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Abstract. Let p ∈ R , M be a bivariate mean, and Mp be defined by Mp(a,b) = M1/p(ap,bp)
(p �= 0) and M0(a,b) = limp→0 Mp(a,b) . In this paper, we prove that the sharp inequali-
ties L2(a,b) < P(a,b) < NS1/2(a,b) < He(a,b) < A2/3(a,b) < I(a,b) < Z1/3(a,b) < Y1/2(a,b)
hold for all a,b > 0 with a �= b , where L(a,b) = (a− b)/(loga − logb) , P(a,b) = (a−
b)/[2arcsin((a−b)/(a+b))] , NS(a,b) = (a−b)/[2arcsinh ((a−b)/(a+b))] , He(a,b) = (a+√

ab+ b)/3 , A(a,b) = (a+ b)/2 , I(a,b) = 1/e(aa/bb)1/(a−b) , Z(a,b) = aa/(a+b)bb/(a+b) and

Y (a,b) = I(a,b)e1−ab/L2(a,b) are respectively the logarithmic, first Seiffert, Neuman-Sándor,
Heronian, arithmetic, identric, power-exponential and exponential-geometric means of a and
b .

1. Introduction

A bivariate real valued function M : (0,∞)× (0,∞)→ (0,∞) is said to be a bivari-
ate mean if

min(a,b) � M (a,b) � max(a,b)

for all a,b > 0. Clearly, each bivariate mean M is reflexive, that is,

M (a,a) = a

for any a > 0. M is symmetric if

M (a,b) = M (b,a)

for all a,b > 0, and M is said to be homogeneous (of degree one) if

M (λa,λb) = λM (a,b)

for any λ ,a,b > 0.
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There are many symmetric and homogeneous bivariate means, for example,

• the arithmetic mean A(a,b) is defined by

A(a,b) =
a+b

2
; (1.1)

• the geometric mean G(a,b) is given by

G(a,b) =
√

ab; (1.2)

• the Heronian mean He(a,b) is defined by

He(a,b) =
a+b+

√
ab

3
; (1.3)

• the logarithmic mean L(a,b) is given by

L(a,b) =
a−b

loga− logb
if a �= b and L(a,a) = a; (1.4)

• the identric (exponential) mean I(a,b) is defined by

I (a,b) = e−1
(

aa

bb

)1/(a−b)

if a �= b and I (a,a) = a; (1.5)

• the first Seiffert mean P(a,b) is defined in [21] as follows

P(a,b) =
a−b

2arcsin a−b
a+b

if a �= b and P(a,a) = a; (1.6)

• the second Seiffert mean T (a,b) is defined in [22] and given by

T (a,b) =
a−b

2arctan a−b
a+b

if a �= b and T (a,a) = a; (1.7)

• the Neuman-Sándor mean NS is introduced in [15] and given by

NS (a,b) =
a−b

2arcsinh a−b
a+b

if a �= b and NS (a,a) = a; (1.8)

• the power-exponential mean Z(a,b) , or the special case of Gini means [9] is
defined by

Z (a,b) = a
a

a+b b
b

a+b =
I(a2,b2)
I(a,b)

; (1.9)
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• the exponential-geometric mean Y (a,b) is introduced in [24] and given by

Y (a,b) = I(a,b)exp

(
1− G2(a,b)

L2(a,b)

)
. (1.10)

Let p ∈ R be a real number and M be a bivariate mean. Then the function Mp :
(0,∞)× (0,∞)→ (0,∞) defined by

Mp(a,b) = M1/p(ap,bp) if p �= 0 and M0(a,b) = lim
p→0

Mp(a,b) (1.11)

(see [3]) is likely to be a mean of positive numbers a and b . For instants, all Mp(a,b)
are means for M = A , He , L , I , P , T , NS , Z and Y . It is well known that Ap is the
classical power or Hölder mean of a and b , which is strictly increasing with respect to
p ∈ R for fixed a,b > 0 with a �= b .

If Mp(a,b) is proved to be a mean, then it is called “ p -order M mean”. Since
the form of Mp(a,b) is similar to power mean Ap(a,b) , so we also call it “power-type
mean”. Also, we note that

Mλ
λ p(a,b) = M1/p(aλ p,bλ p) = Mp(aλ ,bλ ) (1.12)

for all λ ∈ R .
Recently, to find the inequalities between different bivariate means have attracted

the attention of many researchers. Lin [14] presented the best possible upper and lower
power mean bounds for the logarithmic mean as follows

A0 (a,b) < L(a,b) < A1/3 (a,b) . (1.13)

for all a,b > 0 with a �= b .
Jiao and Cao [13] established that

L(a,b) < He1/2 (a,b) < A1/3 (a,b) (1.14)

for all a,b > 0 with a �= b , which is equivalent to

L2 (a,b) < He(a,b) < A2/3 (a,b) (1.15)

(also see [2]).
Stolarsky [18] and Pittenger [17] found that the double inequality

A2/3 (a,b) < I (a,b) < Alog2 (a,b) (1.16)

holds for all a,b > 0 and a �= b with the best possible parameters 2/3 and log2.
Jagers [12] (also see [10]) proved that

A1/2 (a,b) < P(a,b) < A2/3 (a,b)

for all a,b > 0 with a �= b . Hästö [11] found that the double inequality

Alog2/ logπ (a,b) < P(a,b) < A2/3 (a,b) (1.17)
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holds for all a,b > 0 and a �= b with the best possible parameters log2/ logπ and 2/3.
In 1995, Seiffert [22] presented that

A(a,b) < T (a,b) < A2 (a,b) (1.18)

for all a,b > 0 with a �= b , it was improved by Yang [27] (also see [7]) as

Alog2/(logπ−log2) (a,b) < T (a,b) < A5/3 (a,b) (1.19)

with the best possible parameters log2/(logπ − log2) and 5/3. Utilizing (1.12) the
second inequality of 1.19 can be written as

T2/5 (a,b) < A2/3 (a,b) . (1.20)

Chu et al. [4] found an optimal double inequality

Helog3/(logπ−log2) (a,b) < T (a,b) < He5/2(a,b) (1.21)

for all a,b > 0 with a �= b . The second inequality of (1.21) is equivalent to

T2/5 (a,b) < He(a,b) . (1.22)

Yang [28] (also see [7], [5], [29]) presented the sharp bounds for the Neuman-
Sándor mean in terms of power means as follows

Alog2/[log(log(3+2
√

2))] (a,b) < NS(a,b) < A4/3(a,b) (1.23)

for all a,b > 0 with a �= b . The second inequality of (1.23) implies that

NS1/2 (a,b) < A2/3 (a,b) . (1.24)

For the power-exponential mean Z , it follows from the comparison theorem for
Gini means given by Páles [16] (also see [1], [20], [25]) that the optimal inequality

Z (a,b) > A2 (a,b) (1.25)

holds for all a,b > 0 with a �= b , which can be rewritten as

Z1/3 (a,b) > A2/3 (a,b) . (1.26)

Sándor [19] showed that

L(a,b) < P(a,b) < I(a,b) (1.27)

for all a,b > 0 with a �= b .
Neuman and Sándor [15] found that the inequalities

G(a,b) < L(a,b) < P(a,b) < A(a,b) < NS(a,b) < T (a,b) < A2(a,b)

hold for all a,b > 0 with a �= b .
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For all a,b > 0 with a �= b , the following chain of inequalities

L2(a,b) < He(a,b) < A2/3(a,b) < I(a,b) < Z1/3(a,b) < Y1/2(a,b) (1.28)

is due to Yang [25, (5.17)]. Recently, Costin and Toader [8] proved that

G(a,b) < L(a,b) < A1/2(a,b) < P(a,b) < A(a,b) (1.29)

< NS(a,b) < A3/2(a,b) < T (a,b) < A2(a,b),

which was improved independently in [28] and [7] as

A0(a,b) < L(a,b) < A1/3(a,b) < Alog2/ logπ(a,b) < P(a,b) (1.30)

< A2/3(a,b) < I(a,b) < Alog2(a,b) < Alog2/ log[log(3+2
√

2)](a,b)

< NS(a,b) < A4/3(a,b) < Alog2/(logπ−log2)(a,b) < T (a,b) < A5/3(a,b).

The main purpose of this paper is to prove that the means Pp(a,b) , Tp(a,b) ,
NSp(a,b) and Zp(a,b) are strictly increasing with respect to p ∈ R for fixed a,b > 0
with a �= b , and the sharp inequalities L2(a,b) < P(a,b) < NS1/2(a,b) < He(a,b) <
A2/3(a,b) < I(a,b) < Z1/3(a,b) < Y1/2(a,b) hold for all a,b > 0 with a �= b .

2. Monotonicity properties of power-type means

The following theorem shows that Mp defined by (1.11) is indeed a mean, that is,
“power-type mean”.

THEOREM 1. Let M be a differentiable bivariate mean. Then Mp defined by
(1.11) is also a bivariate mean. In particular, M0 = G if M is symmetric.

Proof. We divide the proof into two cases.
Case 1: p �= 0. Without loss of generality, we assume that p > 0 and b >

a > 0. Since M is a mean, we have ap � M(ap,bp) � bp , which implies that a �
M1/p(ap,bp) � b . Therefore, Mp(a,b) is a mean.

Case 2: p = 0. A simple calculation yields

M0 (a,b) = lim
p→0

M1/p(ap,bp) = exp

(
∂M (1,1)

∂x
loga+

∂M (1,1)
∂y

logb

)
.

It has shown in [23] that

∂M (x,x)
∂x

,
∂M (x,x)

∂y
∈ [0,1] and

∂M (x,x)
∂x

+
∂M (x,x)

∂y
= 1, (2.1)

which implies that M0 (a,b) is also a mean.
In particular, if M is symmetric, that is, M (x,y) = M (y,x) , then we clearly see

that ∂M (x,y)/∂x = ∂M (y,x)/∂y , and so ∂M (x,x)/∂x = ∂M (x,x)/∂y . It follows
from (2.1) that ∂M (x,x)/∂x = ∂M (x,x)/∂y = 1/2. Therefore, M0 = G .

This completes the proof. �
The following sufficient condition for the monotonicity of p -order M mean Mp

can be found in the literature [24].
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LEMMA 1. Let M be a homogeneous and differentiable bivariate mean. Then the
function Mp(x,y) defined by (1.11) is strictly increasing (decreasing) with respect to
p ∈ R for fixed x,y > 0 with x �= y if I (x,y) = (logM(x,y))xy < (>)0 for all x,y > 0
with x �= y.

Yang [26] proved that I (x,y) = (logM(x,y))xy < 0 for all x,y > 0 with x �= y
in the case of M = A,He,L, I,Y . Therefore, the p -order arithmetic mean (i.e., power
mean) Ap(x,y) , p -order Heroian mean Hep(x,y) , p -order logarithmic mean Lp(x,y) ,
p -order identric (exponential) mean Ip(x,y) and p -order exponential-geometric mean
Yp(x,y) are strictly increasing with respect to p∈R for fixed x,y > 0 with x �= y . Next,
we prove that the p -order first Seiffert mean Pp(x,y) , p -order second Seiffert mean
Tp(x,y) , p -order Neuman-Sándor mean NSp(x,y) and p -order power-exponential
mean Zp(x,y) are also strictly increasing with respect to p ∈ R for fixed x,y > 0 with
x �= y .

THEOREM 2. The p-order first Seiffert mean Pp(x,y) , p-order second Seiffert
mean Tp(x,y) , p-order Neuman-Sándor mean NSp(x,y) and p-order power-exponen-
tial mean Zp(x,y) are strictly increasing with respect to p ∈ R for fixed x,y > 0 with
x �= y.

Proof. By Lemma 1, it suffices to show that for all x,y > 0 with x �= y , I (x,y) =
(logM(x,y))xy < 0 in the case of M = P , T and NS , and ∂ (log(Zp(x,y))/∂ p > 0. We
divide the proof into four cases.

Case 1: M = P . Then elaborated computations lead to

I (x,y) = (logP(x,y))xy =
1

(x− y)2
− 1

arcsin2 x−y
x+y

1
(x+y)2

− 1
2

1

arcsin x−y
x+y

x−y√
xy(x+y)2

=
1

(x− y)2
− 4

(x+ y)2 (x− y)2
P2(x,y)− 1

(x+ y)2
√

xy
P(x,y).

Making use of the well known inequality P(x,y) > G(x,y) =
√

xy , we get

I (x,y) <
1

(x− y)2
− 4

(x+ y)2 (x− y)2
xy− 1

(x+ y)2
√

xy

√
xy = 0.

Case 2: M = T . Then elaborated computations yield

I (x,y) = (logT (x,y))xy =
1

(x− y)2
− y

arctan2 x−y
x+y

x

(x2 + y2)2 −
1

arctan x−y
x+y

x2− y2

(x2 + y2)2

=
1

(x− y)2
− 4xy

(x2 + y2)2 (x− y)2
T 2(x,y)− 2(x+ y)

(x2 + y2)2 T (x,y).

Using the inequality T (x,y) > A(x,y) = (x+ y)/2, one has

I (x,y) <
1

(x− y)2
− 4xy

(x2 + y2)2 (x− y)2

(
x+ y

2

)2

− 2(x+ y)

(x2 + y2)2

(
x+ y

2

)

= − xy

(x2 + y2)2 < 0.
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Case 3: M = NS . Then elaborated computations give

I (x,y) = (logNS(x,y))xy =
1

(x− y)2
− 1

arcsinh2 x−y
x+y

2xy

(x2+y2)(x+y)2

−
√

2(x2+y2+xy)
(x+y)2

(√
x2+y2

)3

x− y

arcsinh x−y
x+y

=
1

(x− y)2
− 8xy

(x−y)2(x2+y2)(x+y)2
NS2(x,y)− 2

√
2(x2+y2+xy)

(x+y)2
(√

x2+y2
)3 NS(x,y).

Applying the inequality

NS(x,y) >
A2(x,y)
A2(x,y)

=

( x+y
2

)2√
x2+y2

2

given in [28] leads to

I (x,y) < 1
(x−y)2

− 8xy
(x−y)2(x2+y2)(x+y)2

(
( x+y

2 )2√
x2+y2

2

)2

− 2
√

2(x2+y2+xy)
(x+y)2

(√
x2+y2

)3
( x+y

2 )2√
x2+y2

2

= 0.

Case 4: It follows from (1.9) that

logZp(x,y) =
xp

xp + yp logx+
yp

xp + yp logy

and
∂

∂ p
(logZp(x,y)) = xpyp (logx− logy)2

(xp + yp)2 > 0. �

3. Inequalities for certain power-type means

THEOREM 3. The inequality Lp(a,b) < P(a,b) holds for all a,b > 0 with a �= b
if and only if p � 2 .

Proof. Since both the means Lp and P are symmetric, without loss of generality,
we assume that a < b . Let x = a/b ∈ (0,1) , then inequality Lp (a,b) < P(a,b) is
equivalent to (

xp−1
p logx

)1/p

<
x−1

2arcsin x−1
x+1

. (3.1)

Necessity. If Lp(a,b) < P(a,b) for all a,b > 0 with a �= b , then inequality (3.1)
leads to

lim
x→1

(
xp−1
p logx

)1/p− x−1
2arcsin x−1

x+1

(x−1)2
=

1
24

p− 1
12

� 0,
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which implies that p � 2.
Sufficiency. We prove that the inequality (3.1) holds if p � 2. By Theorem 2, it

suffices to show that the inequality (3.1) holds if p = 2. Let the function f1 be defined
on (0,1) by

f1 (x) = 2
(x+1)
x−1

arcsin2 x−1
x+1

− logx.

Differentiating f1(x) yields

f ′1 (x) = −4
arcsin2 x−1

x+1

(x−1)2
+4

(
arcsin

x−1
x+1

)
1√

x(x−1)
− 1

x

= −
(
x−1−2

√
xarcsin x−1

x+1

)2
x(x−1)2

< 0

for all x ∈ (0,1) , which implies that f1 is strictly decreasing on (0,1) . Therefore,
f1 (x) > limx→1− f1 (x) = 0, and

x2 −1
2logx

<
(x−1)2

4
(
arcsin x−1

x+1

)2
for all x ∈ (0,1) . �

REMARK 1. Recently, Chu et al. [6] gave a different proof of Theorem 3, but our
proof seems to be more simple.

THEOREM 4. The inequality Pp(a,b) < NS(a,b) holds for a,b > 0 with a �= b if
and only if p � 2 .

Proof. Without loss of generality, we assume that a < b . Let x = a/b ∈ (0,1) ,
then inequality Pp (a,b) < NS (a,b) is equivalent to

(
xp −1

2arcsin xp−1
xp+1

)1/p

<
x−1

2log
x−1+

√
2(x2+1)

x+1

. (3.2)

Necessity. If Pp(a,b) < NS(a,b) for a,b > 0 with a �= b , then inequality (3.2)
leads to

lim
x→1

(
xp−1

2arcsin xp−1
xp+1

)1/p

− x−1

2 log
x−1+

√
2(x2+1)

x+1

(x−1)2
=

1
12

p− 1
6

� 0,

which implies that p � 2.
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Sufficiency. We prove that the inequality (3.2) holds if p � 2. By Theorem 2, it
suffices to show that the inequality (3.2) holds if p = 2. We define the function f2 by

f2 (x) = 2
log2 x−1+

√
2(x2+1)

x+1

x−1
(x+1)− arcsin

x2 −1
x2 +1

, x ∈ (0,1) .

Differentiating f2(x) gives

f ′2 (x) = −4
log2 x−1+

√
2(x2+1)

x+1

(x−1)2
+4

log
x−1+

√
2(x2+1)

x+1

x−1

√
2√

x2 +1
− 2

x2 +1

= −

⎛
⎜⎝2

log
x−1+

√
2(x2+1)

x+1

x−1
−

√
2√

x2 +1

⎞
⎟⎠

2

< 0

for all x ∈ (0,1) , which implies that f2 is strictly decreasing on (0,1) . Therefore,
f2 (x) > limx→1− f2 (x) = 0, and

x2 −1

2arcsin x2−1
x2+1

<

⎛
⎜⎝ x−1

2log
x−1+

√
2(x2+1)

x+1

⎞
⎟⎠

2

for all x ∈ (0,1) . �

THEOREM 5. The inequality NS(a,b) < Hep(a,b) holds for a,b > 0 with a �= b
if and only if p � 2 .

Proof. We assume that a < b , let x = a/b ∈ (0,1) . Then inequality NS (a,b) <
Hep (a,b) is equivalent to

x−1

2log
x−1+

√
2(x2+1)

x+1

<

(
xp + xp/2 +1

3

)1/p

. (3.3)

Necessity. If NS(a,b) < Hep(a,b) , then inequality (3.3) leads to the conclusion
that

lim
x→1

x−1

2 log
x−1+

√
2(x2+1)

x+1

−
(

xp+xp/2+1
3

)1/p

(x−1)2
=

1
6
− 1

12
p � 0,

which gives p � 2.
Sufficiency. We prove the inequality (3.3) holds if p � 2. By Theorem 2, it suffices

to show that the inequality (3.3) holds if p = 2. To this end, we define the function f3
by

f3 (x) =
x−1√
x2+x+1

3

−2log
x−1+

√
2(x2 +1)

x+1
.
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Differentiating f3(x) yields

f ′3 (x) =
1√

x2+x+1
3

− 2x+1
6

x−1(
x2+x+1

3

) 3
2

− 2
√

2

(x+1)
√

x2 +1

=
√

2
x
√

x2+1
2 −2

(
x2+x+1

3

)3/2
+
(

x2+1
2

)3/2

(x+1)
√

x2 +1

(√
x2+x+1

3

)3

= −
√

2

(√
x2+1

2 −
√

x2+x+1
3

)2(√
x2+1

2 +2
√

x2+x+1
3

)

(x+1)
√

x2+1

(√
x2+x+1

3

)3 < 0

for all x ∈ (0,1) , which shows that f3 is strictly decreasing on (0,1) . Hence f3 (x) >
limx→1− f3 (x) = 0, and

x−1√
x2+x+1

3

> 2log
x−1+

√
2(x2 +1)

x+1
,

which implies that the inequality (3.3) holds if p = 2. �

THEOREM 6. The inequality I(a,b) < Zp(a,b) holds for all a,b > 0 with a �= b
if and only if p � 1/3 .

Proof. We assume that a < b , let x = a/b ∈ (0,1) . Then inequality I (a,b) <
Zp (a,b) is equivalent to

e−1xx/(x−1) < xxp/(xp+1). (3.4)

Necessity. If I (a,b) < Zp (a,b) , then inequality (3.4) gives

lim
x→1

e−1xx/(x−1)− xxp/(xp+1)

(x−1)2
=

1
12

− 1
4

p � 0,

which yields p � 1/3.
Sufficiency. The inequality I(a,b) < Z1/3(a,b) can be found in the literature

[25, (5.7)], then from the monotonicity of Theorem 2 we clearly see that I(a,b) <
Z1/3(a,b) � Zp(a,b) if p � 1/3. �

THEOREM 7. The inequality Zp(a,b) < Y (a,b) holds for a,b > 0 with a �= b if
and only if p � 2/3 .

Proof. We assume that a < b and x = a/b ∈ (0,1) . Then inequality Zp (a,b) <
Y (a,b) is equivalent to

xxxp/(xp+1)
< e−1xx/(x−1) exp

(
1− x log2 x

(x−1)2

)
. (3.5)
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Necessity. If Zp (a,b) < Y (a,b) , then inequality (3.5) leads to the conclusion that

lim
x→1

logZp(x,1)−logY (x,1)
(x−1)2

= lim
x→1

xp
xp+1 logx− x

x−1 logx+1−
(

1− x log2 x

(x−1)2

)
(x−1)2

=
1
4

p− 1
6

� 0,

which gives p � 2/3.
Sufficiency. The inequality Y (a,b) > Z2/3(a,b) � Zp(a,b) for p � 2/3 follows

easily from the inequality Z2/3(a,b) < Y (a,b) [25, (5.12)] and the monotonicity of Zp

with respect to p in Theorem 2. �

4. Remarks and a conjecture

REMARK 2. From Lemma 4 we clearly see that the inequalities P(a,b)< NSp(a,b)
holds for all a,b > 0 with a �= b if and only if p � 1/2.

REMARK 3. It follows from Lemma 5 that the inequality NSp(a,b) < He(a,b)
holds for all a,b > 0 with a �= b if and only if p � 1/2.

REMARK 4. From Theorem 3 together with Remarks 2 and 3 we clearly see that
the chain of inequalities (1.28) can be refined as

L2(a,b) < P(a,b) < NS1/2(a,b) < He(a,b) (4.1)

< A2/3(a,b) < I(a,b) < Z1/3(a,b) < Y1/2(a,b)

for all a,b > 0 and a �= b with the best possible parameters.

The chain of inequalities (4.1) does not contain the power-type second Seiffert
mean Tp . From (1.22) and (1.28) it is easy to obtain that

T2/5(a,b) < He(a,b) < A2/3(a,b) < I(a,b) < Z1/3(a,b) < Y1/2(a,b). (4.2)

If NS1/2(a,b) < T2/5(a,b) holds, then we get the perfect chain of inequalities for
power-type means

L2(a,b) < P(a,b) < NS1/2(a,b) < T2/5(a,b) (4.3)

< He(a,b) < A2/3(a,b) < I(a,b) < Z1/3(a,b) < Y1/2(a,b).

Elaborated computations show that

lim
x→1

NS (x,1)−Tp (x,1)

(x−1)2
=

1
6
− 5

24
p

and

NS
(
0+,1

)−T4/5
(
0+,1

)
=

1

2log
(√

2+1
) −

(
2
π

)5/4

< 0.

Therefore, we propose a conjecture as follows.
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CONJECTURE 1. The inequality NS(a,b) < Tp(a,b) holds for all a,b > 0 with
a �= b if and only if p � 4/5 .
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