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TWO INEQUALITIES FOR VOLUMES

OF SIMPLEXES WITH APPLICATIONS
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(Communicated by L. Yang)

Abstract. In this paper, we study the problems of volumes of n -dimensional simplexes in the
Euclidean space En by the method of barycenter coordinate. An inequality for volumes of n -
dimensional simplex and its escenters simplex is established,and two inequalities for volumes of
two simplexes are established. As the application of the inequalities, we obtain generalization of
the n -dimensional Euler inequality.

1. Introduction

In this paper, let Ω be an n -dimensional simplex in the Euclidean space En with
vertex set Ω(A) = {A0,A1, · · · ,An} and V (Ω) its volume. The ith face fi of Ω is an
(n−1)-dimensional simplex spanned by the vertex set A\{Ai} (i = 0,1, · · · ,n) . Let Fi

be content of the ith face fi of Ω , ai j = |AiA j| (0 � i < j � n) denote the edge-lengths
of Ω , O and G denote the circum-center and the bary-center of Ω respectively. Let R
and r be the circum-radius and the in-radius of Ω respectively, mi be the median of Ω
from vertex for i = 0,1, · · · ,n .

Let P be an interior point of simplex Ω and Hi (i = 0,1, · · · ,n) the foot of the
perpendicular drawn from point P to the ith face fi of Ω . We call simplex ΩH =
conv{H0,H1, · · · ,Hn} the orthocentric simplex for point P and simplex Ω . Let V (ΩH)
denote the volume of ΩH . In [1], Y. Zhang obtained an inequality as follows

V (ΩH) � 1
nnV (Ω), (1.1)

with equality if Ω is regular simplex and point P is the incenter of Ω .
Let Ii be the incenter of ith face fi of Ω for i = 0,1, · · · ,n . We call simplex

ΩI = conv{I0, I1, · · · , In} the incenter simplex of Ω (see [2]). In [2], T. Y. Ma obtained
an inequality as follows

V (ΩI) � 1
nnV (Ω), (1.2)

with equality if and only if there exist xk � 0 (k = 0,1, · · · ,n) such that ai j = |xix j|
(0 � i < j � n) . Here V (ΩI) denotes the volume of ΩI .
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For i = 0,1, · · · ,n , let A′
i be the second point of intersection of the line AiG with

the circumscribed hypersphere Sn−1 of Ω . Let V (Ω′) denote the volume of simplex
Ω′ = conv{A′

0,A
′
1, · · · ,A′

n} . An inequality is established in [3, 4] as follows

V (Ω′) � V (Ω), (1.3)

with equality if Ω is regular simplex.
Let B0,B1, · · · ,Bn denote the escenters of simplex Ω , we call simplex ΩB =

conv{B0,B1, · · · ,Bn} the escenter simplex of Ω . Let V (ΩB) denote the volume of
simplex ΩB . In this paper, we obtain following two inequalities for volumes of two
simplexes.

THEOREM 1. For an n-dimensional simplex Ω and its escenters simplex ΩB , we
have

V (ΩB) �
( 2

n−1

)n( R
nr

)2(n+1)
V (Ω), (1.4)

with equality if Ω is regular simplex.

THEOREM 2. Let Ω be an n-dimensional simplex and Ω′ an n-simplex defined
above, then we have

V (Ω′) �
(R2−OG

2

n2r2

) n2−1
n

V (Ω), (1.5)

with equality if Ω is regular simplex.

From inequalities (1.5) and (1.3), we obtain generalization of the n -dimensional
Euler inequality as follows (see [5]).

COROLLARY 1. For an n-dimensional simplex Ω , we have

R2 � n2r2 +OG
2
. (1.6)

Equality holds if Ω is regular simplex.

From inequality (1.5), we get an inequality as follows.

COROLLARY 2. Let Ω be an n-dimensional simplex and Ω′ an n-simplex defined
above, then we have

V (Ω′) �
( R

nr

) 2(n2−1)
n

V (Ω). (1.7)

Equality holds if Ω is regular simplex.

2. Some Lemmas and Proof of Theorems

To prove theorems above, we need some lemmas as follows. Let θi j be the dihe-
dral angle formed by two faces fi and f j of the n -dimensional simplex Ω , and Vi j the
(n− 2)-dimensional volume of the (n− 2)-dimensional simplex Ωi j = fi

⋂
f j whose

vertexes are Ak (k = 0,1, · · · ,n , k �= i, j) . For i = 0,1, · · · ,n , let ri denote the inradius

of the ith face fi of Ω . Put F =
n
∑
i=0

Fi .
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LEMMA 1. ([2, 6]) Let Ω be the coordinate simplex and ΩC = conv{C0,C1, · · · ,
Cn} be an arbitrary simplex in En . Let (λi0,λi1, · · · ,λin) be the gauge barycenter
coordinate of point Ci about Ω for i = 0,1, · · · ,n. Then

V (ΩC)
V (Ω)

= |det(λi j)n
i, j=0|. (2.1)

Here V (ΩC) denotes the volume of simplex ΩC .

LEMMA 2. ([7]) For an n-dimensional simplex Ω , we have

V (Ω) =
n−1

n
· FiFj

Vi j
sinθi j (0 � i < j � n). (2.2)

LEMMA 3. ([8]) Let Bi be the ith escenter of the n-dimensional simplex Ω , then
the gauge barycenter coordinate of point Bi about coordinate simplex Ω is

Bi =
1

F −2Fi
(F0,F1, · · · ,Fi−1,−Fi,Fi+1, · · · ,Fn). (2.3)

LEMMA 4. ([4]) For an n-dimensional simplex Ω , we have

r �
[ (n!)2

nn(n+1)n+1

] 1
2n ·V (Ω)

1
n , (2.4)

with equality if and only if Ω is regular.

LEMMA 5. ([4, 8]) For an n-dimensional simplex Ω , we have

Fi =
n

∑
j=0, j �=i

Fj cosθi j (i = 0,1, · · · ,n). (2.5)

LEMMA 6. Let Ω be an n-dimensional simplex, then

n

∏
i=0

(F −2Fi) � (n−1)n+1
( n3n

(n!)2

) n+1
n−1

(n+1
n2

)(n+1)
r2(n+1)

( n

∏
i=0

Fi

) n−3
n−1

, (2.6)

with equality if Ω is regular.

Proof. Using Cauchy’s inequality and equality (2.5), we get

n

∑
j=0, j �=i

Fj sinθi j =
n

∑
j=0, j �=i

[(Fj +Fj cosθi j)(Fj −Fj cosθi j)]
1
2

�
[ n

∑
j=0, j �=i

[(Fj +Fj cosθi j)
] 1

2
[ n

∑
j=0, j �=i

(Fj −Fj cosθi j)
] 1

2

= F
1
2 (F −2Fi)

1
2

(2.7)
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By the formula for the volume of an n -simplex in [4], we have

nV(Ω)
n
∑
j=0

Fj

=
nV(Ω)

F
= r. (2.8)

Using the formula (2.8) to (n−1)-dimensional simplex fi , we get

(n−1)Fi
n
∑

j=0, j �=i
Vi j

= ri (i = 0,1, · · · ,n). (2.9)

By Lemma 2, we have
n

∑
j=0, j �=i

Vi j =
n−1

nV (Ω)
·Fi

n

∑
j=0, j �=i

Fj sinθi j. (2.10)

From (2.8), (2.9) and (2.10), we get

r
ri

=
1
F

n

∑
j=0, j �=i

Fj sinθi j. (2.11)

Substituting (2.7) into (2.11), we get

r
ri

� (F −2Fi)
1
2

F
1
2

(i = 0,1, · · · ,n). (2.12)

Using (2.12) and (2.8), we get
n

∏
i=0

(F −2Fi) � (r2F)n+1

n
∏
i=0

r2
i

=
(nV (Ω))2(n+1)

Fn+1
n
∏
i=0

r2
i

. (2.13)

It easy to know that equality holds in (2.13) if simplex Ω is regular.
By Lemma 4, we have

ri �
[ (n−1)!2

(n−1)n−1nn

] 1
2(n−1)

F
1

n−1
i (i = 0,1, · · · ,n). (2.14)

Using (2.13), (2.14), (2.8) and the arithmetic-geometric mean inequality, we get
n

∏
i=0

(F −2Fi) � (n−1)n+1
(n3n

n!2

) n+1
n−1 · V (Ω)2(n+1)

Fn+1
n
∏
i=0

F
2

n−1
i

= (n−1)n+1
(n3n

n!2

) n+1
n−1 ·

r2(n+1)
( n

∑
i=0

Fi

)n+1

n2(n+1)
n
∏
i=0

F
2

n−1
i

� (n−1)n+1
(n3n

n!2

) n+1
n−1 ·

(n+1
n2

)n+1 · r2(n+1) ·
n

∏
i=0

F
n−3
n−1

i

(2.15)

It is easy to see that equality holds in (2.15) if simplex Ω is regular. �
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LEMMA 7. Let mi (i = 0,1, · · · ,n) and V (Ω) denote the medians and the volume
of the n-dimensional simplex Ω respectively, then we have

n
∑
i=0

m2
i

n
∏
i=0

m2
i

� nn

n!2(n+1)n−2V (Ω)2 , (2.16)

with equality if Ω is regular simplex.

Proof. Let G denote the barycenter of Ω , and V (Ωi) denote the volume of n -
dimensional simplex Ωi = conv{A0, · · · ,Ai−1,G,Ai+1, · · · ,An} for i = 0,1, · · · ,n . By
the properties of barycenter of the n -dimensional simplex Ω , we have

V (Ωi) = (n+1)−1V (Ω), |GAi| = n(n+1)−1mi (i = 0,1, · · · ,n). (∗)

Let
−−→
GAi = n(n+ 1)−1αi (i = 0,1, · · · ,n) , where αi is the unit vector of

−−→
GAi . Using

inequality (15) in [7], we have

n

∑
i=0

det(αT
l αk)l,k �=i �

(n+1
n

)n
, (2.17)

with equality if and only if the nonzero eigenvalues of Gram matrix Q = (αT
i α j)n

i, j=0
are all same. It is easy to know that equality holds in (2.17) if Ω is regular simplex.

By the formula for the volume of a simplex, we have

(n+1)−1V (Ω) = V (Ωi) =
1
n!

[det(|GAl| · |GAk|αT
l αk)l,k �=i]

1
2

=
1
n!

[det(n2(n+1)−2mlmkαT
l αk)l,k �=i]

1
2

=
nn

n!(n+1)n

( n

∏
j=0, j �=i

m j

)
[det(αT

l αk)l,k �=i]
1
2

i.e.

det(αT
l αk)l,k �=i =

n!2(n+1)2(n−1)V (Ω)2

n2n · m2
i

n
∏
j=0

m2
j

(i = 0,1, · · · ,n). (2.18)

Substituting (2.18) into (2.17), we get (2.16). �
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Proof of Theorem 1. By Lemma 1 and Lemma 3, we have

V (ΩB) =
V (Ω)

n
∏
i=0

(F −2Fi)
·

∥∥∥∥∥∥∥∥

−F0 F1 · · · Fn

F0 −F1 · · · Fn

· · · · · · · · · · · ·
F0 F1 · · · −Fn

∥∥∥∥∥∥∥∥

=
V (Ω) ·

n
∏
i=0

Fi

n
∏
i=0

(F −2Fi)
·

∥∥∥∥∥∥∥∥

−1 1 · · · 1
1 −1 · · · 1
· · · · · · · · · · · ·
1 1 · · · −1

∥∥∥∥∥∥∥∥

=
2n(n−1)

n
∏
i=0

Fi

n
∏
i=0

(F −2Fi)
·V(Ω)

(2.19)

Using (2.19) and (2.6), we get

V (ΩB) � 2n(n−1)

⎡
⎢⎢⎣

(n!)2(n+1)
n
∏
i=0

F2
i

n(n+1)(n+2)

⎤
⎥⎥⎦

1
n−1

· V (Ω)
(n2−1)n+1r2(n+1) . (2.20)

Using the known inequality in [4, 9], we have

n

∑
i=0

F2
i � 1

(n!)2nn−4(n+1)n−2 ·
(

∑
0�i< j�n

a2
i j

)n−1
, (2.21)

with equality if Ω is regular simplex.
Using the known result in [5], we have

∑
0�i< j�n

a2
i j = (n+1)2(R2−OG

2) � (n+1)2R2. (2.22)

Equality holds if Ω is regular simplex.
By the arithmetic-geometric mean inequality,inequalities (2.21) and (2.22), we

have

( n

∏
i=0

F2
i

) 1
n−1 �

( 1
n+1

n

∑
i=0

F2
i

) n+1
n−1 �

[ (n+1)n−1

(n!)2nn−4

] n+1
n−1 ·R2(n+1). (2.23)

From (2.20) and (2.23), we obtain inequality (1.4). It is easy to know that equality holds
in (1.4) if Ω is regular simplex. �

Proof of Theorem 2. For i = 0,1, · · · ,n , let V (Ωi) and V (Ω′
i) denote the volumes

of the n -dimensional simplexes Ωi = conv{A0, · · · ,Ai−1,G,Ai+1, · · · ,An} and Ω′
i =
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conv{A′
0, · · · ,A′

i−1,G,A′
i+1, · · · ,A′

n} respectively. It is easy to see that point G is an
interior point of simplexes Ω and Ω′ (see [4]). From this we have

V (Ω) =
n

∑
i=0

V (Ωi), V (Ω′) =
n

∑
i=0

V (Ω′
i).

By equality (20) in chapter XVIII in [4], we have

R2−OG
2 = |GAi||GA′

i| (i = 0,1, · · · ,n). (2.24)

By the formula for volume of a simplex we have

V (Ω′
i)

V (Ωi)
=

n
∏

j=0, j �=i
|GA′

j|
n
∏

j=0, j �=i
|GAj|

. (2.25)

Using (∗) , (2.25), (2.24), we get

V (Ω′)
V (Ω)

=
1

n+1

n

∑
i=0

V (Ω′
i)

V (Ωi)
=

1
n+1

n

∑
i=0

( n

∏
j=0, j �=i

|GA′
j|

|GAj|
)

=
1

n+1

n

∑
i=0

( n

∏
j=0, j �=i

R2−OG
2

|GAj|2
)

=
1

n+1

n

∑
i=0

[
(R2−OG

2) · |GAi|2 ·
n

∏
j=0

1
|GAj|2

]

=
(R2−OG

2)n

n+1
·

n
∑
i=0

|GAi|2
n
∏
j=0

|GAj|2
=

(n+1)2n−1

n2n · (R2−OG
2)n ·

n
∑
i=0

m2
i

n
∏
j=0

m2
i

.

.

(2.26)
From (2.26) and (2.16), we get

V (Ω′)
V (Ω)

� (n+1)n+1

(n!)2nn ·V (Ω)2 · (R2−OG
2)n. (2.27)

It is easy to know that equality holds if Ω is regular.
From (2.4) we get

V (Ω) � n
n
2 (n+1)

n+1
2

n!
· rn. (2.28)

Substituting (2.28) into the right of (2.27), we obtain (1.5). It is easy to see that equality
holds in (1.5) if Ω is regular.

At last, we have a conjecture as fllows

CONJECTURE. V (ΩB) � ( 2
n−1 )n ·V (Ω) or V (ΩB) � ( 2

n−1)n ·V(Ω).
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