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ON SOME INEQUALITIES EQUIVALENT TO THE WRIGHT-CONVEXITY

ANDRZEJ OLBRYS

(Communicated by J. Pecaric)

Abstract. In the present paper we establish some conditions and inequalities equivalent to the
Wright-convexity.

1. Introduction and terminology

Let X be areal linear space, and let D C X be a convex set. A function f: D — R
is called convex if

N N fAx+(1=2)y) SAfx)+(1—A)f(y). (1)

xyED L€[0,1]

If the above inequality holds for all x,y € D with A = % then f is said to be
Jensen convex. In 1954 E.M. Wright [23] introduced a new convexity property. A

function f: D — R is called Wright-convex if

AN FAx+ (=) + f(1=A)x+Ay) < f(x) + f (). 2

xyeD A€(0,1]

One can easily see that convex functions are Wright-convex, and Wright-convex func-
tions are Jensen-convex. On the other hand, if f: X — R is additive, that is,

fx+y)=f)+f(), xyeX;

then f is also Wright-convex. The main result concerning Wright-convex functions is
the much more surprising statement that any Wright-convex function can be decom-
posed as the sum of such functions. The following theorem has been proved by Ng [14]
for functions defined on convex subsets of R” and was extended by Kominek [10] for
functions defined on convex subsets of more general structures (see also [13]).

THEOREM 1. Let X be a real linear space, and let D C X be an algebraically
open and convex set. A function f: D — R is Wright-convex if and only if there exist a
convex function F : D — R and an additive function a : X — R such that

f(x)=F(x)+a(x), xeD. 3)
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It follows immediately from the above representation that Wright-convex func-
tions are either very regular or very irregular. It is known that quite week conditions
e.g. locally boundedness from above or below at some point, Christensen measurabil-
ity, continuity at least one point, imply the continuity of such functions. On the other
hand, if they are discontinuous, they have a dense graph.

A survey of other results concerning Wright-convex functions may be found in the
papers [10], [13], [14], [16], [17], [24].

2. Regularity properties

Recall (see [22]) that a function f : D — R, where D is an open subset of topo-
logical space X, is said to be symmetric at a point x € D, if

lim [/ (x-+ ) + £ (x— ) = 2/(x)] = 0.

Of course, every continuous function is symmetric, but the converse is not true.
Let us start with the following

THEOREM 2. Let D C R" be a convex and open set. If f: D — R is a Wright-
convex function, then it is symmetric at every point x € D.

Proof. By Theorem 1 f has the form
f(x)=a(x)+F(x), xeD,

where F : D — R is a convex function and a : R” — R an additive function. Because
convex functions defined on a subset of finite dimensional real linear space are contin-
uous, then by additivity of a we get

}lliir(l)[f(x—kh)—i-f(x—h)—Zf(x)} :}lliir(l)[F(x—i-h)—FF(x—h)—ZF(x)} =0. O

As we know from the classical theory of convex functions the convexity of a twice
differentiable function can be inferred from the sign of its second derivative. Namely,
the following theorem holds true (see [1], [12], [15], [19], [20]).

THEOREM 3. Let I C R be an open interval, and let f:1 — R be a convex func-
tion. Then f is twice differentiable almost everywhere in 1. Whenever the second
derivative exists, f// (x) = 0. Moreover, if f is twice differentiable, then it is convex if
and only if the function f” is non-negative in 1.

Let us recall that the upper and the lower second symmetric derivative of f at x,
are respectively defined by the formulas

D/ (x) = limsup flcth)+ f;x2 1)~ 2f(x)

)
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and

h —h)—2
If the two extreme derivatives are equal and finite at a point x then f is said to have a
symmetric derivative at this point and the common value is denoted by D2 f(x).
It is easy to check that if f is twice differentiable at x, then

"

D.f(x) = D2f(x) = /" (),

however, D? f(x) can exist even at points of discontinuity. For example, for an arbitrary
additive function a : R — R we have

D?a(x) =0, x€R,

and as we know (see [12]) such functions may be discontinuous at every point.
For Wright-convex functions we have the following counterpart of Theorem 3

THEOREM 4. Let I C R be an open interval, and let f: 1 — R be a Wright-
convex function. Then there exists a second symmetric derivative almost everywhere in
1. Whenever it exists, D>f(x) > 0.

Proof. Let f:1— R be a Wright-convex function. By the representation (3) f
has the form f =a+ F, where a: R — R is an additive and F : I — R is a convex
function. Observe that for all x € I and h € R such that x —h, x+h € I we have

F+h)+ flx—h) —2f(x) = F(x+h)+ F(x— h) — 2F(x) > 0.

By the above equality, convexity of F' and on account of Theorem 3 we obtain

"

Dif(x) = D{F(x) = F (x) >0,
almost everywhere in 1. The proof of our theorem is complete. [

Since the second symmetric derivative of a Wright-convex function may not exist,
we need to use the concept of the lower and upper second symmetric derivative to
characterize this kind of convexity. Inspired by methods contained in [15, p. 24] we
prove the following

THEOREM 5. Let I C R be an open interval. A function f:1 — R is Wright-
convex if and only if the map

x—l—y)

IX13 (ry) — () + () -2/ (52 @

. . =2
is continuous, and D, f(x) >0, x € I.
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Proof. If f is Wright-convex then f =a+F for some additive function a: R — R
and a convex function F : I — R. Because

fx+h)+ f(x—h)=2f(x)=F(x+h)+ F(x—h) —2F(x)

then by convexity of F we get 5? f(x) =20, x € I. The continuity of a map given by
(4) follows from the continuity of F'.

Conversely, suppose that the map given by (4) is continuous and 5? fx) =0,
x € I. Let us consider the sequence of functions f, : I — R given by the formula

fa(x) = fx) + %x2, neN.
Clearly, the mapping
IX13 (5,) — fule) + £20) = 2

is continuous, for all n € N, moreover,

ful®) — e f(x), and, D.fu(x)>0, x€I, neN.

x—l—y)
2 )

We shall show that f;, is a Wright-convex function for all » € N. On account of The-
orem 12 from [17] it is enough to show that f,, is a convex function in the sense of
Jensen, n € N.

Assume the contrary, that there exists a subinterval Iy = [ag,bo] C I such that

_ fulao) + fu(bo) aop+ bo
- 2 _f"( 2

J1,(ao,bo) : ) <0.

An easy calculation shows that

ao+bo ao+bo ag+3by 3ag+ by
f.ﬂz(aO»bo)Zan(aO» 5 ) Jn<T7b0>+2ffn( 1 4 ><0»

consequently, one of the intervals

[ ao—i—bo} [ao+bo
ap, )

[a0+3b0 3a0+b0}
2 2

) b0:| ) 4 ) 4
can be chosen to replace Iy by a smaller interval I} = [a},b;], with b} —a; = @
and an(ahbl) <0.
Using induction, we can construct a sequence of intervals I = [ag, by], k € N such

that
by —ap

2k
Denote by xq the unique element of the intersection

{x0} = My [ax, be.

Obviously, from the choice of the sequence {I; }ren and by continuity of the function
given by (4) we obtain

liy1 C i, by —ax= Jp(ak,b) <0, keN.

=2
Dsfn(x()) <0

which is a contradiction. [
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3. Characterizations
Let start this section with the following

THEOREM 6. A function f: D — R is Wright-convex if and only if for all x,y €
D, A €[0,1], k,n €N, s1,...,5%, 11,osty € [0,1] such that 35_,s; =¥ 1; = A the
following inequality holds

n

k
Y flsix+(1=s))y)+ > f(1=t)x+1iy) <kf(y) +nf(x). (&)
i1

i=1

Proof. If (5) holds true then putting s; =#, = 4 € [0,1], we obtain the Wright-
convexity of f. Conversely, assume that f is a Wright-convex function. By Theorem
1 it has the form

f(x)=a(x)+F(x), xeD,

where a : X — R is an additive and F : D — R a convex function. By additivity of a
and convexity of F' we obtain

Aoy flsixt (1=s7)y) + 2y f((1—10)x +1iy)
=35 [F(sjx+ (1 =s))y) +a(sjx+ (1 =s;)y)]
+ X [F((1 = t)x+tiy) +a((1 — ti)x +1iy)]
<ka(y) +a(A(x—y)) + 25 [s;F (x) + (1= 5;)F (y)]
+ na(x) —a(A(x—y)) + X [(1 = 6)F (x) +4F ()]

= Kla(y) + F (V)] + nla(x) + F(x)] = kf (y) +nf (x)-
The proof of our theorem is finished. [
The following two theorems give another characterization of Wright-convexity

and are crucial in the future consideration.

THEOREM 7. Let X be a real linear space, and let D C X be an algebraically
open and convex set. A function f:D — R is Wright-convex if and only if for each
X,y € D the function fy, given by the formula

fey(s) :=flsx+ (1 =s5)y) + f((1 —s)x +sy), (©)
is convex on the set Dy, = {s € R: sx+ (1 —s)y, (1 —s)x+sy € D}.

Proof. Assume that f: D — R is a Wright-convex function. On account of The-
orem 1 there exist a convex function F : D — R and additive function a : X — R such
that

f(x)=alx)+F(x), xe€D.
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Fix arbitrary x,y € D. By the above representation we obtain
fey(s) = Fsx+ (1=9)y) + F((1 —s)x+sy) +alx+y),

hence it is convex, as a sum of two convex functions.
Conversely, suppose that for all x,y € D the function f,, given by (6) is convex.
By convexity, for all s € [0, 1] we get

flsx+ (1 =9)y) + f((1 =$)x+5y) = fuy(s) = fey (s1+ (1 =5)0)
< 8fry(1) + (1 =15) fe,y(0)
=s[f @)+ O+ A =9)lf(x) + )]
=f&)+ 1),
which ends the proof. [l
REMARK 1. The function f,, given by the formula (6) is continuous, symmet-

ric with respect to 3, decreasing on [0, 1], increasing on [1,1] and attains a global
minimum at % .

THEOREM 8. Let X be a real linear space, and let D C X be an algebraically
open and convex set. A function f: D — R is Wright-convex if and only if for all y € D
the function fy, : Dy — R given by the formula

H(x) =)+ /2y —x), ()
is convex, where D, := DN (2y — D).

Proof. Suppose that f is a Wright-convex function. We use the representation
f(x) =F(x)+alx), xeD,
where a: X — R is an additive and F : D — R is a convex function. Therefore

Hx)=F(x)+alx)+F(2y—x)+a(2y —x)
=F(x)+FQ2y—x)+2a(y), x€Dy,

is a convex function, as a sum of two convex functions, where y € D.

Now, assume that for all y € D the function f; : D, — R given by formula (7) is
convex. Fix arbitrary x,z € D and o € [0,1]. By convexity of the function fHTz and
because x,z € ngz it follows that

flox+(1—o)2)+ f(1 — a)x+ 0z)
= flax+ (1 —0)z) + f(2- = — (ax+ (1 — «)2))
:f;%(owﬂ—(l—a)z)
< @fs (9 +(1- @) o2
= alf(x)+ ()] + 1 - a)[f(x) + f(2)] = f(x) + f(2)-
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The proof of our theorem is complete. [

It follows from the proof of Theorem 7 and Theorem 8 that for a function defined
on an interval one can prove the joint generalization of these theorems.

THEOREM 9. Let I C R be an interval. A function f:I — R is Wright-convex
if and only if for all a,b € 1, a < b the function H : [0,1] x [a,b] — R given by the
formula

H(s,x):=f(sx+(1—=s)(a+b—x))+ f((1 —s)x+s(a+b—x)), (8)

is convex separately in each variable.

4. Some integral inequalities

There are many inequalities valid for convex functions. Probably two of the most
well-known ones are the Hermite-Hadamard ([6], [8]) inequalities

b 1 b b
f(a—; )gb_a/u fx)dx < M» a,beR, a<b. ®)

In fact, in the class of continuous functions, each of the above inequalities is equivalent
to convexity. The Hermite-Hadamard inequalities have been the subject of intensive
research, many applications, generalizations and improvements of them can be found
in literature (see, for instance, [4], [12], [15], [18], [25]).

Some results concerning the Hermite-Hadamard inequalities for Wright-convex
functions are also known in the literature (see [2], [9], [23]). Unfortunately, the authors
of all these articles assume that the considered Wright-convex functions are measur-
able, so in particular continuous and convex. In fact, these results refer to convex
functions. Below we give several inequalities of Hermite-Hadamard’s type for Wright-
convex functions without any regularity assumptions.

THEOREM 10. Let X be a real linear space, and let D C X be an algebraically
open and convex set. If f: D — R is a Wright-convex function, then for all x,y € D,
and s,t € [0,1], such that s < t, the following inequalities hold true

S5+ (1= ‘H) )+ (1= )x+ 5hy)

s S U (et (L= w)y) + f(1 —w)x+uy)]du
f(sx+ (1 =s)y)+ f((1 —s)x+sy)
+f(tx+ (L=1)y)+ (1 —t)x+1y)].

<=
<

Proof. Fix arbitrary x,y € D. By Theorem 7 the function f;, : [0,1] — R given
by formula (6) is continuous and convex. Using the Hermite-Hadamard inequality for
this function we obtain, for s < ¢

+ 1 t )+ fe
fx}’(s l gmlfx,y(u)dug M7 (10,
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which coincides with the above inequalities. [

As an immediate consequence of the above theorem putting s =0, t = 1 we obtain

COROLLARY 1. Let f: D — R be a Wright-convex function. Then for all x,y € D
x+y
21 (T32) < [0 (1) £((1—s)at )]s < S0+ 50).
For a function defined on an interval we have the following

THEOREM 11. Let I C R be an interval, and let f:1 — R be a Wright-convex
function. Then for all a,b € 1, a < b the following inequalities hold true

a+b> 1

b
7 [ @+ Sa+b-vlar< f@+f0). (D)

2/ (

Proof. Take arbitrary a,b €1, a < b. Putin Theorem 8 y:= “J{b and D:=[a,b].

Since D is symmetric with respect to y then D, = [a,b]. By Theorem 8 we infer that

the function
[a7b] ox —>f(x) +f((1+b—)€),

is continuous and convex. Using the Hermite-Hadamard inequalities for the above
function we obtain

a+ b) 1

2 b—a

2 [ 1709+ flatb-xlax < sla) + £0),

which ends the proof. [l

REMARK 2. Similarly as for convex functions:
(i) Each of the inequalities (10) is equivalent to the Wright-convexity in the class
of functions f : D — R for which for all x,y € D the mapping given by formula

[0,1] 35 — flsx+ (1= 8)y) + f((1 = s)x+sy),

is continuous.
(ii) Each of the inequalities (11) is equivalent to the Wright-convexity in the class
of functions f: I — R for which for all a,b € I, a < b the mapping

[a,b] > x — f(x)+ fla+b—x),
is continuous.

As an immediate consequence of Theorem 11 we obtain the following

COROLLARY 2. Let I C R be an open interval, and let f:1 — R be a Wright-
convex function. Then for every x € I we have

x+h

£ = tim [ 1)+ F(2x— s)]ds.

h—>04r 4h x—h
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Proof. By Theorem 11 forall a,b €1, a<b f satisfies the following inequalities

a+b> 1

b
) <5 | o)+ flat+ b=l < @)+ £(b).

2 f(
Take an arbitrary x € I. There exists a number € > 0 such that (x—¢&,x+¢€) C I. Let
h € (0,¢€) and put in the above inequalities a :=x—h, b :=x+h. Then we get

1 x+h

2f(x) < )

[f(s) 4+ f(2x = s)]ds < f(x—h) + f(x+h). (12)

Letting & — 04 in (12) and applying Theorem 2 we obtain

x+h

£ = tim [ L)+ F(2x— s)]ds.

h—>04r 4h x—h
This concludes the proof. [

In [3] S. S. Dragomir established the following theorem which is a refinement of
the first inequality of (9).

THEOREM 12. If f : [a,b] — R is a convex function, and G is defined on [0,1]

by
1 b a+b
b_a/a f(tx+(l—t)—2 )dx,

then G is convex, increasing on [0,1], and for all t € [0, 1], we have

1 b
b—a/a f(x)dx

Below we present the following two theorems which are refinements of the first
inequality of (10) and (11)

G(t):=

(42 =60 <60 <6) =

THEOREM 13. If f: [a,b] — R is a Wright-convex function, and P is defined on

[0,1] by
1 b
b—a/ H(s,x)dx

where H is given by (8), then P is convex, P(s) = P(1 —s), s € [0,1], moreover,

P(s):=

) /P PO+P) 1 /b[f(x)—i—f(a—i—b—x)]dx.

2f< 2 b—ala

Proof. Fix arbitrary s,z,0 € [0,1]. By convexity of the function [0,1] 5 5 —
H(s,x) we obtain

H(as+ (1—a)t,x) < oH(s,x)+ (1 —o)H(t,x), x€ [a,b].
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Integrating the above inequality over [a,b] and dividing by b — a we get
Plas+(1—o)t) < aP(s)+ (1 —a)P(z),

hence from the classical Hermite-Hadamard inequalities, and because P(0) = P(1) we
obtain

2 2 b-a
which ends the proof. [l

The proof of the following theorem runs in a similar way

THEOREM 14. If f : [a,b] — R is a Wright-convex function, and Q is defined on
[a,b] by

1
0(x) :2/0 H(s,x)ds,

where H is given by (8), then Q is convex, Q(x) = Q(a+b —x), x € |a,b], moreover,

27(25) = 0(#42) < 5Ly J2 Q()dx < 2]
= [ [f(sa+ (1= 5)b) + f((1 —s)a+ sb)]ds.

5. Schur-convexity of the upper and the lower limit of some integral

The Schur-convex function was introduced by I. Schur in 1923 [21] and has many
important applications in analytic inequalities. The following definitions can be found
in many references such as [1], [7], [14], [18], [19].

DEFINITION 1. An n x n matrix S = [s;;] is doubly stochastic if
Sij>o, for i,jzl,...,m

and

Particularly interesting examples of doubly stochastic matrices are provided by the
permutation matrices. Recall that matrix P is said to be a permutation matrix if each
row and column has a single unite entry and all other entries are zero.

DEFINITION 2. A real valued function f defined on a set I"*, where I is an inter-
val is said to be Schur-convex, if for every doubly stochastic matrix S,

f(8x) < f(x).

Similarly f is said to be Schur-concave on I", if for every doubly stochastic matrix S,

f(8x) = f(x).

Of course, f is Schur-concave if and only if —f is Schur-convex.
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Every Schur-convex function is a symmetric function, because if P is a permuta-
tion matrix, so is its inverse P~!. Hence if f is Schur-convex, then

fx) = f(PTH(Px)) < f(Px) < f(x).

It shows that f(Px) = f(x), for every permutation matrix P.

A survey of results concerning Schur-convex functions may be found in the papers
(11, [51, [71, [14], [18], [19], [21].

In [5] N. Elezovi¢ and J. Pecaric¢ researched the Schur-convexity of the upper and
the lower limit of the integral for the mean of the convex functions and established the
following result

THEOREM 15. Let I be an interval with non-empty interior and let f be a con-
tinuous on 1. Then

g [Uf(dt, abel ab

D(a,b) =
( ) {f(a)’ a=>b

is Schur-convex (Schur-concave) on I? if and only if f is convex (concave) on I.

The aim of this part of our paper is to establish the result which is similar to
Theorem 15 for Wright-convex functions.

THEOREM 16. Let I be an interval with non-empty interior and let f:1 — R be
a function such that for all a,b € I, a < b the map

[a,b] > x — f(x)+ fla+b—x), (13)
is continuous. Then the mapping ®@ : I x I — R given by formula

s JPUF) + fla+b—x)ldx, abel, ab

®(a,b) =
() {Zf(a), a=>b

is Schur-convex (Schur-concave) on I* if and only if f is Wright-convex (Wright-
concave)on 1.

Proof. Evidently the map ® is symmetric. For arbitrary a,b €I and s € (%, 1] we
have

1 (1—s)a+sb
®(sa+ (1 —s)b,(1—s)a+sb)= m/\uﬂlﬂ)h [f(x)+ fla+b—x)]dx.

By the transformation

x(u) = 2s— Du+(1—s)(a+b), xu)=25—1>0,
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we obtain
€ [a,b) <= x(u) € [sa+ (1 —s)b,(1 —s5)a+sb],

and consequently,
D(sa+ (1 —s)b,(1 —s)a+sb)

= 5 [P f(su+ (1 —s)(a+b—u))+ f((1 —s)u+s(a+b—u))|du.

Assume that f is a Wright-convex function. Fix arbitrary a,b € I, a < b and
€ (3, 1]. By the definition, for all u € [a,b] we obtain

Flstt (1= 8)(a+b—u) + (1 —yu+s(atb—u)) < f(u) + fla+b—u),

so integrating the above inequality over [a,b] and dividing by b —a we get
D(sa+ (1— s)b (1 —s)a+sb)

= g 2Lt (1= s)(a b)) 4 (1 —s)u+s(a+b— )]
%ff[f(”)‘f'f(a—f—b—u)}du: ®(a,b).

[SYR

In the case s = % on account of Theorem 11 the above inequality is a consequence of

the first inequality from (11), which together with symmetry of ® shows that @ is a
Schur-convex.

Conversely, suppose that @ is a Schur-convex, and f is not convex in the sense of
Wright. Then there exist a,b € I, a < b, s € (0,1) and ug € (a,b) such that

Slug)+ fla+b—up)— f(sug+ (L —s)(a+b—up)) — f((1 —s)ug+s(a+b—up)) <O0.

By the continuity of the map given by (13) we infer that there exists an € > 0 such that
(up — €,up+€) C (a,b) and for all u € (ug — €,uo + €) we have

S+ fla+b—u)— f(su+(1—s)(a+b—u))—f(1—s)u+s(a+b—u)) <0,

therefore,

/uu0+€ [f () + f(at+b—u) — f(su+(1—s)(a+b—u)) — f(1—s)u+ s(a+b—u))]du <0,

0—E&
and consequently, putting ¢ :=ug — €, d :=ug+ € and dividing by 2¢ we obtain
D(sc+ (1 —s)d, (1 —s)c+sd) > D(c,d).

This contradiction shows that f is convex in the sense of Wright. The proof of our
theorem is completed. [J
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