1 x2+1_x2_|_1
2
—1+4/2(x2+1

x—1 X241

for all x € (0,1), which implies that f, is strictly decreasing on (0,1). Therefore,
fo(x)>1lim,_ - fo(x) =0, and
2

-1 - x—1
| - )
2arcsmx—2+1 2 log - 14+4/2(x2+1)
g x+1

forall x € (0,1). O

THEOREM 5. The inequality NS(a,b) < Hep(a,b) holds for a,b >0 with a # b
ifand only if p > 2.

Proof. We assume that a < b, let x = a/b € (0,1). Then inequality NS (a,b) <
Hep(a,b) is equivalent to

1/p
—1 P4 xP/2 4]
al (x t T ) . (3.3)

x—1+ 2(x2+1) 3

2log o)

Necessity. If NS(a,b) < Hep(a,b), then inequality (3.3) leads to the conclusion
that

x—1 _ <x”+x”/2+l ) 1/p
X— X 3
. 21055% 1 1
lim 3 =—-——p<0,
x—1 (x—1) 6 12

which gives p > 2.
Sufficiency. We prove the inequality (3.3) holds if p > 2. By Theorem 2, it suffices
to show that the inequality (3.3) holds if p = 2. To this end, we define the function f3

by
x—1 x—14++2(x2+1
f3(x) = ———2log ( )

X4x+l x+1
V 3
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Differentiating f3(x) yields
, I 241 x—1 2V2

B /x2+3x+1 6 (X2+x+1>%_(x—|—1)\/x2+1
3

3
x2+x+l
(x+1) x2+l< : )

2
( /x22+17 x2+3x+1> < x22+1+2 /x2+3;¥+l>
3
24atl
(x+1)\/x2+1<\/%>

for all x € (0,1), which shows that f3 is strictly decreasing on (0,1). Hence f3 (x) >
lim,_, - f3(x) =0, and

—1 —1 2(x2+1
x7>210gx +4/2(x>+ ),
txtl x+1
V3

which implies that the inequality (3.3) holdsif p=2. [

-3

<0

THEOREM 6. The inequality I(a,b) < Z,(a,b) holds for all a,b > 0 with a # b
ifand only if p > 1/3.

Proof. We assume that a < b, let x =a/b € (0,1). Then inequality I (a,b) <
Z, (a,b) is equivalent to
e L/ « /) (3.4)
Necessity. If I1(a,b) < Z,(a,b), then inequality (3.4) gives
e L/ (x—=1) _ P/ (xP+1) 1 1

I - — —-p<O,
b (1) 12 4?

which yields p > 1/3.

Sufficiency. The inequality I(a,b) < Z;;3(a,b) can be found in the literature
[25, (5.7)], then from the monotonicity of Theorem 2 we clearly see that I(a,b) <
Zy3(a,b) < Zyp(a,b) if p=1/3. O

THEOREM 7. The inequality Z,(a,b) <Y (a,b) holds for a,b > 0 with a # b if
and only if p <2/3.

Proof. We assume that @ < b and x = a/b € (0,1). Then inequality Z, (a,b) <
Y (a,b) is equivalent to

2
It ) gy (4 Xl087X (3.5)
p (x_ 1)2 . .
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Necessity. If Z, (a,b) <Y (a,b), then inequality (3.5) leads to the conclusion that

P
. logZ,(x,1)—log¥ (x,1 WA
lim (ogZpl)log¥wl) _ 4,

2
1ogx—xf—llogx+1—<1—?x‘%)§> B 1 1 <0
pra (1) b (1) TP e

which gives p <2/3.

Sufficiency. The inequality Y (a,b) > Z,/3(a,b) > Z,(a,b) for p < 2/3 follows
easily from the inequality Z, 3(a,b) <Y (a,b) [25, (5.12)] and the monotonicity of Z,
with respect to p in Theorem 2. [

4. Remarks and a conjecture

REMARK 2. From Lemma 4 we clearly see that the inequalities P(a,b) < NS,(a,b)
holds for all a,b > 0 with a # b if and only if p > 1/2.

REMARK 3. It follows from Lemma 5 that the inequality NS,(a,b) < He(a,b)
holds for all a,b > 0 with a # b if and only if p < 1/2.

REMARK 4. From Theorem 3 together with Remarks 2 and 3 we clearly see that
the chain of inequalities (1.28) can be refined as

Ly(a,b) < P(a,b) < NS, y(a,b) < He(a,b) 4.1)
<Ays(a,b) <I(a,b) < Zy3(a,b) <Yi)(a,b)
for all a,b > 0 and a # b with the best possible parameters.

The chain of inequalities (4.1) does not contain the power-type second Seiffert
mean 7). From (1.22) and (1.28) it is easy to obtain that

Ty/s(a,b) < He(a,b) < Ays3(a,b) < I(a,b) < Z;/3(a,b) <Y (a,b). 4.2)

If NS, /»(a,b) < T/5(a,b) holds, then we get the perfect chain of inequalities for
power-type means

Ly(a,b) < P(a,b) < NS, ;(a,b) < T,/5(a,b) (4.3)
< He(a,b) <Ays(a,b) <I(a,b) <Z3(a,b) <Y (a,b).
Elaborated computations show that

NS(x,1)—=T,(x,1 1 5
NS =Ty (D)

Mo 6w
and
NS (07,1) =Ty5 (07,1) = - <3>5/4 <0.
2log<ﬂ+1> m

Therefore, we propose a conjecture as follows.
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CONJECTURE 1. The inequality NS(a,b) < Ty(a,b) holds for all a,b > 0 with

a#bifandonlyif p >4/5.
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