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Abstract. The main purpose of this paper is to give the general multiple Opial-type inequalities
for general kernels. We consider the monotocity and boundedness of the weight functions to
prove new inequalities. As applications of our general results we establish new inequalities for
Widder’s derivatives and linear differential operator. Results from [11] are obtain by applying
the Canavati fractional derivatives to our main results.

1. Introduction

Mathematical inequalities which involve derivatives and integrals of functions is
of great interest. Opial’s inequality [14] is of great importance in mathematics with
respect to the applications in theory of differential equations and difference equations.
Many mathematicians gave the improvements and generalizations in last few decades
to add the considerable contribution in the literature and it has attracted a great deal of
attention in the recent literature (see, for instance, [1], [3], [4], [7], [9], [12], [15]).

Let us recall that the original Opial’s inequality [14] (see also [13, p. 114]) states
the following:

THEOREM 1.1. Let a > 0 . If f ∈C1[0,a] with f (0) = f (a) = 0 and f (t) > 0 on
(0,a) , then

a∫
0

| f (t) f
′
(t)|dt � a

4

a∫
0

( f
′
(t))2dt.

The constant a
4 is the best possible.

Agarwal, Pang and Alzer [2, 3, 6] study the Opial-type inequalities involving or-
dinary derivatives and their applications in differential equations and difference equa-
tions. Here our main purpose is to give the Opial-type inequalities for general kernels.
We also provide connection between our results in this paper with [11].
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By Cn[a,b] we denote the space of all functions on [a,b] which have continuous
derivatives up to order n , and AC[a,b] is the space of all absolutely continuous func-
tions on [a,b] . By ACn[a,b] we denote the space of all functions f ∈Cn−1[a,b] with
f (n−1) ∈ AC[a,b] .

By Lp[a,b] , 1 � p < ∞ , we denote the space of all Lebesgue measurable functions
f for which | f p| is Lebesgue integrable on [a,b] , and by L∞[a,b] the set of all functions
measurable and essentially bounded on [a,b] . Clearly, L∞[a,b]⊂ Lp[a,b] for all p � 1.

We say that a function y : [a,b] → R belongs to the class U(k, f ) if it admits the
representation

y(t) =
t∫

a

k(t,τ) f (τ)dτ, (1.1)

where f is a continuous function on [a,b] and k is an arbitrary continuous kernel.
In (1.1) for nonnegative measurable kernel k, the positivity of f implies the posi-

tivity of y.
The paper is organized in the following way: After introduction in Section 2, we

prove the Opial-type inequality for general kernels. We consider the monotonocity
and boundedness of weight functions to prove new inequalities. In Section 3, we give
results for one weighted and non-weighted case. In Section 4, we give application
of our main results for linear differential operator. In Section 5, we give results for
Widder’s derivatives. We conclude this paper by providing applications for the Canavati
fractional derivative which is in fact shows that results in this paper generalizes results
from [11].

2. Main Results

Theorems and proofs in this section are based on a technique from [11] which
resulted with new inequalities for the general kernels.

Our first main result is given in the following theorem.

THEOREM 2.1. Let yi ∈U(ki, f ), i = 1, ...,N, N ∈ N. Let w1 and w2 be contin-

uous weight functions on [a,x] with w1 � 0 and w2 > 0. Let ri � 0, r =
N
∑
i=1

ri > 0,

p > 0, q � 0, σ = 1
p+q < 1, and f ∈ Lp+q[a,b]. Then

x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
(

q
rp+q

)σq

⎛
⎜⎜⎝

x∫
a

[w1(t)]
1

σ p [w2(t)]
− q

p

N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p



MULTIPLE OPIAL-TYPE INEQUALITIES FOR GENERAL KERNELS 383

×
⎛
⎝

x∫
a

w2(t)| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

. (2.1)

Proof. Let q �= 0. Since w2 > 0 we have

|yi(t)| �
t∫

a

[w2(τ)]−σ [w2(τ)]σ |ki(t,τ)| | f (τ)|dτ.

Using Hölder’s inequality for 1
1−σ and 1

σ , for t ∈ [a,x] we obtain

|yi(t)| �
⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

1−σ ⎛
⎝

t∫
a

w2(τ)| f (τ)| 1
σ dτ

⎞
⎠

σ

.

Since w2 > 0, and r =
N
∑
i=1

ri > 0, we have

x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
x∫

a

w1(t)[w2(t)]−σq[w2(t)]σq| f (t)|q

×
N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri p ⎛
⎝

t∫
a

w2(τ)| f (τ)| 1
σ dτ

⎞
⎠

σri p

dt

=
x∫

a

w1(t)[w2(t)]−σq[w2(t)]σq| f (t)|q
⎛
⎝

t∫
a

w2(τ)| f (τ)| 1
σ dτ

⎞
⎠

σrp

×
N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri p

dt. (2.2)

Applying Hölder’s inequality for { 1
σ p ,

1
σq} and simple integration, we get

x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�

⎛
⎜⎜⎝

x∫
a

w1(t)
1

σ p [w2(t)]
− q

p

N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p
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×

⎛
⎜⎝

x∫
a

w2(t)| f (t)| 1
σ

⎛
⎝

t∫
a

w2(τ)| f (τ)| 1
σ dτ

⎞
⎠

rp
q

dt

⎞
⎟⎠

σq

=

⎛
⎜⎜⎝

x∫
a

w1(t)
1

σ p [w2(t)]
− q

p

N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p

×
(

q
rp+q

)σq
⎛
⎝

x∫
a

w2(t)| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

,

which gives us the inequality (2.1).
If we take q = 0

(
σ = 1

p

)
in inequality (2.2) , we get,

x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri pdt

�

⎛
⎜⎝

x∫
a

w1(t)
N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri p

dt

⎞
⎟⎠

⎛
⎝

x∫
a

w2(τ)| f (τ)| 1
σ dτ

⎞
⎠

r

,

from which we get inequality (2.1) for q = 0. This complete the proof. �
We use monotonicity of w1 and w2 to prove our next result.

THEOREM 2.2. Suppose that the assumptions of the Theorem 2.1 hold. Suppose
also that w1 is an increasing and w2 is decreasing functions. Then

x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
(

q
rp+q

)σq

w1(x)[w2(x)]−σ(rp+q)

⎡
⎢⎢⎣

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎤
⎥⎥⎦

σ p

×
⎛
⎝

x∫
a

w2(t)| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

. (2.3)

Proof. We start the proof with inequality (2.1) proved in Theorem 2.1. By mono-
tonicity of w1 and w2 we have
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⎡
⎢⎢⎣

x∫
a

[w1(t)]
1
pσ [w2(t)]

− q
p

N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎤
⎥⎥⎦

σ p

� w1(x)[w2(x)]−σ(rp+q)

⎡
⎢⎢⎣

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎤
⎥⎥⎦

σ p

. (2.4)

Use of inequality (2.4) in inequality (2.1) give us the inequality (2.3).
For q = 0, we proceed same as in Theorem 2.1. �

To prove the next theorem we suppose that the weight functions are bounded.

THEOREM 2.3. Suppose that the assumptions of the Theorem 2.1 hold. Suppose
also w1(t) � B and A � w2(t) for t ∈ [a,x]. Then

x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
(

q
σ p+q

)σq

BA−σ(rp+q)

⎛
⎜⎜⎝

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p

×
⎛
⎝

x∫
a

w2(t)| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

. (2.5)

Proof. Applying Theorem 2.2 with conditions w1(t) � B, and w2(t) � A to get
inequality (2.5). �

With extra parameters s1,s2, and s3, we can establish some new inequalities.

THEOREM 2.4. Suppose that the assumptions of the Theorem 2.1 hold. Suppose
also that sk > 1 and 1

sk
+ 1

s′k
= 1 for k = 1,2,3. Then

x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
(

q
rp+q

)σq

P(x)Q(x)R(x)

⎡
⎢⎢⎣

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ s1dτ

⎞
⎠

(1−σ)
s1 p ris2s3

dt

⎤
⎥⎥⎦

σ p
s2s3

×
⎛
⎝

x∫
a

w2(t)| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

, (2.6)
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where

P(x) =

⎛
⎝

x∫
a

[w2(τ)]−
σ

1−σ s′1dτ

⎞
⎠

(1−σ)rp
s′1

,

Q(x) =

⎛
⎝

x∫
a

[w1(t)]
s′2
σ p dt

⎞
⎠

σ p
s′2

,

and

R(x) =

⎛
⎝

x∫
a

[w2(t)]
− q

p s2s
′
3dt

⎞
⎠

σ p
s2s′3

.

Proof. We start the proof with the inequality (2.1) proved in Theorem 2.1 and then
applying Hölder’s inequality for the parameters s1 and s′1, we get

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

�

⎛
⎝

t∫
a

w2(τ)−
σ

1−σ s′1dτ

⎞
⎠

1
s′1

.

(∫ t

a
|ki(t,τ)| 1

1−σ s1dτ
) 1

s1
.

Now follows

N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

�
N

∏
i=1

⎛
⎝

t∫
a

w2(τ)−
σ

1−σ s′1dτ

⎞
⎠

1
s′1

(1−σ)ri
σ

.

(∫ t

a
|ki(t,τ)| 1

1−σ s1dτ
) 1

s1

(1−σ)ri
σ

,

we get

N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

�

⎛
⎝

t∫
a

w2(τ)−
σ

1−σ s′1dτ

⎞
⎠

1
s′1

(1−σ)r
σ

.
N

∏
i=1

(∫ t

a
|ki(t,τ)| 1

1−σ s1dτ
) 1

s1

(1−σ)ri
σ

.
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Applying Hölder’s inequality for the s2,s′2 and s3,s′3 we obtain

⎡
⎢⎢⎣

x∫
a

[w1(t)]
1

σ p [w2(t)]
− q

p

N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎤
⎥⎥⎦

σ p

�

⎡
⎢⎢⎣

x∫
a

[w1(t)]
1

σ p [w2(t)]
− q

p

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ s′1dτ

⎞
⎠

(1−σ)r
s′1σ

×
N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ s1dτ

⎞
⎠

(1−σ)ri
σs1

dt

⎤
⎥⎥⎦

σ p

�

⎛
⎝

x∫
a

[w2(τ)]−
σ

1−σ s′1dτ

⎞
⎠

(1−σ)rp
s′1

⎡
⎣

x∫
a

[w1(t)]
1

σ p [w2(t)]
− q

p

×
N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ s1dτ

⎞
⎠

(1−σ)ri
s1 p

dt

⎤
⎥⎥⎦

σ p

= P(x)

⎡
⎢⎢⎣

x∫
a

[w1(t)]
1

σ p [w2(t)]
− q

p

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ s1dτ

⎞
⎠

(1−σ)ri
s1 p

dt

⎤
⎥⎥⎦

σ p

� P(x)

⎛
⎝

x∫
a

[w1(t)]
s′2
σ p dt

⎞
⎠

σ p
s′2

⎛
⎜⎜⎝

x∫
a

w2(t)
− qs2

p

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ s1dτ

⎞
⎠

(1−σ)ri s2
s1 p

dt

⎞
⎟⎟⎠

σ p
s2

� P(x)Q(x)

⎛
⎝

x∫
a

[w2(t)]
− q

p s2s
′
3dt

⎞
⎠

σ p
s2s′3

⎡
⎢⎢⎣

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ s1dτ

⎞
⎠

(1−σ)
s1 p ris2s3

dt

⎤
⎥⎥⎦

σ p
s2s3

= P(x)Q(x)R(x)

⎡
⎢⎢⎣

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ s1dτ

⎞
⎠

(1−σ)
s1 p ris2s3

dt

⎤
⎥⎥⎦

σ p
s2s3

.

Then from inequality (2.1) we can get inequality (2.6). �
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3. One weighted and non-weighted cases

Our first result of this section is a direct consequence of Theorem 2.1.

THEOREM 3.1. Let N ∈N and w be continuous positive weight function on [a,x].

Let ri � 0, r =
N
∑
i=1

ri > 0, p > 0, q � 0, σ = 1
p+q < 1, and f ∈ Lp+q[a,b]. Then

x∫
a

w(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
(

q
rp+q

)σq

⎛
⎜⎜⎝

x∫
a

w(t)
N

∏
i=1

⎛
⎝

t∫
a

[w(τ)]−
σ

1−σ |ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p

×
⎛
⎝

x∫
a

w(t)| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

.

Now if we have decreasing weight functions, then we need the assumption r � 1.

THEOREM 3.2. Suppose that the assumptions of the Theorem 3.1 hold. Suppose
also that r � 1 and w is a decreasing function. Then

x∫
a

w(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
(

q
rp+q

)σq

[w(x)]
p(1−r)
p+q

⎛
⎜⎜⎝

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p

×
⎛
⎝

x∫
a

w(t)| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

.

Proof. Let q �= 0. Since w is a decreasing function, we have

1 �
(

w(τ)
w(t)

)σ
, τ � t.
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Also

N

∏
i=1

|yi(t)|ri p �
N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)|| f (τ)|dτ

⎞
⎠

ri p

=
N

∏
i=1

⎛
⎝

t∫
a

[w(τ)]σ [w(τ)]−σ |ki(t,τ)|| f (τ)|dτ

⎞
⎠

ri p

� [w(t)]−σrp
N

∏
i=1

⎛
⎝

t∫
a

[w(τ)]σ |ki(t,τ)|| f (τ)|dτ

⎞
⎠

ri p

.

Using Hölder’s inequality for 1
1−σ and 1

σ for t ∈ [a,b], we have

N

∏
i=1

|yi(t)|ri p � [w(t)]−σrp
N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri p ⎛
⎝

t∫
a

w(τ)| f (τ)| 1
σ dτ

⎞
⎠

σrp

.

Therefore

x∫
a

w(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
x∫

a

[w(t)]1−σrp
N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri p ⎛
⎝

t∫
a

w(τ)| f (τ)| 1
σ dτ

⎞
⎠

σrp

| f (t)|qdt.

Now applying Hölder’s inequality for 1
σ p and 1

σq , we get

x∫
a

w(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�

⎛
⎜⎜⎝

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p

×

⎛
⎜⎝

x∫
a

[w(t)]
1−σrp

σq

⎛
⎝

t∫
a

w(τ)| f (τ)| 1
q dτ

⎞
⎠

rp
q

| f (t)| 1
σ dt

⎞
⎟⎠

σq

=

⎛
⎜⎜⎝

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p
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×

⎛
⎜⎝

x∫
a

[w(t)]
1−σrp−σq

σq w(t)

⎛
⎝

t∫
a

w(τ)| f (τ)| 1
σ dτ

⎞
⎠

rp
q

| f (t)| 1
σ dt

⎞
⎟⎠

σq

�
(

q
rp+q

)σq

[w(x)]
p(1−r)
p+q

⎛
⎜⎜⎝

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p

×
⎛
⎝

x∫
a

w(t)| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

. (3.1)

For q = 0 we proceed as in Theorem 2.1. This complete the proof. �
If r = 1 we have Alzer’s inequality [5, Theorem 2.1] for general kernel.

COROLLARY 3.3. Suppose that the assumptions of the Theorem 3.1 are satisfied
and let r = 1. Then

x∫
a

w(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
(

q
p+q

)σq

⎛
⎜⎜⎝

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p ⎛
⎝

x∫
a

w(t)| f (t)| 1
σ dt

⎞
⎠ .

Now we suppose that the weight function w is bounded to prove the next result.

THEOREM 3.4. Suppose that the assumptions of the Theorem 3.1 are satisfied.
Suppose also that r � 1, and A � w(t) � B for t ∈ [a,x]. Then

x∫
a

w(t)
N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
(

q
rp+q

)σq (
B
Ar

)σ p

⎛
⎜⎜⎝

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p

×
⎛
⎝

x∫
a

w(t)| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

.

Proof. The proof follows from inequality (3.1) by using A � w(t) � B, t ∈
[a,b] . �

Here we give the corresponding non-weighted case of our weighted result.
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THEOREM 3.5. Let yi ∈U(ki, f ) , i = 1, ...,N, N ∈ N. Let ri � 0, r =
N
∑
i=1

ri > 0,

p > 0, q � 0, σ = 1
p+q < 1, and f ∈ Lp+q[a,b]. Then

x∫
a

N

∏
i=1

|yi(t)|ri p| f (t)|qdt

�
(

q
rp+q

)σq

⎛
⎜⎜⎝

x∫
a

N

∏
i=1

⎛
⎝

t∫
a

|ki(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri p
σ

dt

⎞
⎟⎟⎠

σ p ⎛
⎝

x∫
a

| f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

.

Proof. Similar to the proof of Theorem 2.1. �

4. Results for linear differential operator

Let [a,b]⊂ R, and h,ai ∈ [a,b] for i = 0, ...,n−1(n∈ N). Let

L = Dn +an−1(x)Dn−1 + ...+a0(x),

be a fixed linear differential operator on Cn[a,b]. Let y1(x), ...yn(x) be a set of linearly
independent solution to Ly = 0 and the associated Green’s function for L is

H(x,t) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)
y′1(t) · · · y′n(t)
· · ·
· · ·
· · ·

y(n−2)
1 (t) · y(n−2)

n (t)
y1(x) · · · yn(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)
y′1(t) · · · y′n(t)
· · ·
· · ·
· · ·

y(n−2)
1 (t) · y(n−2)

n (t)
y(n−1)
1 (t) · · · y(n−1)

n (t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which is continuous function on [a,b]2, then

y(x) =
x∫

a

H(x,t)h(t)dt, for all x ∈ [a,b]

is the unique solution to the initial value problem

Ly = h, y(i)(a) = 0, i = 0,1, ...,n−1.
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Results given in Section 2 and Section 3 can be analogously done for the linear dif-
ferential operator. Here as an example inequality we give next result based on Theorem
2.1.

THEOREM 4.1. Let yi ∈ U(Hi,h), i = 1, ...,N, N ∈ N. Let w1 and w2 be con-

tinuous weight functions on [a,x] with w1 � 0 and w2 > 0. Let ri � 0, r =
N
∑
i=1

ri > 0,

p > 0, q � 0, σ = 1
p+q < 1, and h ∈ Lp+q[a,b]. Then

x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri p|h(t)|qdt

�
(

q
rp+q

)σq

⎛
⎜⎜⎝

x∫
a

[w1(t)]
1

σ p [w2(t)]
− q

p

N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |Hi(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p

×
⎛
⎝

x∫
a

w2(t)|h(t)| 1
σ dt

⎞
⎠

σ(rp+q)

. (4.1)

Proof. Applying Theorem 2.1 with ki(t,τ) = Hi(t,τ) and f = h, we obtain the
inequality (4.1). �

5. Results for Widder’s derivatives

We continue with the process of application for fractional derivative and we give
results for Widder’s derivatives to produce new inequalities. First it is necessary to give
some important details about Widder’s derivatives (see [16]).

Let f ,u0,u1, ...,un ∈Cn+1([a,b]),n � 0, and the Wronskians

Wi(x) := W [u0(x),u1(x), ...,ui(x)] =

∣∣∣∣∣∣∣∣∣∣∣∣

u0(x) · · · ui(x)
u′0(x) · · · u′i(x)
· · ·
· · ·
· · ·

u(i)
0 (x) · · · u(i)

i (x)

∣∣∣∣∣∣∣∣∣∣∣∣
,

i = 0,1, ...,n. Here W0(x) = u0(x). Assume Wi(x) > 0 over [a,b] , i = 0,1, ...,n. For
i � 0, the differential operator of order i (Widder’s derivative):

Li f (x) :=
W [u0(x),u1(x), ...,ui−1(x), f (x)]

Wi−1(x)
,

i = 1, ...,n+1; L0 f (x) := f (x) for all x ∈ [a,b].
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Consider also

gi(x,t) :=
1

Wi(t)

∣∣∣∣∣∣∣∣∣∣∣∣

u0(t) · · · ui(t)
u′0(t) · · · u′i(t)
· · ·
· · ·
· · ·

u0(x) · · · ui(x)

∣∣∣∣∣∣∣∣∣∣∣∣
,

i = 1,2, ...,n; g0(x, t) := u0(x)
u0(t)

for all x,t ∈ [a,b].

EXAMPLE 5.1. [16]. Sets of the form {u0,u1,u2, ...,un} are {1,x,x2, ...,xn},
{1,sinx,cosx,−sin2x,cos2x, ...,(−1)n−1 sinnx,(−1)n−1 cosnx}, etc.

We also mention the generalized Widder-Talylor’s formula, see [16] (see also [8]).

THEOREM 5.2. Let the functions f ,u0,u1, ...,un ∈Cn+1([a,b]), and the Wronkians
W0(x),W1(x), ...,Wn(x) > 0 on [a,b],x ∈ [a,b]. Then for t ∈ [a,b] we have

f (x) = f (t)
u0(x)
u0(t)

+L1 f (t)g1(x,t)+ ...+Ln f (t)gn(x,t)+Rn(x),

where

Rn(x) :=
x∫

t

gn(x,t)Ln+1 f (t)dt.

For example (see [16]) one could take u0(x) = c > 0. If ui(x) = xi , i = 0,1, ...,n,
defined on [a,b], then

Li f (t) = f (i)(t) and gi(x,t) =
(x− t)i

i!
, t ∈ [a,b].

We need

COROLLARY 5.3. By additionally assuming for fixed a ∈ [a,b] that Li f (a) = 0 ,
i = 0,1, ...,n, we get that

f (x) :=
x∫

a

gn(x,t)Ln+1 f (t)dt f or all x ∈ [a,b].

Results given in Section 2 and Section 3 can be analogously done for Widder’s
derivative. Here as an example inequality we give next result based on Theorem 2.1.

THEOREM 5.4. Let fi ∈ U(gi,Ln+1 f ) , i = 1, ...,N, N ∈ N. Let w1 and w2 be

continuousweight functions on [a,x] with w1 � 0 and w2 > 0. Let ri � 0, r =
N
∑
i=1

ri > 0,

p > 0, q � 0, σ = 1
p+q < 1, and Ln+1 f ∈ Lp+q[a,b]. Then
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x∫
a

w1(t)
N

∏
i=1

| fi(t)|ri p|Ln+1 f (t)|qdt

�
(

q
rp+q

)σq

⎛
⎜⎜⎝

x∫
a

[w1(t)]
1

σ p [w2(t)]
− q

p

N

∏
i=1

⎛
⎝

t∫
a

[w2(τ)]−
σ

1−σ |gi(t,τ)| 1
1−σ dτ

⎞
⎠

(1−σ)ri
σ

dt

⎞
⎟⎟⎠

σ p

×
⎛
⎝

x∫
a

w2(t)|Ln+1 f (t)| 1
σ dt

⎞
⎠

σ(rp+q)

. (5.1)

Proof. Applying Theorem 2.1 with yi = fi, f = Ln+1 f and ki(t,τ) = gi(t,τ), we
obtain the inequality (5.1). �

6. Concluding Remarks

Let x ∈ [a,b] , α > 0, n = [α] + 1, [α] denotes the integral part of α and Γ is
the gamma function Γ(α) =

∫ ∞
0 e−t tα−1 dt . For f ∈ L1[a,b] the Riemann-Liouville

fractional integrals Jα
a+ f (left-sided) of order α are defined by

Jα
a+ f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt.

The subspace Cα
a+[a,b] of Cn−1[a,b] is defined by

Cα
a+[a,b] =

{
f ∈Cn−1[a,b] : Jn−α

a+ f (n−1) ∈C1[a,b]
}

.

For f ∈Cα
a+[a,b] the Canavati fractional derivatives Dα

a+ f (left-sided) of order α are
defined by

Dα
a+ f (x) =

d
dx

Jn−α
a+ f (n−1)(x) =

1
Γ(n−α)

d
dx

∫ x

a
(x− t)n−α−1 f (n−1)(t)dt.

In addition, we stipulate
D0

a+ f := f =: J0
a+ f .

If α ∈ N then Dα
a+ f = f (α) , the ordinary α -order derivatives.

The composition identity for the Canavati left-sided fractional derivatives comes
from [10].

THEOREM 6.1. [10, Theorem 2.1] Let α > β � 0 , n = [α]+1 , m = [β ]+1 . Let

f ∈Cα
a+[a,b] be such that f (i)(a) = 0 for i = m− 1,m, . . . ,n− 2 . Then f ∈Cβ

a+[a,b]
and

Dβ
a+ f (x) =

1
Γ(α −β )

x∫
a

(x− t)α−β−1Dα
a+ f (t)dt , x ∈ [a,b] .
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REMARK 6.2. Let N ∈ N , α > βi � 0, m = min{[βi] + 1: i = 1, . . . ,N} and
n = [α]+1. Let f ∈Cα

a+[a,b] be such that f (i)(a) = 0 for i = m−1, . . . ,n−2. Let w1

and w2 be continuous weight functions on [a,x] with w1 � 0 and w2 > 0. Let ri � 0,
r = ∑N

i=1 ri > 0. Let p > 0, q � 0, σ = 1
p+q < 1, ρ = ∑N

i=1 ri(α − βi)− rσ and let
α > βi + σ for i = 1, . . . ,N . Let also Dα

a+ f ∈ Lp+q[a,b] . Then by replacing yi by

Dβi
a+ f , f by Dα

a+ f and taking particular kernel

ki(t,τ) =

⎧⎨
⎩

(t−τ)α−βi−1

Γ(α−βi)
, a � τ � t;

0, t < τ � b,
(6.1)

in Theorem 2.1, we get [11, Theorem 2.1]. So Theorem 2.1 is generalized form of the
[11, Theorem 2.1]. Similarly we obtain all results from [11].
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[10] M. ANDRIĆ, J. PEČARIĆ, I. PERIĆ, Improvements of composition rule for Canavati fractional deriva-
tive and applications to Opial-type inequalities, Dynam. Systems Appl. 20 (2011), 383–394.
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[12] W. S. CHEUNG, Z. DANDAN, J. PEČARIĆ, Opial-type inequalities for differential operators, Nonlin-
ear Analysis 66 (2007), 2028–2039.
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