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(Communicated by N. Elezović)

Abstract. We give a generalization of Steffensen’s inequality by extending the results of Pečarić
[4] and Rabier [5]. We make use of the n -order Taylor expansion of a composition of functions
and Faà di Bruno’s formula for higher order derivatives of the composition.

1. Introduction

Steffensen [6] proved the following inequality: if f ,h : [α,β ]→R , 0 � h � 1 and
f is decreasing, then

∫ β

α
f (t)h(t)dt �

∫ α+γ

α
f (t)dt, where γ =

∫ β

α
h(t)dt. (1)

A few hundred papers are devoted to studying generalizations of Steffensen’s in-
equality (1). One recent is given by Rabier [5].

THEOREM 1.1. Let φ : [0,∞) → R be convex and continuous with φ(0) = 0 . If
b > 0 and h ∈ L∞(0,b),h � 0 and ‖h‖∞ � 1 , then hφ (1) ∈ L1(0,b) and

φ
(∫ b

0
h(t)dt

)
�

∫ b

0
h(t)φ (1)(t)dt (2)

In fact, Rabier’s result is closely related to another generalization of Steffensen’s
inequality given by Pečarić [4].

THEOREM 1.2. Let g : [a,b] → R be a nondecreasing and differentiable func-
tion and f : I → R be a nondecreasing function (I is an interval in R such that
a,b,g(a),g(b) ∈ I ).

(a) If g(x) � x , then ∫ b

a
f (t)g(1)(t)dt �

∫ g(b)

g(a)
f (t)dt. (3)
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(b) If g(x) � x , then the reverse of the above inequality holds.

REMARK 1.3. The assumptions of Theorem 1.2 can be weakened and differen-
tiability of g can be replaced with absolute continuity. Indeed, for a nondecreasing
function f , the function F(x) =

∫ x
a f (t)dt is well defined and satisfies F (1) = f at all

except at most countably many points. For absolutely continuous nondecrasing func-
tion g the substitution z = g(t) in the integral is justified (see [2, Corollary 20.5]),
so

F(g(b))−F(g(a)) =
∫ g(b)

g(a)
f (z)dz =

∫ b

a
f (g(t))g(1)(t)dt �

∫ b

a
f (t)g(1)(t)dt, (4)

where the last inequality holds when g(t) � t .
Steffensen’s inequality (1) follows from Theorem 1.2 by making substitutions

g(x) �→ ∫ x
a h(t + α −a)dt +a and f (x) �→ − f (x+ α −a) and taking b = β −α +a .

REMARK 1.4. Theorem 1.1 follows from Theorem 1.2 with weaker assumptions.
Indeed, the convex function φ from Theorem 1.1 has a nondecreasing right-sided

derivative φ (1)
+ such that φ(x) =

∫ x
0 φ (1)

+ (t)dt . Furthermore, for a function h : [0,b] →
[0,1] , the function g(x) =

∫ x
0 h(t)dt is absolutely continuous and satisfies g(x) � x and

g(1) = h almost everywhere. Therefore, by taking a = 0, f = φ (1)
+ and g(x) =

∫ x
0 h(t)dt

in Theorem 1.2 (under the weaker assumptions) we get Theorem 1.1.
On the other hand, an absolutely continuous nondecreasing function g : [0,b]→ R

can satisfy g(x) � x without satisfying 0 � g(1)(x) � 1.

The goal of this paper is to generalize the inequality from Theorem 1.2 by replac-
ing the equality

F(g(x)) = F(g(a))+
∫ g(x)

g(a)
f (t)dt

with the n -th order Taylor expansion of the composition F ◦g with the remainder given
in the integral form. In the process we will use Faà di Bruno’s formula for higher order
derivatives of the composition F ◦ g . The formula states that

dm

dxm F(g(x)) =
m

∑
k=1

F (k)(g(x))Bm,k(g(1)(x), . . . ,g(m−k+1)(x)) (5)

where Bm,k(x1,x2, . . . ,xm−k+1) are the Bell polynomials

Bm,k(x1,x2, . . . ,xm−k+1) =

∑ m!
j1! j2! · · · jm−k+1!

(x1

1!

) j1 (x2

2!

) j2 · · ·
(

xm−k+1

(m− k+1)!

) jm−k+1

where the sum is taken over all sequences j1, j2, . . . , jm−k+1 of non-negative integers
such that

j1 + j2 + . . . = k and j1 +2 j2 +3 j3 + . . . = m.
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For a historical overview of Faà di Bruno’s formula and its various forms see [3].
In this paper we will give a generalization of Steffensen’s inequality by making

use of the n -order Taylor expansion of the composition F ◦ g . Moreover, we will give
the inequalities for the special case when g is of the form g(x) =

∫ x
0 h(t)dt and use it

to obtain a Hardy-type inequality.

2. Main results

The following theorem states our main result.

THEOREM 2.1. Let n ∈ N . Let g : [a,b] → R and F : I → R (where I is an
interval in R such that a,b,g(a),g(b)∈ I ) be two n times differentiable functions such
that g,g(1), . . .g(n−1) , F (1),F (2), . . . ,F (n) are nondecreasing functions.

(a) If g(x) � x , then

F(g(b)) � F(g(a))+
n−1

∑
k=1

F (k)(g(a))
n−1

∑
i=k

Bi,k(g(1)(a), . . . ,g(i−k+1)(a))
(b−a)i

i!

+
∫ b

a

(b− t)n−1

(n−1)!

n

∑
k=1

F (k)(t)Bn,k(g(1)(t), . . . ,g(n−k+1)(t))dt.

(b) If g(x) � x , then the reverse of the above inequality holds.

Proof. The (n−1)-th Taylor expansion of a function H with the remainder in the
integral form is given by

H(x) =
n−1

∑
k=0

H(k)(a)
(x−a)k

k!
+

∫ x

a
H(n)(t)

(x− t)n−1

(n−1)!
dt

Applying this formula for the composition H = F ◦g and using Faà di Bruno’s formula
(5) gives

(F ◦ g)(b) = (F ◦ g)(a)+
n−1

∑
i=1

i

∑
k=1

F (k)(g(a))Bi,k(g(1)(a), . . . ,g(i−k+1)(a))
(b−a)i

i!

+
∫ b

a

(b− t)n−1

(n−1)!

n

∑
k=1

F (k)(g(t))Bn,k(g(1)(t), . . . ,g(n−k+1)(t))dt

= (F ◦ g)(a)+
n−1

∑
k=1

F (k)(g(a))
n−1

∑
i=k

Bi,k(g(1)(a), . . . ,g(i−k+1)(a))
(b−a)i

i!

+
∫ b

a

(b− t)n−1

(n−1)!

n

∑
k=1

F (k)(g(t))Bn,k(g(1)(t), . . . ,g(n−k+1)(t))dt.
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By the assumptions of the theorem, g(i) � 0 for i = 1, . . . ,n , so the Bell polynomials
evaluated at the derivatives of g in the above expression are nonnegative. Therefore,
for g(x) � x the inequality

∫ b

a

(b− t)n−1

(n−1)!

n

∑
k=1

F (k)(g(t))Bn,k(g(1)(t), . . . ,g(n−k+1)(t))dt

�
∫ b

a

(b− t)n−1

(n−1)!

n

∑
k=1

F (k)(t)Bn,k(g(1)(t), . . . ,g(n−k+1)(t))dt

holds, while for g(x) � x the reversed inequality holds. �
A special case of the previous theorem is given by the following corollary.

COROLLARY 2.2. Let n∈ N , let F : [0,b]→R be n times differentiable function
such that F (1),F (2), . . . ,F(n) are nondecreasing functions and let h : [0,b] → [0,+∞)
be n−1 times differentiable function such that h,h(1), . . . ,h(n−1) are nonnegative.

(a) If
∫ x
0 h(t)dt � x for every x ∈ [0,b] , then

F

(∫ b

0
h(t)dt

)
� F(0)+

n−1

∑
k=1

F (k)(0)
n−1

∑
i=k

Bi,k(h(0),h(1)(0), . . . ,h(i−k)(0))
bi

i!

+
∫ b

0

(b− t)n−1

(n−1)!

n

∑
k=1

F (k)(t)Bn,k(h(t),h(1)(t), . . . ,h(n−k)(t))dt.

(b) If x �
∫ x
0 h(t)dt for every x ∈ [0,b] , then the reverse of the above inequality

holds.

Proof. Follows from Theorem 2.1 by taking a = 0 and g(x) =
∫ x
0 h(t)dt . �

By inserting the Bell polynomials we get the explicit forms of the inequalities from
Theorem 2.1 and Corollary 2.2. Since B1,1(x1) = x1 , the inequalities (from part (a))
for n = 1 are given by (4) and

F

(∫ b

0
h(t)dt

)
� F(0)+

∫ b

0
F (1)(t)h(t)dt.

The subsequent Bell polynomials are equal to:

n = 2 : B2,1(x1,x2) = x2, B2,2(x1) = x2
1,

n = 3 : B3,1(x1,x2,x3) = x3, B3,2(x1,x2) = 3x1x2, B3,3(x1) = x3
1,

n = 4 : B4,1(x1,x2,x3,x4) = x4, B4,2(x1,x2,x3) = 3x3
1x3 +3x2

2
B4,3(x1,x2) = 6x2

1x2, B4,4(x1) = x4
1,

n = 5 : B5,1(x1,x2,x3,x4,x5) = x5, B5,2(x1,x2,x3,x4) = 5x1x4 +10x2x3,
B5,3(x1,x2,x3) = 10x2

1x3 +15x1x2
2,

B5,4(x1,x2) = 10x3
1x2, B5,5(x1) = x5

1.
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Therefore, for n = 2 the inequality from Theorem 2.1(a) is of the form

F(g(b)) � F(g(a))+ (b−a)F(1)(g(a))g(1)(a)

+
∫ b

a
(b− t)

[
F (1)(t)g(2)(t)+F(2)(t)g(1)(t)

2
]

dt

and the inequality from Corollary 2.2(a) is of the form

F

(∫ b

0
h(t)dt

)
� F(0)+bF(1)(0)h(0)

+
∫ b

0
(b− t)

[
F (1)(t)h(1)(t)+F(2)(t)h(t)2

]
dt.

Next, we will use the inequality from Corollary 2.2 to obtain the following result.

THEOREM 2.3. Let n ∈ N , h and F be as in Corollary 2.2, k : [0,b] → [0,+∞)
and denote Ki(t) =

∫ b
t

(x−t)i−1

(i−1)! k(x)dx for i ∈ N .

(a) If
∫ x
0 h(t)dt � x for every x ∈ [0,b] , then∫ b

0
k(x)F

(∫ x

0
h(t)dt

)
dx

�F(0)K1(0)+
n−1

∑
k=1

F (k)(0)
n−1

∑
i=k

Bi,k(h(0),h(1)(0), . . . ,h(i−k)(0))Ki+1(0)

+
∫ b

0
Kn(t)

n

∑
k=1

F(k)(t)Bn,k(h(t),h(1)(t), . . . ,h(n−k)(t))dt.

(b) If x �
∫ x
0 h(t)dt for every x ∈ [0,b] , then the reverse of the above inequality

holds.

Proof. Applying Corollary 2.2 with b = x and multiplying by k(x) � 0 we get

k(x)F
(∫ x

0
h(t)dt

)

�F(0)k(x)+
n−1

∑
k=1

F(k)(0)
n−1

∑
i=k

Bi,k(h(0),h(1)(0), . . . ,h(i−k)(0))
xi

i!
k(x)

+ k(x)
∫ x

0

(x− t)n−1

(n−1)!

n

∑
k=1

F (k)(t)Bn,k(h(t),h(1)(t), . . . ,h(n−k)(t))dt.

Integrating the above inequality with respect to x from 0 to b and applying Fubini’s
theorem on the right hand side we obtain the stated inequality. �

For p > 1, l > 1 and a nonnegative function h such that x1−p/lh ∈ Lp(0,b) ,
inequality ∫ b

0
x−l

(∫ x

0
h(t)dt

)p

dx �
(

p
l−1

)p ∫ b

0
xp−lh(x)p dx (6)
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holds. The classical Hardy’s inequality is inequality (6) with b = ∞ and in that case
the constant in (6) is sharp, while for finite b > 0 the constant is not sharp. In fact, for
finite b the following inequality due to Čižmešija and Pečarić [1] holds

∫ b

0
x−l

(∫ x

0
h(t)dt

)p

dx �
(

p
l−1

)p ∫ b

0

[
1−

(x
b

) l−1
p

]
xp−lh(x)p dx (7)

and the constant in (7) is sharp. For l = p inequality (6) can be written as

‖Ah‖p � p
p−1

‖h‖p,

where A is the operator Ah(x) = 1
x

∫ x
0 h(t)dt . In the following example we will use

results obtained in this paper to derive some inequalities similar to (6) and (7).

EXAMPLE 2.4. Applying Theorem 2.3(a) with F(t) = t p , p > n , we obtain the
inequality

∫ b

0
k(x)

(∫ x

0
h(t)dt

)p

dx�
∫ b

0
Kn(t)

n

∑
k=1

(p)kt
p−kBn,k(h(t),h(1)(t), . . . ,h(n−k)(t))dt,

(8)

where (p)k = p(p−1) · · ·(p− k+1) is the Pochhammer symbol.
Furthermore, for p > 1∫ b

0
k(x)

(∫ x

0
h(t)dt

)p

dx � p
∫ b

0
t p−1K(t)h(t)dt

� p

[∫ b

0
h(t)p dt

] 1
p
[∫ b

0
t pK(t)

p
p−1 dt

] p−1
p

,

where the first inequality follows from (8) with n = 1 and the second inequality follows
by applying Hölder’s inequality. In particular, for k(x) = x−p we have∫ b

0

(
1
x

∫ x

0
h(t)dt

)p

dx � p
p−1

∫ b

0

(
1−

( t
b

)p−1
)

h(t)dt

� p
p−1

[∫ b

0
h(t)p dt

] 1
p
[∫ b

0

(
1−

( t
b

)p−1
) p

p−1

dt

] p−1
p

.

(9)

The last inequality can be written as

‖Ah‖p
p � C‖h‖p,

where the constant C does not depend on h . By applying the substitution y = (t/b)p−1

in the last integral on the right hand side of (9), one can calculate

C =
pb

(p−1)2 B

(
1

p−1
,
2p−1
p−1

)
,
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where B is the beta function. In particular, for p = 2 we have

∫ b

0

(
1
x

∫ x

0
h(t)dt

)2

dx � 2
3
b‖h‖2.
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