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A FUNCTIONAL GENERALIZATION OF DIAMOND–α INTEGRAL

MINKOWSKI’S TYPE INEQUALITY ON TIME SCALES
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(Communicated by J. Pečarić)

Abstract. In this paper, we establish a functional generalization of Minkowski’s type inequality
on time scales based on diamond-α integral, which is introduced as a linear combination of the
delta and nabla integrals. Some related results are also obtained.

1. Introduction

The well-known inequality due to Minkowski can be stated as follows (see [1]).

THEOREM 1.1. Let f (x) � 0 , g(x) � 0 and p > 1 . Then

(∫ b

a
( f (x)+g(x))pdx

)1/p

�
(∫ b

a
f p(x)dx

)1/p

+
(∫ b

a
gp(x)dx

)1/p

, (1.1)

with equality if and only if the functions | f | and |g| are proportional.

The above inequality has many significant applications in different branches of
modern mathematics such as classical real and complex analyses, Hilbert space the-
ory, and so forth. A proof of Minkowski’s inequality as well as some related results,
several extensions, and interesting geometrical interpretations can be found in [2]. Ap-
plications of Minkowski’s inequality have attracted many authors, for example Agahi
et al. [3] applied Minkowski’s inequality for Sugeno integrals and Lu et al. [4] applied
Minkowski’s inequality for fast full search in motion estimation. So it is of considerable
interest to develop its counterpart on time scales.

The calculus of time scales was introduced by Stefan Hilger in his PhD thesis in
order to unify continuous and discrete analysis [5]. More details related to time scales
and dynamic equations on time scales can be found in the literature in [6–12]. Since
then, integral inequalities on time scales have been studied by many authors, and lots of
integral inequalities on time scales have been obtained (see [13–18] and the references
therein). In [13, 14], the authors gave the delta integral Minkowski’s inequality on time
scales as follows.
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THEOREM 1.2. Let f ,g,h ∈Crd([a,b],R) and p > 1 . Then(∫ b

a
|h(x)|| f (x)+g(x)|pΔx

) 1
p

�
(∫ b

a
|h(x)|| f (x)|pΔx

) 1
p

+
(∫ b

a
|h(x)||g(x)|pΔx

) 1
p

,

(1.2)

with equality if and only if the functions | f | and |g| are proportional.

Özkan et al. [15] established the nabla and diamond-α integral Minkowski’s in-
equality on time scales which can be stated as follows.

THEOREM 1.3. Let f ,g,h ∈Cld([a,b],R) and p > 1 . Then(∫ b

a
|h(x)|| f (x)+g(x)|p∇x

) 1
p

�
(∫ b

a
|h(x)|| f (x)|p∇x

) 1
p

+
(∫ b

a
|h(x)||g(x)|p∇x

) 1
p

,

(1.3)

with equality if and only if the functions | f | and |g| are proportional.

THEOREM 1.4. Let f ,g,h : [a,b] → R be ♦α -integrable functions,and p > 1 .
Then (∫ b

a
|h(x)|| f (x)+g(x)|p♦αx

) 1
p

�
(∫ b

a
|h(x)|| f (x)|p♦αx

) 1
p

+
(∫ b

a
|h(x)||g(x)|p♦αx

) 1
p

,

(1.4)

with equality if and only if the functions | f | and |g| are proportional.

Recently, Chen [16] further generalized inequality (1.4) as follows.

THEOREM 1.5. Let f ,g,h : [a,b] → R be ♦α -integrable functions, p > 0 , s, t ∈
R\{0} , and s �= t . Let p,s,t ∈R be different, such that s,t > 1 and (s−t)/(p−t)> 1 .
Then ∫ b

a
|h(x)|| f (x)+g(x)|p♦αx

�
[(∫ b

a
|h(x)|| f (x)|s♦αx

) 1
s

+
(∫ b

a
|h(x)||g(x)|s♦αx

) 1
s
]s(p−t)/(s−t)

×
[(∫ b

a
|h(x)|| f (x)|t♦αx

) 1
t

+
(∫ b

a
|h(x)||g(x)|t♦αx

) 1
t
]t(p−t)/(s−t)

,

(1.5)

with equality if and only if the functions | f | and |g| are proportional.

REMARK 1.1. For Theorem 1.5, for p > 1, letting s = p+ ε , t = p− ε , when
p,s,t are different, s,t > 1, and (s− t)/(p− t)/2 > 1, and letting ε → 0, we obtain
(1.4).
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Inspired by Yang [18], in the present paper, we intend to give a functional general-
ization of diamond-α integral Minkowski’s type inequality on time scales. Its reverse
form is also presented. The paper is organized as follows. In Section 2, we briefly
give basic definitions and some preliminary results which are necessary in the sequel.
Namely, we briefly introduce the nabla and the delta calculus [8, 9]. We also introduce
the notions of diamond-α derivative and integral [10-12]; In Section 3, we present our
main results.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of real numbers. Let T be
a time scale. T has the topology that it inherits from the real numbers with the standard
topology. Some important examples of time scales are, R , Z , and N .

DEFINITION 2.1. The functions σ ,ρ : T → T defined by

σ(t) := inf{s ∈ T : s > t} and σ(t) := sup{s ∈ T : s < t}
are called the jump operators.

In this definition, the convention is inf /0 = supT and sup /0 = infT . If supT is
finite and left-scattered, then we define T

κ := T\{supT} , otherwise T
κ := T; if infT

is finite and right-scattered, then Tκ := T\ {infT} , otherwise T
κ := T . We set T

κ
κ :=

Tκ ∩T
κ .

DEFINITION 2.2. For some t ∈T
κ , and a function f : T→R , the delta derivative

of f is denoted by f Δ(t) and satisfies

| f (σ(t))− f (s)− f Δ(t)(σ(t)− s)| � ε|σ(t)− s|
for all s ∈U , and U is a neighborhood of t . The function f (t) is called delta differen-
tial on T

κ .

DEFINITION 2.3. For some t ∈Tκ , and a function f : T→R , the nabla derivative
of f is denoted by f ∇(t) and satisfies

| f (ρ(t))− f (s)− f ∇(t)(ρ(t)− s)|� ε|ρ(t)− s|
for all s ∈V , and V is a neighborhood of t . The function f (t) is called nabla differen-
tial on Tκ .

REMARK 2.1. Assume that T = R , then f Δ(t) = f ∇(t) = f ′ , where f ′ denotes
the usual derivative on R . Assume that T = Z , then f Δ(t) = f (t + 1)− f (t) and
f ∇(t) = f (t)− f (t −1) , i.e., f Δ and f ∇ are, respectively, the usual forward and back-
ward difference operators.

Let a,b ∈ T , a < b . In what follows we denote [a,b]T = {t ∈ T : a � t � b} .

DEFINITION 2.4. If FΔ(t) = f (t) , t ∈ T
κ , then F is called an antiderivative of

f , and the delta integral of f from a to b (or on [a,b]T) is defined by

∫ b

a
f (t)Δt = F(b)−F(a).
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DEFINITION 2.5. If GΔ(t) = g(t) , t ∈ Tκ , then G is called an antiderivative of
g , and the delta integral of g from a to b (or on [a,b]T) is defined by

∫ b

a
g(t)∇t = G(b)−G(a).

For the properties of the delta and nabla integrals we refer the readers to [8, 9].

REMARK 2.2. Assume that T = R , then
∫ b
a f (t)Δt =

∫ b
a f (t)∇t =

∫ b
a f (t)dt , where

the last integral is the usual Riemman integral. Assume that T = hZ , for some h > 0,
and a,b ∈ T , a < b , then

∫ b

a
f (t)Δt =

b
h−1

∑
k= a

h

h f (kh) and
∫ b

a
f (t)∇t =

b
h

∑
k= a

h +1

h f (kh).

To provide a shorthand notation, for a function f : T → R we let f σ (t) = f (σ(t))
and f ρ(t) = f (ρ(t)) .

DEFINITION 2.6. Let t,s ∈ T and define μt,s = σ(t)− s and ηt,s = ρ(t)− s . For
some t ∈ T

κ
κ , and a function f : T → R , the diamond-α derivative of f is denoted by

f♦α (t) and satisfies

|α[ f σ (t)− f (s)]ηt,s +(1−α)[ f ρ(t)− f (s)]μt,s − f♦α (t)μt,sηt,s| � ε|μt,sηt,s|,
where s ∈U , and U is a neighborhood of t . The function f (t) is called diamond-α
differential on t ∈ T

κ
κ .

THEOREM 2.1. Let 0 � α � 1 and let f be both nabla and delta differentiable
at t ∈ T

κ
κ . Then f is diamond-α differentiable at t and

f♦α (t) = α f Δ(t)+ (1−α) f ∇(t). (2.1)

REMARK 2.3. If α = 1, then the diamond-α derivative reduces to the delta
derivative; if α = 0, then the diamond-α derivative coincides with the nabla derivative.

REMARK 2.4. The equality (2.1) is given as the definition of the diamond-α
derivative in [10].

DEFINITION 2.7. Assume that a,b ∈ T , a < b , h : T → R and α ∈ [0,1] . The
diamond-α integral (or ♦α -integral) of h from a to b (or on [a,b]T ) is defined by

∫ b

a
h(t)♦αt = α

∫ b

a
h(t)Δt +(1−α)

∫ b

a
h(t)∇t,

provided h is delta and nabla integrable on [a,b]T .
For properties, results, and integral inequalities concerning the diamond-α inte-

gral, please refer to [10–12, 15] and references therein.

3. Main results

In this section, Our main results are given in the following theorems.
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THEOREM 3.1. (Minkowski’s type inequality) Let T be a time scale a,b ∈ T

with a < b and p > 0,s,t ∈ R \ {0} , and s �= t . Let p,s,t ∈ R be different, such
that s, t > 1 and (s− t)/(p− t) > 1 . Let Hl(x1,x2, . . . ,xl) > 0 , Fm(x1,x2, . . . ,xm) and
Gk(x1,x2, . . . ,xk) be three arbitrary functions of l , m and k variables, respectively. As-
sume that { fi(x)}m

i=1 , {gi(x)}k
i=1 and {hi(x)}l

i=1 are continuous real-valued functions
on [a,b]T , then

∫ b

a
Hl(h1,h2, . . . ,hl )|Fm( f1, f2, . . . , fm)+Gk(g1,g2, . . . ,gk)|p♦αx

�
[(∫ b

a
Hl(h1, . . . ,hl)|Fm( f1, . . . , fm)|s♦αx

) 1
s

+
(∫ b

a
Hl(h1, . . . ,hl)|Gk(g1, . . . ,gk)|s♦αx

) 1
s
] s(p−t)

s−t

×
[(∫ b

a
Hl(h1, . . . ,hl )|Fm( f1, . . . , fm)|t♦αx

) 1
t

+
(∫ b

a
Hl(h1, . . . ,hl)|Gk(g1, . . . ,gk)|t♦αx

) 1
t
] t(s−p)

s−t

,

(3.1)
with equality if and only if Fm( f1, f2, . . . , fm) and Gk(g1,g2, . . . ,gk) are constant, or
1/p = (1/s+1/t)/2 and Fm( f1, f2, . . . , fm) and Gk(g1,g2, . . . ,gk) are proportional.

Proof. Clearly,

∫ b

a
Hl(h1, . . . ,hl)|Fm( f1, . . . , fm)+Gk(g1, . . . ,gk)|p♦αx

=
∫ b

a
Hl(|Fm +Gk|s)(p−t)/(s−t)(|Fm +Gk|t)(s−p)/(s−t)♦αx.

Since (s− t)/(p− t) > 1, by using Hölder’s inequality (see [15]) with indices (s−
t)/(p− t) and (s− t)/(s− p) , we have

∫ b

a
Hl(h1, . . . ,hl)|Fm( f1, . . . , fm)+Gk(g1, . . . ,gk)|p♦αx

�
(∫ b

a
Hl|Fm +Gk|s♦αx

)(p−t)/(s−t)(∫ b

a
Hl|Fm +Gk|t♦αx

)(s−p)/(s−t)

.

(3.2)

On the other hand, by applying Minkowski’s inequality in [15] for s > 1 and t > 1,
respectively, we have

(∫ b

a
Hl|Fm +Gk|s♦αx

) 1
s

�
(∫ b

a
Hl |Fm|s♦αx

) 1
s

+
(∫ b

a
Hl|Gk|s♦αx

) 1
s

(3.3)

and

(∫ b

a
Hl|Fm +Gk|t♦αx

) 1
t

�
(∫ b

a
Hl|Fm|t♦αx

) 1
t

+
(∫ b

a
Hl|Gk|t♦αx

) 1
t

. (3.4)

From (3.2), (3.3) and (3.4), we get the desired result. �
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COROLLARY 3.1. (T = R). Let p > 0 , s,t ∈ R\ {0} , and s �= t . Let p,s,t ∈ R

be different, such that s,t > 1 and (s− t)/(p− t) > 1 . Let Hl(x1,x2, . . . ,xl) > 0 ,
Fm(x1,x2, . . . ,xm) and Gk(x1,x2, . . . ,xk) be three arbitrary functions of l , m and k
variables, respectively. Assume that { fi(x)}m

i=1 , {gi(x)}k
i=1 and {hi(x)}l

i=1 are contin-
uous real-valued functions on [a,b] , then

∫ b

a
Hl(h1,h2, . . . ,hl )|Fm( f1, f2, . . . , fm)+Gk(g1,g2, . . . ,gk)|pdx

�
[(∫ b

a
Hl(h1, . . . ,hl )|Fm( f1, . . . , fm)|sdx

) 1
s

+
(∫ b

a
Hl(h1, . . . ,hl)|Gk(g1, . . . ,gk)|sdx

) 1
s
] s(p−t)

s−t

×
[(∫ b

a
Hl(h1, . . . ,hl)|Fm( f1, . . . , fm)|t dx

) 1
t

+
(∫ b

a
Hl(h1, . . . ,hl)|Gk(g1, . . . ,gk)|t dx

) 1
t
] t(s−p)

s−t

,

(3.5)
with equality if and only if Fm( f1, f2, . . . , fm) and Gk(g1,g2, . . . ,gk) are constant, or
1/p = (1/s+1/t)/2 and Fm( f1, f2, . . . , fm) and Gk(g1,g2, . . . ,gk) are proportional.

COROLLARY 3.2. (T = Z) . Let p > 0 , s,t ∈ R \ {0} , and s �= t . Let p,s,t ∈
R be different, such that s,t > 1 and (s− t)/(p− t) > 1 . Let Hl(x1,x2, . . . ,xl) >
0 , Fm(x1,x2, . . . ,xm) and Gk(x1,x2, . . . ,xk) be three arbitrary functions of l , m and
k variables, respectively. Assume that {ai1,ai2, . . . ,aim}n

i=1 , {bi1,bi2, . . . ,bik}n
i=1 and

{ci1,ci2, . . . ,cil}n
i=1 are real numbers for any m,k, l ∈ N , then

n

∑
i=1

Hl(ci1,ci2 , . . . ,cil)|Fm(ai1,ai2, . . . ,aim)+Gk(bi1,bi2, . . . ,bik)|p

�

⎡
⎣( n

∑
i=1

Hl(ci1,ci2, . . . ,cil )|Fm(ai1, . . . ,aim)|s
) 1

s

+

(
n

∑
i=1

Hl(ci1, . . . ,cil)|Gk(bi1, . . . ,bik)|s
) 1

s
⎤
⎦

s(p−t)
s−t

×
⎡
⎣( n

∑
i=1

Hl(ci1,ci2, . . . ,cil )|Fm(ai1, . . . ,aim)|t
) 1

t

+

(
n

∑
i=1

Hl(ci1, . . . ,cil )|Gk(bi1, . . . ,bik)|t
) 1

t
⎤
⎦

t(s−p)
s−t

,

(3.6)
with equality if and only if the functions Fm(ai1,ai2, . . . ,aim) and Gk(bi1,bi2, . . . ,bik)
are are constant, or 1/p=(1/s+1/t)/2 and Fm(ai1,ai2, . . . ,aim) and Gk(bi1,bi2, . . . ,bik)
are proportional.

THEOREM 3.2. (Reverse Minkowski’s type inequality) Let T be a time scale
a,b ∈ T with a < b and p > 0 , s,t ∈ R \ {0} , and s �= t . Let p,s, t ∈ R be differ-
ent, such that s, t < 1 , s,t �= 0 , and (s− t)/(p− t) < 1 . Let Hl(x1,x2, . . . ,xl) > 0 ,
Fm(x1,x2, . . . ,xm) and Gk(x1,x2, . . . ,xk) be three arbitrary functions of l ; m and k
variables, respectively. Assume that { fi(x)}m

i=1 , {gi(x)}k
i=1 and {hi(x)}l

i=1 are contin-
uous real-valued functions on [a,b]T , then
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∫ b

a
Hl(h1,h2, . . . ,hl )|Fm( f1, f2, . . . , fm)+Gk(g1,g2, . . . ,gk)|p♦αx

�
[(∫ b

a
Hl(h1, . . . ,hl)|Fm( f1, . . . , fm)|s♦αx

) 1
s

+
(∫ b

a
Hl(h1, . . . ,hl)|Gk(g1, . . . ,gk)|s♦αx

) 1
s
] s(p−t)

s−t

×
[(∫ b

a
Hl(h1, . . . ,hl )|Fm( f1, . . . , fm)|t♦αx

) 1
t

+
(∫ b

a
Hl(h1, . . . ,hl)|Gk(g1, . . . ,gk)|t♦αx

) 1
t
] t(s−p)

s−t

,

(3.7)
with equality if and only if Fm( f1, f2, . . . , fm) and Gk(g1,g2, . . . ,gk) are constant, or
1/p = (1/s+1/t)/2 and Fm( f1, f2, . . . , fm) and Gk(g1,g2, . . . ,gk) are proportional.

Proof. We have (s− t)/(p− t) < 1. Similar to the proof of Theorem 3.1, in view
of

∫ b

a
Hl(h1, . . . ,hl)|Fm( f1, . . . , fm)+Gk(g1, . . . ,gk)|p♦αx

=
∫ b

a
Hl(|Fm +Gk|s)(p−t)/(s−t)(|Fm +Gk|t)(s−p)/(s−t)♦αx.

By using reverse Hölder’s inequality (see [15]) with indices (s− t)/(p− t) and (s−
t)/(s− p) , we have

∫ b

a
Hl(h1, . . . ,hl)|Fm( f1, . . . , fm)+Gk(g1, . . . ,gk)|p♦αx

�
(∫ b

a
Hl|Fm +Gk|s♦αx

)(p−t)/(s−t)(∫ b

a
Hl|Fm +Gk|t♦αx

)(s−p)/(s−t)

.

(3.8)

On the other hand, by applying reverse Minkowski’s inequality in [16] for the cases of
0 < s < 1 and 0 < t < 1, we have

(∫ b

a
Hl|Fm +Gk|s♦αx

) 1
s

�
(∫ b

a
Hl |Fm|s♦αx

) 1
s

+
(∫ b

a
Hl|Gk|s♦αx

) 1
s

(3.9)

and

(∫ b

a
Hl|Fm +Gk|t♦αx

) 1
t

�
(∫ b

a
Hl|Fm|t♦αx

) 1
t

+
(∫ b

a
Hl|Gk|t♦αx

) 1
t

. (3.10)

From (3.8), (3.9) and (3.10), we get the desired result. �
COROLLARY 3.3. (T = R). Let p > 0 , s,t ∈R\{0} , and s �= t . Let p,s,t ∈R be

different, such that s,t < 1 , s,t �= 0 , and (s− t)/(p− t) < 1 . Let Hl(x1,x2, . . . ,xl) > 0 ,
Fm(x1,x2, . . . ,xm) and Gk(x1,x2, . . . ,xk) be three arbitrary functions of l ; m and k
variables, respectively. Assume that { fi(x)}m

i=1 , {gi(x)}k
i=1 and {hi(x)}l

i=1 are contin-



470 G.-S. CHEN AND P. WANG

uous real-valued functions on [a,b] , then
∫ b

a
Hl(h1,h2, . . . ,hl )|Fm( f1, f2, . . . , fm)+Gk(g1,g2, . . . ,gk)|pdx

�
[(∫ b

a
Hl(h1, . . . ,hl )|Fm( f1, . . . , fm)|s♦αx

) 1
s

+
(∫ b

a
Hl(h1, . . . ,hl)|Gk(g1, . . . ,gk)|sdx

) 1
s
] s(p−t)

s−t

×
[(∫ b

a
Hl(h1, . . . ,hl)|Fm( f1, . . . , fm)|t dx

) 1
t

+
(∫ b

a
Hl(h1, . . . ,hl)|Gk(g1, . . . ,gk)|t dx

) 1
t
] t(s−p)

s−t

,

(3.11)
with equality if and only if Fm( f1, f2, . . . , fm) and Gk(g1,g2, . . . ,gk) are constant, or
1/p = (1/s+1/t)/2 and Fm( f1, f2, . . . , fm) and Gk(g1,g2, . . . ,gk) are proportional.

COROLLARY 3.4. (T = Z). Let p > 0 , s,t ∈ R\ {0} , and s �= t . Let p,s,t ∈ R

be different, such that s,t < 1 , s,t �= 0 , and (s− t)/(p− t)< 1 . Let Hl(x1,x2, . . . ,xl) >
0 , Fm(x1,x2, . . . ,xm) and Gk(x1,x2, . . . ,xk) be three arbitrary functions of l ; m and
k variables, respectively. Assume that {ai1,ai2, . . . ,aim}n

i=1 , {bi1,bi2, . . . ,bik}n
i=1 and

{ci1,ci2, . . . ,cil}n
i=1 are real numbers for any m,k, l ∈ N , then

n

∑
i=1

Hl(ci1,ci2 , . . . ,cil)|Fm(ai1,ai2, . . . ,aim)+Gk(bi1,bi2, . . . ,bik)|p

�

⎡
⎣( n

∑
i=1

Hl(ci1,ci2, . . . ,cil )|Fm(ai1, . . . ,aim)|s
) 1

s

+

(
n

∑
i=1

Hl(ci1, . . . ,cil)|Gk(bi1, . . . ,bik)|s
) 1

s
⎤
⎦

s(p−t)
s−t

×
⎡
⎣( n

∑
i=1

Hl(ci1,ci2, . . . ,cil )|Fm(ai1, . . . ,aim)|t
) 1

t

+

(
n

∑
i=1

Hl(ci1, . . . ,cil )|Gk(bi1, . . . ,bik)|t
) 1

t
⎤
⎦

t(s−p)
s−t

,

(3.12)
with equality if and only if the functions Fm(ai1,ai2, . . . ,aim) and Gk(bi1,bi2, . . . ,bik)
are are constant, or 1/p = (1/s+1/t)/2 and Fm(ai1,ai2, . . . ,aim) and Gk(bi1,bi2, . . . ,bik)
are proportional.

Obviously, Corollaries 3.2 and 3.4 are well known for the integers.

REMARK 3.1. For Theorem 3.1, for p > 1, letting s = p+ ε , t = p− ε , when
p,s,t are different, s,t > 1, and (s− t)/(p− t)/2 > 1, and letting ε → 0, Theorem 3.1
reduces to Theorem 2.2 obtained by Yang [18].

REMARK 3.2. Assume that { fi(x,y)}m
i=1 , {gi(x,y)}k

i=1 and {hi(x,y)}l
i=1 are con-

tinuous real-valued functions on [a,b]T × [a,b]T , and Hl , Fm and Gk are defined as in
Theorem 3.1, then by Theorems 3.1 and 3.2, we obtain functional generalizations of two
dimensional diamond-α integral Minkowski’s type inequality and reverse Minkowski’s
inequality on time scales.
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