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SOME NOTES ON GREEN–OSHER’S INEQUALITY

LAIYUAN GAO, SHENGLIANG PAN AND YUNLONG YANG

(Communicated by L. Yang)

Abstract. In this note we will first focus our attention on the equality case of Green-Osher’s in-
equality and show that its equality holds if and only if the curve γ is a circle under the assumption
that the function F(x) is strictly convex on (0,+∞) . As applications of Green-Osher’s inequal-
ity we will then give some new geometric inequalities about convex plane curves. Finally, we
will derive an upper bound estimate of Green-Osher’s difference via the method of deforming
convex curves into finite circles.

1. Introduction

The classical isoperimetric inequality is probably the best known geometric in-
equality which states that for a simple closed curve γ in the Euclidean plane R

2 of
length L and enclosing a region of area A , one gets that

L2 −4πA � 0,

and the equality holds if and only if γ is a circle. This fact was known to the ancient
Greeks, mathematical proof was only given, however, in the 19th century by Steiner
[21] and Edler [5]. Since then there have been many proofs, sharpened forms, general-
izations, and applications of it, see, e.g., [1], [4], [12], [13], [14], [16], [17], [20], [22],
etc., and the literature therein. Usually, variants of the classical isoperimetric inequality
do not involve integral of curvature of the plane curve. In the 1980’s, however, Gage [6]
has shown an “isoperimetric inequality” which involves the integration of the squared
curvature of the curve, that is, ∫

γ
κ2ds � πL

A
, (1.1)

where κ , L and A denote the curvature of γ , its length and area, respectively. Gage
also presented an example of H. Jacobowitz which shows that inequality (1.1) does not
always hold for the bone shaped non-convex curves. Inequality (1.1) plays an essential
role in the study of curve evolution problems in the plane (see [7], [8], [9], [11]).
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In [10], Green and Osher have given a more general theorem: Let γ be a C2

closed, strictly convex curve, F(x) be a convex function on (0,+∞) , then

1
2π

∫
S1

F(ρ(θ ))dθ � 1
2

[F(−t1)+F(−t2)] , (1.2)

where ρ(θ ) is the radius of curvature of γ , t1 and t2 denote the two roots of Steiner
polynomial of the domain enclosed by γ . As a direct corollary of Green-Osher’s the-
orem, the famous Gage inequality (1.1) can be easily obtained by taking F(x) = 1

x in
(1.2). Moreover, Green and Osher in [10] have shown the following geometric inequal-
ities by some special choices of the convex function F(x) ,

∫
γ

κ3ds � L2π −2Aπ2

A2 ,

∫
γ

κ4ds � L3π −3ALπ2

A3 .

They have also realized that the equality in (1.2) holds when γ is a circle. As an
isoperimetric-type inequality, one should prove that if the equality holds in (1.2), then
γ must be a circle. The first task of this note is to focus our attention on the equality
case in (1.2) and prove that if F(x) is a strictly convex function then that the equality
in (1.2) holds can derive that γ is a circle.

As applications of the Green-Osher inequality we will give some new geometric
inequalities about convex plane curves in the third section of this note. From (1.2), we
know that it is not so easy to give an upper estimate of the quantity 1

2π
∫
S1 F(ρ(θ ))dθ ,

we turn to consider the quantity

1
2π

∫
S1

F(ρ(θ ))dθ − 1
2

[F(−t1)+F(−t2)] ,

which is called by us Green-Osher’s difference in the following text. Hence, (1.2) is
equivalent to the fact that Green-Osher’s difference is non-negative and it becomes an
interesting question to give an upper bound for Green-Osher’s difference. In the last
part of this paper, motivated by the unit-speed outward normal flow, we investigate a
curve flow, which deforms a given convex curve to a circle, to ensure upper bound
estimate of Green-Osher’s difference.

2. The equality case of Green-Osher’s inequality

In this section, we will prove that the equality sign in Green-Osher’s inequality
(1.2) holds if and only if the convex curve γ is a circle when F(x) is strictly convex.
From the proof of Theorem 2.2 below, one can see that the assumption of the strict
convexity of the function F(x) is necessary.

Now, we introduce some basic preliminaries. Let t1 � t2 be the two roots of the
Steiner polynomial

A(t) = A+Lt + πt2
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of γ , i.e.,

t1 = − L
2π

+
u
2π

, t2 = − L
2π

− u
2π

,

where u =
√

L2 −4πA � 0. Let ri , re be the radii of the inscribed and circumscribed
discs of the domain enclosed by γ , respectively. Let κ be the curvature of γ , then
ρ = 1

κ is the radius of curvature of γ . Denote by ρmax and ρmin the maximum and
minimum values of ρ , respectively. If γ is a strictly convex and non-circular curve,
then

−ρmax < t2 < −re < − L
2π

< −ri < t1 < −ρmin. (2.1)

The proof of (2.1) can be found in [10]. And it is obvious that the above quantities are
all equal if γ is a circle.

THEOREM 2.1. Let γ be a closed, strictly convex C2 curve, and F(x) be a strictly
convex function (i.e., F ′′(x) > 0) on (0,+∞) . Then

1
2π

∫
S1

F(ρ(θ ))dθ � 1
2

[F(−t1)+F(−t2)] , (2.2)

and the equality in the above Green-Osher’s inequality holds if and only if γ is a circle.

Proof. From Green-Osher’s theorem ([10]), (2.2) holds automatically under the
condition that F(x) is strictly convex. If γ is a circle, it is clear that the equality
holds. On the other hand, if we prove that 1

2π
∫
S1 F(ρ(θ ))dθ > 1

2 [F(ρ1)+F(ρ2)] when
γ is not a circle, then the work is done. Therefore, we have to finish the following
theorem. �

THEOREM 2.2. If γ is a closed, strictly convex and non-circular C2 curve in the
plane, then

1
2π

∫
S1

F(ρ(θ ))dθ >
1
2

[F(−t1)+F(−t2)] . (2.3)

Before proving Theorem 2.2, we need to recall some definitions and basic lem-
mata.

DEFINITION 2.3. ([10]) Consider

sup

{∫
I
ρ(θ )dθ |I ⊂ S1,

∫
I
dθ = π

}
.

Let I1 denote a subset of S1 with measure π and realizing the above supremum, and
let I2 be its complement. There exists an a ∈ R

+ such that

I1 ⊆ {θ |ρ(θ ) � a}, I2 ⊆ {θ |ρ(θ ) � a}.
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Set

ρ1 =
1
π

∫
I1

ρ(θ )dθ , ρ2 =
1
π

∫
I2

ρ(θ )dθ ,

then

ρ1 + ρ2 =
L
π

, ρ1 � ρ2.

LEMMA 2.4. If γ is a closed, strictly convex and non-circular curve in the plane,
then

ρ1 > ρ2.

Proof. By Definition 2.3, ρ1 � ρ2 . To prove this lemma, we need only to prove γ
is a circle when ρ1 = ρ2 . If ρ1 = ρ2 , then for any I ⊂ S1 , and

∫
I dθ = π ,

∫
I
ρ(θ )dθ =

L
2
. (2.4)

Set

A =
{

θ |ρ(θ ) >
L
2π

}
, B =

{
θ |ρ(θ ) <

L
2π

}
, C = S1 \ (A∪B),

then
∫
A dθ < π and

∫
B dθ < π . Next, we have to prove A = /0 and B = /0 . If A �= /0 ,

then there exists an interval C′ ⊂C such that
∫
A∪C′ dθ = π or

∫
B∪C′ dθ = π . Without

loss of generality, we set
∫
A∪C′ dθ = π , then

∫
A∪C′

ρ(θ )dθ >
L
2π

m(A)+
L
2π

(π −m(A)) =
L
2
,

which contradicts to (2.4). Analogously, it can be deduced that B = /0 . �

The following Lemmata 2.5 and 2.6 have appeared in Green-Osher [10] and Pan-
Yang [18]. Since Lemma 2.7 (1)(2)(3) are direct corollaries of the convexity or strict
convexity of F(x) , we omitted the detailed proofs.

LEMMA 2.5. ([18]) If γ is a closed, strictly convex and non-circular curve in the
plane, then

ρ1 > −t2.

LEMMA 2.6. ([10]) Let F(x) be a (strictly) convex function on (0,+∞) , then

1
2π

∫
S1

F(ρ(θ ))dθ � 1
2
[F(ρ1)+F(ρ2)].

LEMMA 2.7. (1) If F(x) is strictly convex function on (0,+∞) , then for arbi-
trary c and b > a > 0 ,

F(c+b)+F(c−b) > F(c+a)+F(c−a).
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(2) If F(x) is (strictly) convex function on (0,+∞) , then for arbitrary b and a � 0 ,

F(b+a)+F(b−a) � 2F(b).

(3) If F(x) is strictly convex function on (0,+∞) , then for arbitrary b and a > 0 ,

F(b+a)+F(b−a) > 2F(b).

Proof of Theorem 2.2. From Lemma 2.6,

1
2π

∫
S1

F(ρ(θ ))dθ � 1
2
[F(ρ1)+F(ρ2)].

If γ is a non-circular curve, then u =
√

L2 −4πA > 0. By Lemma 2.4, there exists a
b > 0 such that ρ1 = L

2π +b , ρ2 = L
2π −b . Furthermore, from Lemma 2.5, b > u

2π > 0.
Now, by Lemma 2.7(1),

F(ρ1)+F(ρ2) = F

(
L
2π

+b

)
+F

(
L
2π

−b

)
> F

(
L
2π

+
u
2π

)
+F

(
L
2π

− u
2π

)
= F(−t1)+F(−t2).

Hence,

1
2π

∫
S1

F(ρ(θ ))dθ � 1
2
[F(ρ1)+F(ρ2)] >

1
2
[F(−t1)+F(−t2)],

which completes the proof. �

3. Application of Green-Osher’s inequality

In this section, we will give some new geometric inequalities as applications of the
Green-Osher inequality.

THEOREM 3.1. Let γ be a closed, strictly convex C2 curve with length L, area
A and curvature κ , if n ∈ N

+ , then

∫ 2π

0
κndθ �

π
[
Ln +

(
2n−1−1

)(√
L2 −4πA

)n]
2n−1An , (3.1)

∫ 2π

0

1
κn dθ �

Ln +
(
2n−1−1

)(√
L2−4πA

)n

(2π)n−1 . (3.2)

Moreover, the equality signs in (3.1)–(3.2) hold if and only if γ is a circle.

REMARK 1. In (3.1), when n = 1, it becomes Gage’s inequality [6], and in (3.2),
when n = 2, it turns into ∫ 2π

0

dθ
κ2 =

∮
γ

ds
κ

� L2 −2πA
π

,

which is appeared in [18].
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To prove Theorem3.1, we need the following lemma which is motivated by Burago-
Zelgaller’s monograph [2].

LEMMA 3.2. If x � a � 0 , n ∈ N
+ , then

(x+a)n +(x−a)n � 2
[
xn +

(
2n−1−1

)
an] . (3.3)

Proof. It is obvious that (3.3) holds when a = 0 or a > 0, n = 1. For the case of
a > 0 and n � 2, let us consider functions

ϕn(x) = (x−a)n− xn +naxn−1, ψn(x) = (x+a)n− xn−naxn−1.

If ϕn(x) and ψn(x) are increasing on [a,+∞) , then

(x−a)n = ϕn(x)+ xn−nxn−1a � ϕn(a)+ xn−nxn−1a = (n−1)an + xn−nxn−1a,

(x+a)n = ψn(x)+ xn +nxn−1a � ψn(a)+ xn +nxn−1a = (2n−n−1)an + xn +nxn−1a,

and thus
(x+a)n +(x−a)n � 2

[
xn +

(
2n−1−1

)
an] .

Therefore, we need only to prove that functions ϕn(x) and ψn(x) are increasing on
[a,+∞) , which can be finished by induction over n for n � 2.

It is clear that ψ2(x) = a2 and ψ3(x) = 3xa2 +a3 are increasing on [a,+∞) . Now
assume that ψn−1(x) is increasing on [a,+∞) which implies that ψn−1(x) � ψn−1(a) .
Since ψ ′

n(x)= nψn−1(x) and ψn−1(a)= (2n−1−n)an−1 > 0, one gets ψ ′
n(x)= nψn−1(x)

� nψn−1(a) > 0, then ψn(x) is increasing on [a,+∞) when n � 2, a > 0. Similarly,
ϕn(x) is also increasing on [a,+∞) when n � 2, a > 0. �

Proof of Theorem 3.1. From Theorem 2.1, we have known that if F(x) is strictly
convex function on (0,+∞) , then

1
2π

∫
S1

F(ρ(θ ))dθ � 1
2

[F(−t1)+F(−t2)] .

Taking F(x) = 1
xn or F(x) = xn gives us

1
2π

∫ 2π

0
κndθ � 1

2

[(
− 1

t1

)n

+
(
− 1

t2

)n]
=

1
2

(L+u)n +(L−u)n

2nAn

or

1
2π

∫ 2π

0

1
κn dθ � 1

2
[(−t1)

n +(−t2)
n] =

1
2

(L+u)n +(L−u)n

(2π)n ,

where u =
√

L2 −4πA � 0. From Lemma 3.2 it follows that

∫ 2π

0
κndθ � π [Ln +(2n−1−1)(

√
L2 −4πA)n]

2n−1An ,
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∫ 2π

0

1
κn dθ � Ln +(2n−1−1)(

√
L2 −4πA)n

(2π)n−1 .

It is clear that the equality signs in (3.1)–(3.2) hold when γ is a circle. Subse-
quently, it is enough to prove the above two inequalities are strict when γ is not a
circle. Again, choosing F(x) = 1

xn or F(x) = xn in (2.3) and using (3.3) can yields

∫ 2π

0
κndθ >

π [(L+u)n +(L−u)n]
2nAn � π [Ln +(2n−1−1)(

√
L2−4πA)n]

2n−1An ,

∫ 2π

0

1
κn dθ >

π [(L+u)n +(L−u)n]
(2π)n � Ln +(2n−1−1)(

√
L2 −4πA)n

(2π)n−1 ,

where u =
√

L2 −4πA > 0 (γ is not a circle). �

THEOREM 3.3. Let γ be a closed, strictly convex C2 curve with curvature κ ,
length L and area A, if n � 2 , n ∈ N

+ , then

∫ 2π

0

1
n
√

κ
dθ �

(
L
2A

)1− 1
n (

L+
√

L2 −4πA
)

, (3.4)

and the equality in (3.4) holds if and only if γ is a circle.

Proof. Set F(x) = − n
√

x and by (2.2),∫ 2π

0

1
n
√

κ
dθ � π

[
(−t1)

1
n +(−t2)

1
n

]

= π ·
(

1
2π

) 1
n
[(

L−
√

L2 −4πA
) 1

n
+

(
L+

√
L2 −4πA

) 1
n
]
.

Since (
L−

√
L2 −4πA

) 1
n
+

(
L+

√
L2 −4πA

) 1
n

=(4πA)
1
n

[
1

(L+
√

L2−4πA)
1
n

+
1

(L−√
L2 −4πA)

1
n

]

�2 · (4πA)
1
n · 1(

L−√
L2 −4πA

) 1
n

� 2 ·
(

4πA
L

) 1
n

· 1

1−
(
1− 4πA

L2

) 1
2

=2 ·
(

L
4πA

)1− 1
n (

L+
√

L2 −4πA
)

,

where the second inequality holds since 0 < 1− (1− 4πA
L2 )

1
2 � 1, we conclude that

∫ 2π

0

1
n
√

κ
dθ �

(
L
2A

)1− 1
n (

L+
√

L2−4πA
)

.
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It is clear that the equality in (3.4) holds when γ is a circle. The above expression
is strict when γ is not a circle via the choice of F(x) = − n

√
x and the estimate of

(L−√
L2 −4πA)

1
n +(L+

√
L2−4πA)

1
n . �

Another significant application of Theorem 2.1 is the following geometric Jensen
inequality.

THEOREM 3.4. (Geometric Jensen inequality) Let γ be a closed, strictly convex
C2 curve with length L and radius of curvature ρ(θ ) , and F(x) be a strictly convex
function on (0,+∞) , then

1
2π

∫
S1

F(ρ(θ ))dθ � F

(
L
2π

)
. (3.5)

Moreover, the equality in (3.5) holds if and only if γ is a circle.

Proof. Since γ is a closed and strictly convex C2 curve, ρ(θ ) is continuous on
[0,2π ] , by Jensen’s theorem,

1
2π

∫ 2π

0
F(ρ(θ ))dθ � F

[
1
2π

∫ 2π

0
ρ(θ )dθ

]
= F

(
L
2π

)
.

The equality in (3.5) holds when γ is a circle (ρ(θ ) ≡ L
2π ). From Theorem 2.2 and

Lemma 2.7(3), (3.5) is strict when γ is not a circle, the desired result is obtained. �

REMARK 2. From Lemma 2.7(2),

F(−t1)+F(−t2) = F

(
L
2π

− u
2π

)
+F

(
L
2π

+
u
2π

)
� 2F

(
L
2π

)
,

it is clear that (2.2) is stronger than (3.5).

Moreover, choosing F(x) = 1
xα , F(x) = xβ and F(x) = −xγ , respectively, where

α > 0, β > 1 and 0 < γ < 1, we conclude the following corollary.

COROLLARY 3.5. If γ is a closed, strictly convex C2 curve with length L and
curvature κ , then

∫ 2π

0
καdθ � (2π)α+1

Lα , (3.6)

∫ 2π

0

1

κβ dθ � Lβ

(2π)β−1
, (3.7)

∫ 2π

0

1
κγ dθ � Lγ

(2π)γ−1 , (3.8)

where α > 0 , β > 1 and 0 < γ < 1 . Moreover, the equality signs in (3.6)–(3.8) hold if
and only if γ is a circle.
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As a special case of Theorem 3.4, one can derive Ros’s inequality in R
2 .

COROLLARY 3.6. (Ros’s inequality in R
2 ([15], [19] and [23])) If γ is a closed,

strictly convex C2 curve with length L, area A and curvature κ , then

∫
γ

1
κ

ds � L2

2π
� 2A, (3.9)

and the equality in (3.9) holds if and only if γ is a circle.

4. An upper bound estimate of Green-Osher’s difference

Motivated by the usage of unit-speed outward normal flow in the proof of Green-
Osher’s inequality, we introduce a new flow (4.1) below for convex curves to investigate
new geometric inequalities. Let X0(ϕ) be a strictly convex, C2 curve in the plane R

2 .
Let the origin of R

2 be in the domain enclosed by the curve X0 . Deform X0 according
to { ∂X

∂ t (ϕ , t) = (p(ϕ ,t)−ρ(ϕ ,t))N(ϕ ,t), (ϕ ,t) ∈ S1× (0,T ),
X(ϕ ,0) = X0(ϕ), ϕ ∈ S1,

(4.1)

where N(ϕ , t) is the inward pointing unit normal vector field to the evolving curve,
p(ϕ ,t) =−〈X(ϕ , t),N(ϕ ,t)〉 and ρ(ϕ ,t) denote its support function and radius of cur-
vature at (ϕ , t) , respectively. By considering the behavior of the evolving curve in the
flow (4.1), we can give an upper bound estimate of Green-Osher’s difference.

THEOREM 4.1. Let γ(θ ) be a closed, strictly convex C2 curve in the plane with
radius of curvature ρ(θ ) , where θ is the tangential angle, and F(x) be a convex
function on (0,+∞) , then

1
2π

∫
S1

F(ρ(θ ))dθ − 1
2
(F(−t1)+F(−t2)) � c

∫
S1

(
∂ρ
∂θ

)2

dθ , (4.2)

where the constant c = 1
16π max{F ′′

(x)|m � x � M} and m,M are the minimum and
maximum of the function ρ(θ ) for θ ∈ S1 , respectively. Moreover, if F(x) is strictly
convex, the equality in (4.2) holds if and only if γ(θ ) is a circle.

Proof. Since the initial curve is strictly convex, the tangential angle θ can be used
as its parameter. To simplify the geometric analysis of this flow, by Proposition 1.1 of
[3], we can add a tangential component α = − ∂ p

∂θ + ∂ρ
∂θ to the flow (4.1) to guarantee

that ∂θ
∂ t = 0, that is to say, we need only to consider the following flow

{ ∂X
∂ t (θ , t) = α(θ ,t)T (θ ,t)+ (p(θ ,t)−ρ(θ ,t))N(θ ,t), (θ ,t) ∈ S1× (0,T ),
X(θ ,0) = X0(θ ), θ ∈ S1.

(4.3)
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It is easy to show that this flow preserves the perimeter of the evolving curve (see Gage
[8], Jiang-Pan [11], Pan-Yang [18]). The evolution equation of the radius of curvature
is

∂ρ
∂ t

(θ ,t) =
∂ 2ρ
∂θ 2 (θ ,t).

By the maximum principle for heat equations, m � ρ(θ ,t) � M , where m,M are the
minimum and maximum of the function ρ(θ ,0) , respectively.

Set w= ρ− L0
2π , L0 is the perimeter of initial curve, then wt = wθθ . By Wirtinger’s

inequality, we have

d
dt

∫ 2π

0
w2dθ =

∫ 2π

0
2wwθθ dθ = −2

∫ 2π

0
w2

θ dθ � −2
∫ 2π

0
w2dθ .

Hence, ∫ 2π

0
w(θ ,t)2dθ �

∫ 2π

0
w(θ ,0)2dθ · e−2t ,

as the time t goes to infinity, w(θ ,t) converges to 0, it means that ρ(θ ,t) converges to a
constant L0

2π , which implies that the evolving curve converges to a circle with perimeter
equal to L0 . Since the function F(x) is convex on (0,+∞) , from Lemma 2.7(2) it
follows that

F(−t1)+F(−t2) = F

(
L0

2π
+

u
2π

)
+F

(
L0

2π
− u

2π

)
� 2F

(
L0

2π

)
,

where u =
√

L0 −4πA0 � 0, L0 , A0 are the length and area of the initial curve, respec-
tively. Moreover,

1
2π

∫
S1

F(ρ0(θ ))dθ − 1
2
(F(−t1)+F(−t2)) � 1

2π

∫
S1

F(ρ0(θ ))dθ −F

(
L0

2π

)
.

Therefore, we need only to show that

1
2π

∫
S1

F(ρ0(θ ))dθ −F

(
L0

2π

)
� c

∫
S1

(
∂ρ0

∂θ

)2

dθ , (4.4)

for c = 1
16π max{F ′′

(x)|m � x � M} . Under the flow (4.3), from Wirtinger’s inequality,
we get

d
dt

[
1
2π

∫
S1

F(ρ(θ ,t))dθ −F

(
L
2π

)
− c

∫
S1

(
∂ρ
∂θ

)2

dθ

]

=
1
2π

∫
S1

F
′
(ρ)

∂ 2ρ
∂θ 2 dθ −2c

∫
S1

∂ρ
∂θ

∂ 3ρ
∂θ 3 dθ

= − 1
2π

∫
S1

F
′′
(ρ)

(
∂ρ
∂θ

)2

dθ +2c
∫
S1

(
∂ 2ρ
∂θ 2

)2

dθ

� − 1
2π

∫
S1

F
′′
(ρ)

(
∂ρ
∂θ

)2

dθ +8c
∫
S1

(
∂ρ
∂θ

)2

dθ � 0,
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which means that the quantity Q
Δ= 1

2π
∫
S1 F(ρ(θ ,t))dθ −F

(
L
2π

)− c
∫
S1

(
∂ρ
∂θ

)2
dθ is

increasing in the time t . Since the evolving curve converges to a circle, the quantity Q
tends to 0 as t goes to infinity, and thus (4.4) is proved.

Moreover, if F(x) is strictly convex on (0,+∞) , the equality in (4.2) holds when
the curve is a circle. On the other hand, to prove the curve is a circle under the condition
that the equality in (4.2) holds, we have to show that the inequality (4.2) is strict when
the curve is not a circle and F(x) is strictly convex. By Lemma 2.7(3) and (4.4), one
can obtain the desired result. �

Set F(x) = x2 in (4.4), we obtain a Wirtinger-type inequality,

∫
S1

ρ2dθ � L2

2π
+

1
4

∫
S1

(
∂ρ
∂θ

)2

dθ . (4.5)

The equality in (4.5) holds when γ is a circle, while there exist non-circular curves
such that the equality in (4.5) holds, e.g. the curve γ with radius of curvature ρ(θ ) =
4−3sin(2θ ) .
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