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ON SOME INEQUALITIES EQUIVALENT TO THE WRIGHT–CONVEXITY

ANDRZEJ OLBRYŚ

(Communicated by J. Pečarić)

Abstract. In the present paper we establish some conditions and inequalities equivalent to the
Wright-convexity.

1. Introduction and terminology

Let X be a real linear space, and let D⊂ X be a convex set. A function f : D→ R

is called convex if∧
x,y∈D

∧
λ∈[0,1]

f (λx+(1−λ )y) � λ f (x)+ (1−λ ) f (y). (1)

If the above inequality holds for all x,y ∈ D with λ = 1
2 then f is said to be

Jensen convex. In 1954 E.M. Wright [23] introduced a new convexity property. A
function f : D → R is called Wright-convex if∧

x,y∈D

∧
λ∈[0,1]

f (λx+(1−λ )y)+ f ((1−λ )x+ λy)� f (x)+ f (y). (2)

One can easily see that convex functions are Wright-convex, and Wright-convex func-
tions are Jensen-convex. On the other hand, if f : X → R is additive, that is,

f (x+ y) = f (x)+ f (y), x,y ∈ X ;

then f is also Wright-convex. The main result concerning Wright-convex functions is
the much more surprising statement that any Wright-convex function can be decom-
posed as the sum of such functions. The following theorem has been proved by Ng [14]
for functions defined on convex subsets of R

n and was extended by Kominek [10] for
functions defined on convex subsets of more general structures (see also [13]).

THEOREM 1. Let X be a real linear space, and let D ⊂ X be an algebraically
open and convex set. A function f : D → R is Wright-convex if and only if there exist a
convex function F : D → R and an additive function a : X → R such that

f (x) = F(x)+a(x), x ∈ D. (3)
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It follows immediately from the above representation that Wright-convex func-
tions are either very regular or very irregular. It is known that quite week conditions
e.g. locally boundedness from above or below at some point, Christensen measurabil-
ity, continuity at least one point, imply the continuity of such functions. On the other
hand, if they are discontinuous, they have a dense graph.

A survey of other results concerning Wright-convex functions may be found in the
papers [10], [13], [14], [16], [17], [24].

2. Regularity properties

Recall (see [22]) that a function f : D → R , where D is an open subset of topo-
logical space X , is said to be symmetric at a point x ∈ D , if

lim
h→0

[ f (x+h)+ f (x−h)−2 f (x)] = 0.

Of course, every continuous function is symmetric, but the converse is not true.
Let us start with the following

THEOREM 2. Let D ⊂ R
n be a convex and open set. If f : D → R is a Wright-

convex function, then it is symmetric at every point x ∈ D.

Proof. By Theorem 1 f has the form

f (x) = a(x)+F(x), x ∈ D,

where F : D → R is a convex function and a : R
n → R an additive function. Because

convex functions defined on a subset of finite dimensional real linear space are contin-
uous, then by additivity of a we get

lim
h→0

[ f (x+h)+ f (x−h)−2 f (x)] = lim
h→0

[F(x+h)+F(x−h)−2F(x)] = 0. �

As we know from the classical theory of convex functions the convexity of a twice
differentiable function can be inferred from the sign of its second derivative. Namely,
the following theorem holds true (see [1], [12], [15], [19], [20]).

THEOREM 3. Let I ⊂ R be an open interval, and let f : I → R be a convex func-
tion. Then f is twice differentiable almost everywhere in I . Whenever the second
derivative exists, f

′′
(x) � 0 . Moreover, if f is twice differentiable, then it is convex if

and only if the function f
′′

is non-negative in I .

Let us recall that the upper and the lower second symmetric derivative of f at x ,
are respectively defined by the formulas

D
2
s f (x) := limsup

h→0

f (x+h)+ f (x−h)−2 f (x)
h2 ,
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and

D2
s f (x) := liminf

h→0

f (x+h)+ f (x−h)−2 f (x)
h2 .

If the two extreme derivatives are equal and finite at a point x then f is said to have a
symmetric derivative at this point and the common value is denoted by D2

s f (x) .
It is easy to check that if f is twice differentiable at x , then

D
2
s f (x) = D2

s f (x) = f
′′
(x),

however, D2
s f (x) can exist even at points of discontinuity. For example, for an arbitrary

additive function a : R → R we have

D2
s a(x) = 0, x ∈ R,

and as we know (see [12]) such functions may be discontinuous at every point.
For Wright-convex functions we have the following counterpart of Theorem 3

THEOREM 4. Let I ⊂ R be an open interval, and let f : I → R be a Wright-
convex function. Then there exists a second symmetric derivative almost everywhere in
I . Whenever it exists, D2

s f (x) � 0 .

Proof. Let f : I → R be a Wright-convex function. By the representation (3) f
has the form f = a + F , where a : R → R is an additive and F : I → R is a convex
function. Observe that for all x ∈ I and h ∈ R such that x−h , x+h∈ I we have

f (x+h)+ f (x−h)−2 f (x) = F(x+h)+F(x−h)−2F(x) � 0.

By the above equality, convexity of F and on account of Theorem 3 we obtain

D2
s f (x) = D2

sF(x) = F
′′
(x) � 0,

almost everywhere in I . The proof of our theorem is complete. �

Since the second symmetric derivative of a Wright-convex function may not exist,
we need to use the concept of the lower and upper second symmetric derivative to
characterize this kind of convexity. Inspired by methods contained in [15, p. 24] we
prove the following

THEOREM 5. Let I ⊂ R be an open interval. A function f : I → R is Wright-
convex if and only if the map

I× I � (x,y) −→ f (x)+ f (y)−2 f
(x+ y

2

)
, (4)

is continuous, and D
2
s f (x) � 0 , x ∈ I .
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Proof. If f is Wright-convex then f = a+F for some additive function a : R→R

and a convex function F : I → R . Because

f (x+h)+ f (x−h)−2 f (x) = F(x+h)+F(x−h)−2F(x)

then by convexity of F we get D
2
s f (x) � 0, x ∈ I . The continuity of a map given by

(4) follows from the continuity of F .
Conversely, suppose that the map given by (4) is continuous and D

2
s f (x) � 0,

x ∈ I . Let us consider the sequence of functions fn : I → R given by the formula

fn(x) := f (x)+
1
n
x2, n ∈ N.

Clearly, the mapping

I× I � (x,y) −→ fn(x)+ fn(y)−2 fn
(x+ y

2

)
,

is continuous, for all n ∈ N , moreover,

fn(x) −→n→∞ f (x), and, D
2
s fn(x) > 0, x ∈ I, n ∈ N.

We shall show that fn is a Wright-convex function for all n ∈ N . On account of The-
orem 12 from [17] it is enough to show that fn is a convex function in the sense of
Jensen, n ∈ N .

Assume the contrary, that there exists a subinterval I0 = [a0,b0] ⊂ I such that

Jfn(a0,b0) :=
fn(a0)+ fn(b0)

2
− fn

(a0 +b0

2

)
< 0.

An easy calculation shows that

Jfn(a0,b0) = Jfn

(
a0,

a0 +b0

2

)
+ Jfn

(a0 +b0

2
,b0

)
+2Jfn

(a0 +3b0

4
,
3a0 +b0

4

)
< 0,

consequently, one of the intervals[
a0,

a0 +b0

2

]
,

[a0 +b0

2
,b0

]
,

[a0 +3b0

4
,
3a0 +b0

4

]
can be chosen to replace I0 by a smaller interval I1 = [a1,b1] , with b1 − a1 = b0−a0

2
and Jfn(a1,b1) < 0.

Using induction, we can construct a sequence of intervals Ik = [ak,bk], k ∈N such
that

Ik+1 ⊂ Ik, bk −ak =
b0−a0

2k , Jfn(ak,bk) < 0, k ∈ N.

Denote by x0 the unique element of the intersection

{x0} = ∩∞
k=1[ak,bk].

Obviously, from the choice of the sequence {Ik}k∈N and by continuity of the function
given by (4) we obtain

D
2
s fn(x0) � 0

which is a contradiction. �
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3. Characterizations

Let start this section with the following

THEOREM 6. A function f : D → R is Wright-convex if and only if for all x,y ∈
D, λ ∈ [0,1], k,n ∈ N, s1, ...,sk, t1, ...,tn ∈ [0,1] such that ∑k

j=1 s j = ∑n
i=1 ti = λ the

following inequality holds

k

∑
j=1

f (s jx+(1− s j)y)+
n

∑
i=1

f ((1− ti)x+ tiy) � k f (y)+n f (x). (5)

Proof. If (5) holds true then putting s1 = t1 = λ ∈ [0,1] , we obtain the Wright-
convexity of f . Conversely, assume that f is a Wright-convex function. By Theorem
1 it has the form

f (x) = a(x)+F(x), x ∈ D,

where a : X → R is an additive and F : D → R a convex function. By additivity of a
and convexity of F we obtain

∑k
j=1 f (s jx+(1− s j)y) +∑n

i=1 f ((1− ti)x+ tiy)

= ∑k
j=1[F(s jx+(1− s j)y)+a(s jx+(1− s j)y)]

+∑n
i=1[F((1− ti)x+ tiy)+a((1− ti)x+ tiy)]

� ka(y)+a(λ (x− y))+ ∑k
j=1[s jF(x)+ (1− s j)F(y)]

+ na(x)−a(λ (x− y))+ ∑n
i=1[(1− ti)F(x)+ tiF(y)]

= k[a(y)+F(y)]+n[a(x)+F(x)] = k f (y)+n f (x).

The proof of our theorem is finished. �
The following two theorems give another characterization of Wright-convexity

and are crucial in the future consideration.

THEOREM 7. Let X be a real linear space, and let D ⊂ X be an algebraically
open and convex set. A function f : D → R is Wright-convex if and only if for each
x,y ∈ D the function fx,y given by the formula

fx,y(s) := f (sx+(1− s)y)+ f ((1− s)x+ sy), (6)

is convex on the set Dx,y := {s ∈ R : sx+(1− s)y, (1− s)x+ sy ∈ D} .

Proof. Assume that f : D → R is a Wright-convex function. On account of The-
orem 1 there exist a convex function F : D → R and additive function a : X → R such
that

f (x) = a(x)+F(x), x ∈ D.
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Fix arbitrary x,y ∈ D . By the above representation we obtain

fx,y(s) = F(sx+(1− s)y)+F((1− s)x+ sy)+a(x+ y),

hence it is convex, as a sum of two convex functions.
Conversely, suppose that for all x,y ∈ D the function fx,y given by (6) is convex.

By convexity, for all s ∈ [0,1] we get

f (sx+(1− s)y)+ f ((1− s)x+ sy)= fx,y(s) = fx,y(s1+(1− s)0)

� s fx,y(1)+ (1− s) fx,y(0)

= s[ f (x)+ f (y)]+ (1− s)[ f (x)+ f (y)]

= f (x)+ f (y),

which ends the proof. �

REMARK 1. The function fx,y given by the formula (6) is continuous, symmet-
ric with respect to 1

2 , decreasing on [0, 1
2 ] , increasing on [ 1

2 ,1] and attains a global
minimum at 1

2 .

THEOREM 8. Let X be a real linear space, and let D ⊂ X be an algebraically
open and convex set. A function f : D→ R is Wright-convex if and only if for all y ∈D
the function fy : Dy → R given by the formula

fy(x) := f (x)+ f (2y− x), (7)

is convex, where Dy := D∩ (2y−D) .

Proof. Suppose that f is a Wright-convex function. We use the representation

f (x) = F(x)+a(x), x ∈ D,

where a : X → R is an additive and F : D → R is a convex function. Therefore

fy(x) = F(x)+a(x)+F(2y− x)+a(2y− x)
= F(x)+F(2y− x)+2a(y), x ∈ Dy,

is a convex function, as a sum of two convex functions, where y ∈ D .
Now, assume that for all y ∈ D the function fy : Dy → R given by formula (7) is

convex. Fix arbitrary x,z ∈ D and α ∈ [0,1] . By convexity of the function f x+z
2

and
because x,z ∈ Dx+z

2
it follows that

f (αx +(1−α)z)+ f ((1−α)x+ αz)

= f (αx+(1−α)z)+ f (2 · x+z
2 − (αx+(1−α)z))

= f x+z
2

(αx+(1−α)z)

� α f x+z
2

(x)+ (1−α) f x+z
2

(z)

= α[ f (x)+ f (z)]+ (1−α)[ f (x)+ f (z)] = f (x)+ f (z).
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The proof of our theorem is complete. �
It follows from the proof of Theorem 7 and Theorem 8 that for a function defined

on an interval one can prove the joint generalization of these theorems.

THEOREM 9. Let I ⊂ R be an interval. A function f : I → R is Wright-convex
if and only if for all a,b ∈ I , a < b the function H : [0,1]× [a,b] → R given by the
formula

H(s,x) := f (sx+(1− s)(a+b− x))+ f ((1− s)x+ s(a+b− x)), (8)

is convex separately in each variable.

4. Some integral inequalities

There are many inequalities valid for convex functions. Probably two of the most
well-known ones are the Hermite-Hadamard ([6], [8]) inequalities

f
(a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
, a,b ∈ R, a < b. (9)

In fact, in the class of continuous functions, each of the above inequalities is equivalent
to convexity. The Hermite-Hadamard inequalities have been the subject of intensive
research, many applications, generalizations and improvements of them can be found
in literature (see, for instance, [4], [12], [15], [18], [25]).

Some results concerning the Hermite-Hadamard inequalities for Wright-convex
functions are also known in the literature (see [2], [9], [23]). Unfortunately, the authors
of all these articles assume that the considered Wright-convex functions are measur-
able, so in particular continuous and convex. In fact, these results refer to convex
functions. Below we give several inequalities of Hermite-Hadamard’s type for Wright-
convex functions without any regularity assumptions.

THEOREM 10. Let X be a real linear space, and let D ⊂ X be an algebraically
open and convex set. If f : D → R is a Wright-convex function, then for all x,y ∈ D,
and s, t ∈ [0,1] , such that s < t , the following inequalities hold true

f ( s+t
2 x+(1− s+t

2 )y)+ f ((1− s+t
2 )x+ s+t

2 y)

� 1
t−s

∫ t
s [ f (ux+(1−u)y)+ f ((1−u)x+uy)]du

� 1
2

[
f (sx+(1− s)y)+ f ((1− s)x+ sy)

+ f (tx+(1− t)y)+ f ((1− t)x+ ty)
]
.

Proof. Fix arbitrary x,y ∈ D . By Theorem 7 the function fx,y : [0,1] → R given
by formula (6) is continuous and convex. Using the Hermite-Hadamard inequality for
this function we obtain, for s < t

fx,y
(s+ t

2

)
� 1

t− s

∫ t

s
fx,y(u)du � fx,y(s)+ fx,y(t)

2
, (10)
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which coincides with the above inequalities. �
As an immediate consequence of the above theorem putting s = 0, t = 1 we obtain

COROLLARY 1. Let f : D→R be a Wright-convex function. Then for all x,y∈D

2 f
(x+ y

2

)
�

∫ 1

0
[ f (sx+(1− s)y)+ f ((1− s)x+ sy)]ds � f (x)+ f (y).

For a function defined on an interval we have the following

THEOREM 11. Let I ⊂ R be an interval, and let f : I → R be a Wright-convex
function. Then for all a,b ∈ I , a < b the following inequalities hold true

2 f
(a+b

2

)
� 1

b−a

∫ b

a
[ f (x)+ f (a+b− x)]dx � f (a)+ f (b). (11)

Proof. Take arbitrary a,b∈ I, a < b . Put in Theorem 8 y := a+b
2 and D := [a,b] .

Since D is symmetric with respect to y then Dy = [a,b] . By Theorem 8 we infer that
the function

[a,b] � x −→ f (x)+ f (a+b− x),

is continuous and convex. Using the Hermite-Hadamard inequalities for the above
function we obtain

2 f
(a+b

2

)
� 1

b−a

∫ b

a
[ f (x)+ f (a+b− x)]dx � f (a)+ f (b),

which ends the proof. �

REMARK 2. Similarly as for convex functions:
(i) Each of the inequalities (10) is equivalent to the Wright-convexity in the class

of functions f : D → R for which for all x,y ∈ D the mapping given by formula

[0,1] � s −→ f (sx+(1− s)y)+ f ((1− s)x+ sy),

is continuous.
(ii) Each of the inequalities (11) is equivalent to the Wright-convexity in the class

of functions f : I → R for which for all a,b ∈ I , a < b the mapping

[a,b] � x −→ f (x)+ f (a+b− x),

is continuous.

As an immediate consequence of Theorem 11 we obtain the following

COROLLARY 2. Let I ⊂ R be an open interval, and let f : I → R be a Wright-
convex function. Then for every x ∈ I we have

f (x) = lim
h→0+

1
4h

∫ x+h

x−h
[ f (s)+ f (2x− s)]ds.
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Proof. By Theorem 11 for all a,b∈ I , a < b f satisfies the following inequalities

2 f
(a+b

2

)
� 1

b−a

∫ b

a
[ f (x)+ f (a+b− x)]dx � f (a)+ f (b).

Take an arbitrary x ∈ I . There exists a number ε > 0 such that (x− ε,x+ ε) ⊂ I . Let
h ∈ (0,ε) and put in the above inequalities a := x−h , b := x+h . Then we get

2 f (x) � 1
2h

∫ x+h

x−h
[ f (s)+ f (2x− s)]ds � f (x−h)+ f (x+h). (12)

Letting h → 0+ in (12) and applying Theorem 2 we obtain

f (x) = lim
h→0+

1
4h

∫ x+h

x−h
[ f (s)+ f (2x− s)]ds.

This concludes the proof. �

In [3] S. S. Dragomir established the following theorem which is a refinement of
the first inequality of (9).

THEOREM 12. If f : [a,b] → R is a convex function, and G is defined on [0,1]
by

G(t) :=
1

b−a

∫ b

a
f
(
tx+(1− t)

a+b
2

)
dx,

then G is convex, increasing on [0,1] , and for all t ∈ [0,1] , we have

f
(a+b

2

)
= G(0) � G(t) � G(1) =

1
b−a

∫ b

a
f (x)dx.

Below we present the following two theorems which are refinements of the first
inequality of (10) and (11)

THEOREM 13. If f : [a,b] → R is a Wright-convex function, and P is defined on
[0,1] by

P(s) :=
1

b−a

∫ b

a
H(s,x)dx,

where H is given by (8), then P is convex, P(s) = P(1− s) , s ∈ [0,1] , moreover,

2 f
(a+b

2

)
= P

(1
2

)
�

∫ 1

0
P(t)dt � P(0)+P(1)

2
=

1
b−a

∫ b

a
[ f (x)+ f (a+b− x)]dx.

Proof. Fix arbitrary s,t,α ∈ [0,1] . By convexity of the function [0,1] � s −→
H(s,x) we obtain

H(αs+(1−α)t,x) � αH(s,x)+ (1−α)H(t,x), x ∈ [a,b].
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Integrating the above inequality over [a,b] and dividing by b−a we get

P(αs+(1−α)t) � αP(s)+ (1−α)P(t),

hence from the classical Hermite-Hadamard inequalities, and because P(0) = P(1) we
obtain

2 f
(a+b

2

)
= P

(0+1
2

)
�

∫ 1

0
P(t)dt � P(0)+P(1)

2
=

1
b−a

∫ b

a
[ f (x)+ f (a+b−x)]dx,

which ends the proof. �
The proof of the following theorem runs in a similar way

THEOREM 14. If f : [a,b] → R is a Wright-convex function, and Q is defined on
[a,b] by

Q(x) :=
∫ 1

0
H(s,x)ds,

where H is given by (8), then Q is convex, Q(x) = Q(a+b− x) , x ∈ [a,b] , moreover,

2 f
(

a+b
2

)
= Q

(
a+b
2

)
� 1

b−a

∫ b
a Q(x)dx � Q(a)+Q(b)

2

=
∫ 1
0 [ f (sa+(1− s)b)+ f ((1− s)a+ sb)]ds.

5. Schur-convexity of the upper and the lower limit of some integral

The Schur-convex function was introduced by I. Schur in 1923 [21] and has many
important applications in analytic inequalities. The following definitions can be found
in many references such as [1], [7], [14], [18], [19].

DEFINITION 1. An n×n matrix S = [si j] is doubly stochastic if

si j � 0, for i, j = 1, ...,n,

and
n

∑
i=1

si j = 1, j = 1, ...,n,
n

∑
j=1

si j = 1 i = 1, ...,n.

Particularly interesting examples of doubly stochastic matrices are provided by the
permutation matrices. Recall that matrix P is said to be a permutation matrix if each
row and column has a single unite entry and all other entries are zero.

DEFINITION 2. A real valued function f defined on a set In , where I is an inter-
val is said to be Schur-convex, if for every doubly stochastic matrix S ,

f (Sx) � f (x).

Similarly f is said to be Schur-concave on In , if for every doubly stochastic matrix S ,

f (Sx) � f (x).

Of course, f is Schur-concave if and only if − f is Schur-convex.
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Every Schur-convex function is a symmetric function, because if P is a permuta-
tion matrix, so is its inverse P−1 . Hence if f is Schur-convex, then

f (x) = f (P−1(Px)) � f (Px) � f (x).

It shows that f (Px) = f (x) , for every permutation matrix P .
A survey of results concerning Schur-convex functions may be found in the papers

[1], [5], [7], [14], [18], [19], [21].
In [5] N. Elezović and J. Pečarić researched the Schur-convexity of the upper and

the lower limit of the integral for the mean of the convex functions and established the
following result

THEOREM 15. Let I be an interval with non-empty interior and let f be a con-
tinuous on I . Then

Φ(a,b) =

{
1

b−a

∫ b
a f (t)dt, a,b ∈ I, a �= b

f (a), a = b

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I .

The aim of this part of our paper is to establish the result which is similar to
Theorem 15 for Wright-convex functions.

THEOREM 16. Let I be an interval with non-empty interior and let f : I → R be
a function such that for all a,b ∈ I, a < b the map

[a,b] � x −→ f (x)+ f (a+b− x), (13)

is continuous. Then the mapping Φ : I× I → R given by formula

Φ(a,b) =

{
1

b−a

∫ b
a [ f (x)+ f (a+b− x)]dx, a,b ∈ I, a �= b

2 f (a), a = b

is Schur-convex (Schur-concave) on I2 if and only if f is Wright-convex (Wright-
concave) on I .

Proof. Evidently the map Φ is symmetric. For arbitrary a,b∈ I and s ∈ ( 1
2 ,1] we

have

Φ(sa+(1− s)b,(1− s)a+ sb)=
1

(2s−1)(b−a)

∫ (1−s)a+sb

sa+(1−s)b
[ f (x)+ f (a+b− x)]dx.

By the transformation

x(u) := (2s−1)u+(1− s)(a+b), x
′
(u) = 2s−1 > 0,
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we obtain

u ∈ [a,b]⇐⇒ x(u) ∈ [sa+(1− s)b,(1− s)a+ sb],

and consequently,

Φ(sa+ (1− s)b,(1− s)a+ sb)

= 1
b−a

∫ b
a [ f (su+(1− s)(a+b−u))+ f ((1− s)u+ s(a+b−u))]du.

Assume that f is a Wright-convex function. Fix arbitrary a,b ∈ I, a < b and
s ∈ ( 1

2 ,1] . By the definition, for all u ∈ [a,b] we obtain

f (su+(1− s)(a+b−u))+ f ((1− s)u+ s(a+b−u))� f (u)+ f (a+b−u),

so integrating the above inequality over [a,b] and dividing by b−a we get

Φ(sa+ (1− s)b,(1− s)a+ sb)

= 1
b−a

∫ b
a [ f (su+(1− s)(a+b−u))+ f ((1− s)u+ s(a+b−u))]du

� 1
b−a

∫ b
a [ f (u)+ f (a+b−u)]du = Φ(a,b).

In the case s = 1
2 on account of Theorem 11 the above inequality is a consequence of

the first inequality from (11), which together with symmetry of Φ shows that Φ is a
Schur-convex.

Conversely, suppose that Φ is a Schur-convex, and f is not convex in the sense of
Wright. Then there exist a,b ∈ I , a < b , s ∈ (0,1) and u0 ∈ (a,b) such that

f (u0)+ f (a+b−u0)− f (su0 +(1− s)(a+b−u0))− f ((1− s)u0 + s(a+b−u0)) < 0.

By the continuity of the map given by (13) we infer that there exists an ε > 0 such that
(u0− ε,u0 + ε) ⊂ (a,b) and for all u ∈ (u0− ε,u0 + ε) we have

f (u)+ f (a+b−u)− f (su+(1− s)(a+b−u))− f ((1− s)u+ s(a+b−u))< 0,

therefore,

∫ u0+ε

u0−ε
[ f (u)+ f (a+b−u)− f (su+(1−s)(a+b−u))− f ((1−s)u+ s(a+b−u))]du < 0,

and consequently, putting c := u0− ε, d := u0 + ε and dividing by 2ε we obtain

Φ(sc+(1− s)d,(1− s)c+ sd)> Φ(c,d).

This contradiction shows that f is convex in the sense of Wright. The proof of our
theorem is completed. �
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