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TWO KINDS OF COMPOSITIONS OF HILBERT-HARDY-TYPE
INTEGRAL OPERATORS AND THE RELATED INEQUALITIES

BICHENG YANG AND QIANG CHEN

(Communicated by M. Krni¢)

Abstract. By the use of the way of Real and Functional Analysis and estimating the weight
functions, we build some lemmas and deduce some Hilbert-Hardy-type integral inequalities. The
equivalent forms and the reverses are all considered. Two kinds of Hilbert-Hardy-type integral
operators are defined and the composition formulas of the operators are given.

1. Introduction

oo L
If f(x),8(y) 20, f,g € L(Re) = {fi]Ifll2 = (J5 [f(x)]Pdx)z < oo}, |If]]2,]l8]]2
> 0, then we have the following well known Hilbert’s integral inequality and the equiv-
alent form (cf. [1])

= [ f(x)g(y)

/0 /0 ﬁdxdy < z||f1l2llgll2 (1.1)
- , 1

/ ( &dx> dy| <m=llfll2, (1.2)
0 0 X+Yy

where the constant factor 7 is the best possible.

In 1925, by introducing one pair of conjugate exponents (p, q) (}—) + }1 =1), Hardy
et al. [2] gave extensions of (1.1) and (1.2) as follows: For p > 1, f(x),g(y) >0,
fell(Ry), g€ L1(Ry), ||fllp.llgllg > 0, we have the following Hardy-Hilbert’s
integral inequality and the equivalent form:

= = fx)gy)

A A _;I;_dmy<smﬁw ﬂvamb» (1.3)
@\

|:/0 <0 x+ydx> dy:l < (ﬂ/p)Hpr’ (1.4)

where the constant factor

is th ible.
(ﬂ/p s the best possible
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DEFINITION 1.1. If A € R = (—eo,00), R}y = (0,00), kj(x,y) is a measurable
function in R2+ =R, xR, satisfying for any 7,x,y € Ry, k; (tx,1y) =1k (x,y),
then we call k; (x,y) as homogeneous function of degree —A.

In 1934, by using a general non-negative homogeneous function of degree —1
ki(x,y), Hardy et al. [3] gave extensions of (1.3) and (1.4) as follows: For p > 1, k, =

-1
fo kl (M7 l)u »due R-‘rv f(x)ug(y) =0, f € Lp(R-‘r)’ g€ Lq(R+)7 Hf”p7 Hqu >0,
we have the following Hardy-Hilbert-type integral inequality and the equivalent form:

| [ otssstdsay <l £l lelle (15)

[/ (/ ki(xy)f dx) dyr<kp|f|p, (1.6)

where, the constant factor k), is the best possible. Some applications of Hardy-Hilbert-
type inequalities are provided in [4].

In 1998, by introducing an independent parameter A € (0,1], Yang [5] gave an
extension of (1.3) with the homogeneous kernel of degree —A as W In 2009, by

using a general non-negative homogeneous function kj (x,y) of degree —A and adding

another pair of conjugate exponents (r,s) (% + % = 1), Yang [6] gave extensions of
(1.5) and (1.6) as follows: For p,r > 1, ¢(x) = xp(1=3)-1, y(y) :yq(l_%)_l (x,y €

R.), ki (r) =[5 ka(w, s 'du € Ry, f(x),g(y) >0,

feLpo®) = {£llfllo = ([ otlr@ra)" <=},

8 € Lay(Ry), [|fllpe,
equality and the equivalent form:

/ } / " (4,9) £ ()8 (v)dxdy < ki (7)] (17)

[ < ek 1(/ ky (x,)f dx) dy] <k (MIflp.0, (1.8)

where the constant factor & (r) is the best possible.

REMARK 1.2. When A =1, r=gq, s = p, (1.7) and (1.8) reduce to (1.5) and
(1.6). Hence, these Hilbert-type integral inequalities are best extensions of Hardy-
Hilbert-type integral inequalities.

Using (1.2), we may define Hilbert’s integral operator T : L*>(R;) — L*(R}) as
follows (cf. [7]): For any f € L*>(R), there exists T f € L*(R, ), satisfying

N&dx

Tf(y)= b Xty

(yERy).



HILBERT-HARDY-TYPE INTEGRAL OPERATORS 507

Then by (1.2), we have ||T f||» < m||f||2, and T is a bounded linear operator satisfying
[|T|] < m. Since the constant factor in (1.2) is the best possible, we have ||T|| = 7.

About the discrete forms of (1.1) and (1.2), in 1950, Wilhelm [8] gave the operator
expression. In 2002, by using the operator theory, Zhang [9] gave some improvements
of (1.2) and the discrete form. In 2006-2009, Yang [10] considered a new Hilbert-type
operator and its applications, and [1 1], [12] gave some multiple Hilbert-type operator
expressions.

By using (1.8), we can define Hilbert-type integral operator T : L, o(R;) —
Lyo(Ry) as follows (cf. [6]): For any f € L, o(Ry), there exists Tf € L, o(R1),
satisfying

a1 [ ()
Tro) =y"" | ™ (y€Ry).
Then by (1.8), we have ||Tf]|,,p < ka(r)||fl|p,p, and T is a bounded linear operator
satisfying ||T'|| < k; (r). Since the constant factor in (1.8) is the best possible, we have
Tl = Kz (r).

About the topic of composition of two Hilbert-type operators, the main objective
is to build the formula as ||T} - 12|| = ||T1]| - ||T2]|- Recently, [13] published a com-
position of two discrete Hilbert-Hardy-type operators with the particular kernels. [14]
published a composition of two half-discrete Hilbert-Hardy-type operators with the par-
ticular kernels, and [15], [16] published some composition of two Hilbert-Hardy-type
integral operators with the particular kernels. These works are hard and interested.

In this paper, by the use of the way of Real and Functional Analysis and estimating
the weight functions, we build some lemmas and deduce some Hilbert-Hardy-type in-
tegral inequalities. The equivalent forms and the reverses are all considered. Two kinds
of Hilbert-Hardy-type integral operators are defined and the composition formulas are
given, which are some extensions of the results of [15] and [16].

2. Some lemmas

In the following of this paper, we agree on that the parameters p >0 (p # 1),

+-=1,u,0,A >0, u+o=A27A.

141
P q

LEMMA 2.1. (cf. [17], Lemma 2.2.5) Suppose that A € A= (0,¢) (0 < ¢ < o0),

kg) (x,y) (i=1,2,3) are non-negative homogeneous functions of degree —A in R2+7
KD () ::/0 K (u, V)t~ du, 2.1)

there exists a constant & € (0,min{u,c}), such that kgf)(,u +&) Ry (i=1,2,3).
Then for any 8 € [0,8y), we have kgf)(,u +8)e Ry, and

Jim 1) (u8) =k () (i=1.2.3). 2.2)
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As the assumptions of Lemma 2.1, we set the following Conditions:

CONDITION (1). For A € A, there exist constants §; € (0,8) and L; > 0, such
that

K0 <L (O<u<l) KD <Ly, (we (1) 23)
CONDITION (11). For A € (0,1)NA, there exists a constant L > 0, such that
K ) (1w <L(we 0,1), &) ) (-1  <L(ue(1,=). @4

CONDITION (111). For A € (0,1)NA, there exist constants a € (0,A) and L3 > 0,
such that

KD (u, 1) < L (u € (0,00)). (2.5)
CONDITION (1V). For A € (0, %) NA, there exists a constant Ly > 0, such that
KD (u, D)1= u* < La(u € (0,00)). (2.6)
EXAMPLE 2.2. For A € A=R., i = 2,3, the functions
; 1 1 Inu |Inu|P-1
Ky (u,1) = B=1)

(DA w1 wh =17 (max{u, 1))

satisfy for using Condition (i) and (iii). In fact, for b=pu —6;, u+ 61, a € (0,1), we
have ) )
tim & (e, 1) = lim & (u, 1) = 0.

u—0+ U—oo
In view of the continuity, kgf) (u,1)u’ is bounded in (0, o).
For A = (0, 1), the functions

1

(@)
k u,l)=
A ( ’ ) | 1|)L

(i=1,2,3)

satisfy for using Condition (ii) and Condition (iv).
Note. In the following lemmas, theorems, corollaries and definitions, we agree on

that the parameter A is the common degree of kgf) (u,1) (i=1,2,3), which satisfies all
the possible using Conditions.

DEFINITION 2.3. As the assumptions of Lemma 2.1, define the following se-
quences of real functions:

A—1 e (2) u—k-1
s y k (x7y)x PR d}C, y € (17°°)a
Fi(y) == { Ik
0, ye (0,1],

1 oo, (3 B
6k(x) = {X)L 1fl k; )(x,y)y()' 7+ dy, X € (1,00)7
0, x € (0,1],

where, k>max{|q|+31’p+$l} (keN={1,2,---}).
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Setting u = x/y(y > 1), we find
I RNTE s By R ) p—Lt—1
Fv) = #7571
1 : had 1 l 1
=yt (/ kﬁz)(u,l)u“_ﬂ_ldu—/) kf)(ml)u“_ﬂ_ldu)
0 0
_1_ 1
=y lk(f) (u— p—) —F(y), (2.7)
1
L y J
FO) =y 5 [T 0t e (e (1,09).
0
() If &) (u, 1) satisfies Condition (i) (1 € A), then by (2.3), we have
[.175171

1
_1 y _1 L
0< F(y) <Ly 7 1/yu’““slu“ e gy = =1
0

1—u
- 1 1
= 2)”171/ vy
0o (y=v)
L A—1 1 . L A—1
2y }L/ VIJ oE ldV— 21 y - (ye (1’00))
(y—=1*Jo - =1

Still setting u = x/y(x > 1), we obtain

"X
Gi(x) = xc_q_lk_l/o kf)(u,l)uwr#_ldu

= O] (/ kg)(u,l)uqu_lk_ldu—/ kf)(u,l)uwr#_ldu)
0 X

1

o () ot o

G(x) = x"*q*'k*/x K, Do (x € (1,09)).
(o) If kf) (u, 1) satisfies Condition (i) (A € A), then by (2.3), we have

1 b 1
0<Gx) < lec_ﬁ_l/ W gy =2 (x e (1,e0)):
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(d) if &) (u, 1) satisfies Condition (ii) (1 € (0,1) NA), then by (2.4), we have

T | o—d—1
0<G(x)<L2xG_ql_k_l/ u" "k duvfé/uLx)Lq/ ok o
v (u—1)* 0 (x—w)*
A—1 1 A—1
< Lo /v"‘#—ldv:“x— (x € (1,%)).
(=14 Jo (60— T)x—1)2

REMARK 2.4. In view of the results of the cases (a)—(d), there exists a large con-
stant L > 0, such that

(a)F(y)<Ly” 37l (y e (1,00); A €A);
© FO) <L L (€ (L=): € @DN4);
(©) G(x) < Lx® 71 (x€ (1,00); 2 €A);
d) G(x) <L x lk (x€ (1,%0); 2 € (0,1)NA).

LEMMA 2.5. As the assumptions of Lemma 2.1, if k&l) (x,y) is a symmetric func-

tion such that for any x,y € R, k&l)(y,x) = k&l)()@y), k&z)(u, 1) (kf)(m 1)) satisfies
Condition (i) for A € A or Condition (ii) for A € (0,1) NA, then we have

3
k/ / KD (x,9) B () G (x)dydx > Hk’ Dk—e). (29

i=

Proof. In view of (2.7) and (2.8), we have

= _ L= p-t-ve (LY
_k/l/lkl (x,y){y kT u ok F(y)

o-k-1,03) 1 _
X |x7 Tk ;H—q— —Gx)|dydx=1 5L —L+14, (2.10)

12 =

1 1 1 ° i _1 _1_
Ii= ;k(f) (u—— ) (“+%)/1 (/1 K ey 1dy)x" #dx,
< 1
I4 =

1
k
_ 1
L = %kl (IJ.—
1
k

It is evident that _
L —L—L <L <1 +14. (2.11)
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Since kng)(%x) kY (x,y), we obtain by Fubini theorem that (cf. [18])
/lm (/lwk(i)(x,y K dy)xaql"ldx
N /N (/wkﬁl)(y,x) T dy) e
= [ (e s a)eca
/ (/ k (u, Du p 1d”> Xﬁ%fldx—f—/m (/wkﬁl)(u,l)u”_%’f—ldu)x}cldx
/0 (/1 _ldx>k()(u Du" —p du—|—k/ k (u, 1)

7ldu
</k (u, 1) “+qk du+/k (u,1)u I" du)

511

Since {k&l) (u, Dut 7!
[18]), it follows that

/1 k&l)(u,l)u”

Since kﬁl)(u, Du

}o.y (u € (1,00)) is increasing, by Levi theorem (cf

P du—>/ kgtl)(u,l)u“fldu(kaoo)
1

<k (u, 1ut=H=1(y € (0,1)), and

0</0 ky, u,l)u”_‘so_ldug/o k&l)(u,l)u”_‘so_ldu— (u—d)

then by Lebesgue convergence control theorem (cf. [18]), we have

1 1

1 1 1 _

/Ok(l)( Ha u—>/0 ke (u, Dt~ du(k — o)
Hence, by Lemma 2.1, we find

e IRWIE!
“ (‘ﬁ)’%

3

— Hkgf) (1) (k — o0).

i=1

1 L)) +1 =) -1
(,lH—%) (/0 k3 (u, )ut ™k du+/1 Ky (e, 1)t o du

(2.12)



512 B. YANG AND Q. CHEN

(1) We estimate I, .

(a) If kﬁz) (u,1) satisfies Condition (i) for A € A, then by Remark 2.4(a), we have

0 /(/ k (x,y)F dy) l’fldx
1

N

D,
k ulu“ 81— ldu> 61— ﬁ—ld _M<
61+q_k

(b) if kf)(m 1) satisfies Condition (ii) for A € (0,1)NA, then by Remark 2.4(b),

we have
0o oo A—1
(1) oL -1 y
0 < J2 < L/ </ kl (y,x)x qk dx) Wdy

””L/ (/k (u, D+ du) d
(y—1)*
oo ““"77
(1) At -1 v
< L‘/O <‘/0 k}L (u,l)u ak du) md\)
(1) 1 1
= Lk — |B(1-2 — oo,
A (”Jqu) ( ’”+qk) =

Therefore, in view of (a) and (b), we have I, — 0 (k — oo).
(2) We estimate Is.

(o) If kf) (u, 1) satisfies Condition (i) for A € A, then by Remark 2.4(c), we have

0 < /3 ::/ (/ k&l)(my)y“_l%k_ldy) G(x)dx
1 1
< L/ (/ kﬁl)(y,X)y“_ﬁ_ldy)xG“s“ldx
1 \J1

= /l k&l)(u,l)u”ﬁldu)xalﬁldx

- L) (u— 4
[0tk g )
0

1
514—&
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(d) if k§f>(u, 1) satisfies Condition (ii) for A € (0,1)NA, then by Remark 2.4(d),
we have
0 < Jy <L/°° /wk“)(y,x)y“—ﬁ—ldy SHRIN

1\ A (x—1)*
u—L—1

yqu/ /k (u, )u duxp dx
(x—1)*
cr+pik—1

< L/ (/ k (u,1)u du) (l—v)ldv
Y (- V(12041 ) <w
A pk ’ pk '

Therefore, in view of (c) and (d), we have 5 — 0 (k — o). By (2.11) and the
above results, we have (2.9). [

LEMMA 2.6. As the assumptions of Lemma 2.1, if k&l) (x,y) is a symmetric func-
tion, kf)(u, 1) (kf)(u, 1)) satisfies Condition (i) for A € A or Condition (ii) for A €
(0,1)NA, and if both k&z)(u,l) and kf)(u,l) satisfy Condition (ii), then ksll)(u,l)

satisfies Condition (iii) for A € (0,1)NA or (iv) for A € (0, %) NA, then we have the
reverse of (2.9), namely it follows

k//k (v ) Ee ()G (x dydx—Hk Dk—e).  (2.13)

Proof. We divide the following five cases to show Iy — 0 (k — oo).
Case (i). L €A, F(y) <Ly* 91 G(x) <Lx® %=1 (yx € (1,00)). We have

_ / ( / KV (x,9)F (v)d ) G(x)dx
< / (/ k (y,x)y"~ b1 - Ldy X001y
= / ( . k (u, !~ o1— ldu)x_z‘sl_ldx

L2
< / (/ k (u, 1) =9~ 1du) 20l gy = 25 ( (u—8) <

Case (ii). A € (0,1)NA, F(y) < Ly* 91 G(x) < L()’f:l)ljl (y,x € (1,00)). We

I < Lz/w (/Mkm(y,x)y”“sl‘ldy) e
1\ A (x—1)*

Y=o (1) a1, |
= L/1 ( ) ke (u, 1)ult =1 du) (x—l)ldx

have
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o 0 [.176171
< L2/ (/ k;l)(u,l)u“élldu) a dx
1 0

(x—1)*
= L (u—-8)B(1-2,06+8) <

Case (iii). A € (0,1)NA, F(y) < L(;i—;;l, G(x) <L 01 (y,x € (1,00)). We

J4 < L2 / / k y7 G 51 1 dx) y
1
v,
<

have

y—

( ] 1
/ (/k (u, ko1~ ldu) = _
2

o— 51 1
/ k (u,1 u“+51 1du>y
(y—

= LD (a4 8)B(1— A, 1+ 8;) < oo,

~

Case (iv). A € (0,1)NA, F(y) < L(;i—l;l, G(x) < L(;‘:;A (v,x € (1,00)), and

kg) (u, 1) satisfies Condition (iii). We have

00 oo A—1 A—1
J <L2/ / ALy gy g
B ( G )<y—1vfy TR
w [ oo u Al A1
<L2L/ / ANV Xy
), ( G oo o
oo o A—a—1 -1
X4
:LzL/ / J d d
> (1 (y—17* Y (x—1)* *

= L’L3B(1 — A,a)B(1 — A, A —a) <

Case (v). A €(0,2)NA, F(y) < L@yf—liw G(x) <L(ji;k (v,x € (1,00)), and

k511>(u, 1) satisfies Condition (iv). We have

oo oo 1 yl—l x}L—l
T < L2L/ / d d
! ) <1 h—ﬂ‘@—IV‘O(x—Dlx
o0 X 1 y}b—l xk—l
- L2L/ / d dx
U <1@—wl@—wﬂy>@—nl
oo oo 1 y)L—l x}b—l
+L2L/ / d dx
41<x G—* - DF ) oD
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oo oo 1 xl—l yl—l
B Buﬂ‘(ﬁ @—wl@—w“”>@—1M”
oo oo 1 A—1 x?t—l
—|—L2L4/ (/x - (y_ 7 dy) (x—l)’ldx
ulfl ylfl
(A u—mlw9<y—lvdy
L2L4 (/1
A—1 ylfl
(A - u—lﬂﬂ@—lﬂﬂw0<y—mf”
2
= 20°L, l/l (y_yl)(ﬁ_)/zdy]

2 322N
2LL4[B<1 55 )| <=

Hence, in the above any case, I, = %J4 — 0 (k — o). Therefore, by (2.11) and
(2.12), we have the reverse of (2.9), and then (2.13) follows. [

L2L4

2071,

N

ul
A—1 yl—l
d d
(=17 Gu— 122 u— D)2 ) = 1p
ul

We set z = é in (2.9), and define the following function:
. AR (g, ) Ty, ze(0,1),
f%&)lz
0, Z € [1,00).

In view of Lemma 2.5 and Lemma 2.6, by calculation, we find

LEMMA 2.7. As the assumptions of Lemma 2.1, if kgtl) (x,y) is a symmetric func-

tion, kf)(u, 1) (kf)(u, 1)) satisfies Condition (i) for A € A or Condition (ii) for A €
(0,1)NA, then we have

3
k/ / KD (2, D (2)Gr(x)dzdx > [TA () +o(1) (k= 00).  (2.14)

i=1

Adding the condition that if both £\’ (1, 1) and k" (u,1) satisfy Condition (i),

then k511>(u, 1) satisfies Condition (iii) for A € (0,1)NA or (iv) for 4 € (0, %) NA, then
we have the reverse of (2.14), namely it follows

k/ / k (xz,1)Fi(2) Gy (x dzdx—Hk 1) (k — o). (2.15)
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3. First kind of Hilbert-type integral inequalities

We set functions @(x) := xP(I=H) =1y (y) :=y40-9)=1 (x y € R}) in the follow-
ing.

THEOREM 3.1. As the assumptions of Lemma 2.5, if p > 1, f(x), G(y) >0,
feLpoRy), GeLyy(Ry), [[fllpg, [IGllgy >0, and

A ED ) f0dx, v e {y eRf(y) >0},
F(y) =
0, ye{yeRyf(y) =0},

then we have the following equivalent inequalities:

I::/o /0 k;l)(x’y)Fl( )G(x dydx<Hk N p.olIGllgys (3.1

J::[/O 1’"1</k xy)F;L()dy> dxy<l]‘[k

where, the constant factor [1~, k)Ll) (W) is the best possible.

(3.2)

In particular, for g(y) >0, g € Ly y(Ry), [|g]lg,y > 0, and

P (o y)g0)dy,  x € {xe Rysg(x) > 0},

G(x) = Gp() ::{ 0, x€{xeRy:g(x) =0},

we have the following inequality

//k (x,3)F, (v)Gy (x dydx<Hk

(3.3)

where, the constant factor H?:l kgf) (u) is still the best possible. If we only use Condi-

tion (i), then A € A; otherwise, A € (0,1)NA.

Proof. Since K" (y,x) = k" (x,y), by (1.8) (for = £, 6 = £), we have
o= [ [yt (T wm >dx) dy]’<k () 34
IFAIp.,qoZUO ¥ (A 1/ K2 () f dX) dyr
1
:U P"‘(/ K2 (x, ) f dx) dy} <K () (3.5)
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Then we have (3.2). By Holder’s inequality (cf. [19]), we have

= (/0 "ﬂ”<x,y>Fz<y>dy) (TG < [[Gllgy.  (.6)

Then by (3.2), we have (3.1).
On the other hand, suppose that (3.1) is valid. Setting

oo p—1
6=yt ([T eoFm) were),
0
we find ||G||T,, =JP. If J =0, then (3.2) is trivially valid; if J = e, then by (3.4), we

have [|F}||,¢ = o, which contradicts the fact of (3.5). Assuming that 0 <J < eo, then
by (3.1), we have

Iter _JP—1<Hk
i=1

1GIl5y —J<Hk WA 1.0,

then we have (3.2), which is equivalent to (3.1). _
For any k > max{lql%l,ﬁ} (k € N), we set f(x) =g(y) =0 (x,y € (0,1]);

F0) =27 g0) =57 @ ! (ny € (1,%2)). Then we have Fi(y) = Gy(x) = 0

~ had 1 had ~
R = [ e e = A [T o Foa

~ hed 1 _ hed -
Gu) = [T ey = [ )zay

If there exists a positive constant K < H?:l kgf) (1), such that (3.3) is valid when
replacing T;_, kgf) (1) by K, then in particular, we have

= %/O /0 kfl)(x,y)Fk(y)Gk(x)dydx < %K\|f\|p7(p|‘g‘|q7w —K

By (2.9), we find T, &\ (1) + 0(1) < Ix < K, and then T2, & (1) < K (k — o).
Hence K =T, kgf) (u) is the best possible constant factor of (3.3).

The constant factor in (3.1) is the best possible. Otherwise, setting G(x) = G, (x),
we would reach a contradiction that the constant factor in (3.3) is not the best possible.

By the equivalency, if the constant factor in (3.2) is not the best possible, then we would
reach a contradiction that the constant factor in (3.1) is not the best possible. [

In this paper, we call (3.3) with the reverse and the related inequalities as Fist
kind of Hilbert-type inequalities, which contain three homogeneous kernels kE{)(x, y)

(i=1,2,3).
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THEOREM 3.2. As the assumptions of Lemma 2.6, if 0 < p < 1, f(x),G(y) >0,
felpeRy), GeLyyRy), [Ifllpg:llGllgy >0, and

AT D ) f0dx, vy e {y eRf(y) >0},
F(y) =
0, ye{yeRyf(y) =0},

then we have the equivalent reverses of (3.1) and (3.2), where, the constant factor

H,-zzl kgf) (u) is the best possible. In particular, for g(y) 20, g € Ly y(Ry), qv >0,
and

Ak (y)g()dy,  xe {xeRysg(x) > 0},

G(x) = G (x) ::{ 0, x € {x€Ry3g(x) =0},

K ().

we have the reverse of (3.3) with the best possible constant factor H?:l
Proof. Since kgtl)(ypc) = kgtl)(x, y), by the reverse Holder’s inequality, we obtain

the reverses of (3.4) and (3.5). Then we deduce to the reverse of (3.2). By the reverse
Holder’s inequality (cf. [19]), we have

= /0 (xo’l’ /O kﬁl)(w)Fx(y)dy) (T GW)dx 2 I|Gllgy. BT

Then by the reverse of (3.2), we have the reverse of (3.1).

On the other hand, suppose that the reverse of (3.1) is valid. Setting G(x) as
Theorem 3.1, we find ||G||§ , = JP. If J = co, then the reverse of (3.2) is trivially valid;
if J =0, then by reverse of (3.4), we have ||F} ||, = 0, which contradicts the fact of
the reverse of (3.5). Assuming that 0 < J < oo, then by the reverse of (3.1), we have

|Gl[a _JP=1>Hk
i=1

-1
HGHZ,W :J>Hk I f 1.0,

and the reverse of (3.2) follows, which is equivalent to reverse of (3.1).
For any k > max{ |f1|15 ,pal} (keN), we set f( ), 8(y), Fr(y), Gi(x) as Theorem

3.1. If there exists a positive constant K > H? lk ( ), such that the reverse of (3.3)
is valid when replacing Hi=1 /{) (1) by K, then in particular, we have

= L/~ ~ o~ 1~
= g/o /0 K57 (6, 9) () Gi (x)dydx > K11 11p.o18llgw =K

By (2.13), we find TT2_, K (1) +o(1) = Lx > K, and then TT2_, & (1) > K (k — o).
Hence K =[T;_, kgf) (u) is the best possible constant factor of the reverse of (3.3).
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The constant factor in the reverse of (3.1) is the best possible. Otherwise, setting
G(x) = Gy (x), we would reach a contradiction that the constant factor in the reverse of
(3.3) is not the best possible. By the equivalency, if the constant factor in the reverse
of (3.2) is not the best possible, then by (3.7), we would reach a contradiction that the
constant factor in the reverse of (3.1) is not the best possible. []

4. Second kind of Hilbert-type integral inequalities

In the same way, applying Lemma 2.7, for 4 = o0 = %, O(x) ;= xP(1-7)1
P(y) :=y91=5)~1 we have

THEOREM 4.1. As the assumptions of Lemma 2.5 (for 4 = ¢ = %, we don’t as-

sume that k&l)()@y) is a symmetric function), if p > 1, f(x),G(y) 20, feL,o (Ry),
Ge L%q’ (R-‘r)v Hf”p,d% HG| ¥ > 0, and

A @) fdx, ye {yeRyf(L) >0},
Fa(y) = 1
0, ye{yeRf(y) =0},

then we have the following equivalent inequalities:

/ / K9 (0, DFL () G()dydx < [T (5) 1£1lp0
0 Jo i=1

|Gl 4.1

UO"" i (/ K DF(y )dy> dx]_<Hk (%)|f|p,¢a 4.2)

where, the constant factor T2 k! )(%) is the best possible.

In particular, for g(y) >0, g € Lyw(Ry), [|gllgw >0, and

Ak (xy)g(n)dy,  x€ {xeRysg(x) > 0},

G(x) =Gy () ::{ 0, x€{xeRy:g(x) =0},

we have the following inequality

| e e )06 dydx<1'[k ( >f|p7

lgllgw,  (43)

where, the constant factor JT;_ Kl )(%) is still the best possible.

Proof. We only prove that the constant factor in (4.3) is the best possible. The
others are omitted.
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For any k > max{‘q‘#&l,ﬁ} (k e N), we set f(x) =0 (xe (0,1]); f(x) =

A 1 A 1
X2 (e (1,00)), gy) =y? # ' (e (0,1)); 8(y) =0 (v € [1,)). Then it
follows

If there exists a positive constant K < H 3% (—), such that (4.3) is valid when re-

placing Hi=1 /ll (7) to K, then in partlcular, we have

O T P 1~
=2 [ [ K D R0G Wayds < LK llpol Bl = K-
By (2.14), we find

Hk ( ) (1) < Li < K(k — o),

and then [T;_, kgf)(%) <K (k— o). Hence K = [T (%) is the best possible con-
stant factor of (4.3). [

In this paper, we call (4.3) with the reverse and the related inequalities as Sec-
ond kind of Hilbert-type inequalities, which contain two non-homogeneous kernels

kgf) (xy,1) (i=1,2) and a homogeneous kernel kf)()@y).
In the same way, by using (2.15), we still have

THEOREM 4.2. As the assumptions of Lemma 2.6 (for | = ¢ = %, we don’t

assume that kgtl)(x,y) is a symmetric function), if 0 < p <1, f(x),G(y) >0, f €
Lp,<I>(R+)a Ge Lq,‘P(R+)a Hf”p,fba”GHq,‘P >0, and

P Dy, ye {ye Ry f(2) >0},
F(y) == !
0, ye{yeRyf(5) =0},

then we have the equivalent reverses of (4.1) and (4.2), where, the constant factor
= (—) is the best possible.

In particular, for g(y) >0, g € Lyw(Ry), ||gllgw >0, and

Pk (y)g()dy,  x€ {xeRysg(x) > 0},

G(x) =G () ::{ 0, x€{xeRy:g(x) =0},

we have the reverse of (4.3) with the best possible constant factor H?:l kgf) (%) .
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5. Some corollaries on Hilbert-Hardy-type inequalities

In this section, if in a Hilbert-type inequality, the best possible constant factor is
related to k;{}(u) (j = 1,2), then we call this inequality as Hilbert-Hardy-type in-
equality.

Assuming that k&l)(x,y) =0 (0 <y<x), then k&l)(u, 1)=0 (u>1), and

1
1 1 1 _
KD () = k) () ;:/0 KD (e, 1)~ 5.1)
By Theorem 3.1 and Theorem 3.2, we have

COROLLARY 5.1. As the assumptions of Lemma 2.5, if p > 1, kng.)l(‘u) eR,,
f(x),G(y) 20, f € Lp7(P(R+)v Ge Lq,ll/(R+)v Hf”p-,%‘

AP ) f0dx, v e {y eRf(y) >0},
F(y) =
0, ye{yeRyf(y) =0},

then we have the following equivalent inequalities:

|60 [ K e mdyds < K kD @l fllnolGlluw,  (52)

1
v o P 13
et ([ eomow) o] <@k Wil 63

where, the constant factor k;l)l (u)kf) (W) is the best possible. In particular, for g(y) >
0, g € Lgy(R+), [gllg.y >0, and

Glx) = Gy (x) = {XH 7R g, v (e Ryigo) >0
0, x € {xeRy;g(x) =0},

we have the following inequality

3
//k (x,y)F3, (v)Gy, (x )dydx<k“ Hk’ (5.4)

i=2

where, the constant factor kk l( T, ( ) is still the best possible.

As the assumptions of Lemma 2.6, if 0 < p < 1, kng)l(;,L) eRy, f(x),G(y) >0,

feLlpeRy), GELyyRy), |[fllpg,Gllgy >0, and

AP ) f0dx, v e {y eRf(y) >0},
F(y) =
0, ye{yeRyf(y) =0},
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then we have the equivalent reverses of (5.2) and (5.3), where, the constant kgtl)l (,u)kf) (w)

is the best possible. In particular, for g(y) >0, g € Ly y(Ry), |[gllq.y >0, and

P (ny)g0)dy,  x € {xe Rysg(x) > 0},

G(x) =G () ::{ 0, x€{xeRy:g(x) =0},

we have the reverse of (5.4) with the best possible constant factor k)L (W), k ([,L)
Assuming that kgt)( x,y)=0 (0 <x<y), then kgt)( u,1)=0 (0<u<1), and
1 1 g -
KD () =K () o= /1 KD (e, 1) e (5.5)
By Theorem 3.1 and Theorem 3.2, we have

COROLLARY 5.2. As the assumptions of Lemma 2.5, if p > 1, k&l)z(u) e Ry,
f(x),G(y) 20, fe€LppRy), GELyy(Ry), [|fllpg:lGllgy >0, and

A ) f0dx, v e {y € Ruif(y) >0},
F(y) =
0, ye{yeRyf(y) =0},

then we have the following equivalent inequalities:

/: G(x) /OX KV () B (3)dyex < k5 (kP (1)

(Gllgy, — (5.6)

1
oo X p P
[t ([ 0wnmoa) o] <kl wirle. 60

where, the constant factor k;l)z(u)kf) (W) is the best possible. In particular, for g(y) >

0, g€ Lyy(Ry), llgllgy >0, and

G(x) = Gy (x) 1= {XH Sk (e y)g)dy,  x € fre Rysg(x) >0},
0, xe{xeRy;g(x) =0},

we have the following inequality

3

/G;L /k () ()dydx < K () TTAY (u

i=2

(5.8)

where, the constant factor k/l 2( T, k ( ) is still the best possible.

. . 1
As the assumptions of Lemma 2.6, if 0 < p < 1, k;;(u) Ry, f(x),G(y) >0,
fELppRy); GELyy(Ri), |fllp.e:lGllgy >0, and

AP ) f0dx, v e {y eRf(y) >0},
F(y) =
0, ye{yeRyf(y) =0},
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then we have the equivalent reverses of (5.6) and (5.7), where, the constant kgf)z(,u)kf) (w)

is the best possible. In particular, for g(y) >0, g € Ly y(Ry), |[gllq.y >0, and

G(x) = Gy (x) 1= {XH Sk ey)g)dy,  x€ {xeRyg(x) >0},

07 XE{XERJr;g(X):O},
we have the reverse of (5.8) with the best poss1b1e constant factor k)L ( ) ( ).
Assuming that k( )(xy,l) =0 (0 < ; <y), then k( )( 1)=0 (u > 1)7 and

kgf)(&) = k; )1( ). By Theorem 4.1 and Theorem 4.2, we have

COROLLARY 5.3. As the assumptions of Theorem 4.1, if p > l,kx)l(%) eR,,
F(.G0) >0, £€Lpo(Ry). GELyw(Ry), [|fllpa[Gllyw > 0. and

_ Ve (. Df@dx,  ye {yeRuif(1) >0},
F(y) = !
07 ye{yeRJr’f(}):O}’

then we have the following equivalent inequalities:

1
o x — A A
[ 6w [ e Faoaras <kl (5)62 (5 ) Il
1
© ! _ N A A
[/0 X (/0 k&”(xxl)h(y)dy) dx] <k (5)/55) <§)|f|p,q)a (5.10)

where, the constant factor kgbl)l (%)kf) (%) is the best possible. In particular, for g(y) >
0, g€ Lyw(Ry), [lgllgw >0, and

G(x) — G;L(x) — {xll f(;okf)(x’y)g(y)dya RS {x S R+;g(x) > O},
0, x € {xeRy3g(x) =0},

(Gllgw: (59

we have the following inequality

[ e [ 8 eFsaae <) (51 (2) 1o

where, the constant factor kk 1(%) I, (%) is still the best possible.

8llgw, (5.11)

As the assumptions of Theorem 4.2,if 0 < p < 1, k; )1(%) eRy, f(x),G(y) =0,
felyaRy), GeLyw(Ry), [[fllpa,Gllg¥ >0, and

VS Gy D f)dx, ye{yeRyif() >0},
1
y

F =
A 0, ye{yeRy;f(y) =0},
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then we have the equivalent reverses of (5.9) and (5.10), where, the constant

kg)l(%)kf)(%) is the best possible. In particular, for g(y) >0, g € L, w(Ry), ||g]
>0, and

G(x) = Ga(v) = {x“ ST g0y x€ (€ Ryigls) > O
0, x € {xeRy3g(x) =0},

q,¥

we have the reverse of (5.11) with the best possible constant factor k;l)l (

Assuming that k(l)( 1)=0 (1 >y>0), then k(l)( ,1)=0 (
kgf)(&) = kgl)z( ). By Theorem 3 and Theorem 4, we have

A
7) =2
0<u<l), and

COROLLARY 5.4. As the assumptions of Theorem 4.1, if p > 1, kgf;(%) eR.,
f(x),G(y) Z O) f € Lp,fl)(R+)7 Gc Lq,‘I’(R+)7 Hf”p,‘ba q,¥Y > O, and

_ Ve (. Df@)dx,  ye {yeRuif(L) >0},
Fy(y):= |
07 ye{yeRJr’f(}):O}’

then we have the following equivalent inequalities:

= * — A A
[0 f; 8 0F e <5 (5 )67 (5) 161
. 3 ) A
[ (/ 0 ) o] <k (3)67 (5) e s13

where, the constant factor k; )2(7)](;2) (%) is the best possible. In particular, for g(y) >

0, g€ Lyy(Ry), [lgllgy >0, and

G(x) =Gy (x) == {xll f(;okf)(x’y)g(y)dya X € {x eRyig(x) > O},
0, x € {xeRy3g(x) =0},

Gllgw  (5.12)

we have the following inequality

JRe: [k (e, DF(y >dydx<k{( )Hk ( )flp,

where, the constant factor kA 2(%) I, k (%) is still the best possible.

|g‘ |q ¥, (5 14)

. . 1
As the assumptions of Theorem 4.2,if 0 < p < 1, kfl)z(%) eRy, f(x),G(y) >0,
fe Lp7q>(R+)7 Ge Lq7\y(R+)7 ‘|f|‘p7q>,”G| ¥ > 0, and

VS Gy D f)dx, ye{yeRyif() >0},
1
y

F =
A 0, ye{yeRy;f(y) =0},
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then we have the equivalent reverses of (5.12) and (5.13), where, the constant

kg)z(%)kf)(%) is the best possible. In particular, for g(y) >0, g € L, w(Ry), ||g]
>0, and

q,¥
G(x) = Ga(v) = {XH I g0y x€ (€ Reigls) > O
0, xe{xeRy;g(x) =0},

we have the reverse of (5.14) with the best possible constant factor ksl 2(%) I, k3 (0 (%) .

EXAMPLE 5.5. () If k" (xy, 1) = % (A >0,B > 1), then we find

- - B-1
(A _/ ) 41 _/ [ Inu| 41
k — | = k Du?2" 'du= - w4
* (2) o * (s, )u “= o (max{u,l})lu !
1

:2/ (—lnu)ﬁ_lu%_lduvz_:mMZ/ eI B1gy
0

2 (%)ﬁrmkﬁi (3) =K~ (%)Brm

(i) Ifk (xy, )—‘ _—p (0 < A < 1), then we find

W (A _ [~ A A T
k;, (E) —/0 ky " (u, 1)u? du—/o |u—1|7tu2 du
1 A A
=2 > lqu=2B(1-1,Z
) 1wt ( ’2)’

() )-(d)

REMARK 5.6. For x >0, setting A, ¢ := (0,00), Ay | := (x,00), A2 :=(0,x), by

(3.2), (5.3) and (5.7), setting kgtlz)(%) = kgp(%), we have the following united expres-

sion of Hilbert-Hardy-type inequalities:

(1)
k.

1
oo 14 2
et (R wnn o) a] <k wirle. 619

where, the constant factor k;lz(u)kﬁz) () (i=0,1,2) is the best possible.
£ K7 () =0 (v € R \AL), then &7 (1) =0 (u> 1),

1
2 2 2 _
ky(u):k;}l(u);:/o K2 (u, 1)



526 B. YANG AND Q. CHEN
if kf)(x,y) =0 (yeR{\A,»), then kf)(u, 1)=0 (0<u<l),

K2 () = K2 () = /1 K2 (u, Dt~

Assuming that kf_z)(u) = k&z)(u), k&l_f.(u)kf_)i(u) e Ry, fori,j=0,1,2, setting

R~ {yH o KD ey f(@dx, e {yeR:f(y) >0},
A,j(Y) = h
0, ye{yeRy;f(y) =0},

then it follows that Fj (y) = F3(y), and by (5.15), we have
o1 () R LRI
et (A wom ) af <kl 616

where, the constant factor k;lz(u)kf)j(y) (i,j =0,1,2) is the best possible.

We still can find similar to (3.4) and (3.5) that

[/0 xPeT 1(/“1« (0, )F3 (v )dy) dx] <KD (W)|F

|P‘P<kl ,( )||f”P§D (.1207172)7 (518)

Ip.o; (5.17)

HFA,j

where, the constant factors ksl Z( W) and kf)j( W) are the best possible.

REMARK 5.7. For x > 0, setting By := (0,%), Byj :=(0,1), By := (1,),

by (4.2), (5.10) and (5.13), for i =0, 1,2, we have the following united expression of
Hilbert-Hardy-type inequalities:

1
< A . = P12 A A
[/0 e 1( / _kﬁ”(xy,lm(wdy) dx} <k (E)kg” (5)|f b (5.19)
D232 Ay :
where, the constant factor &} ;(5)k; (%) is the best possible.

I k7 (1y,1) =0 (y ER(\Byy), then &7 (1,1) =0 (u> 1), k) (5) =k (2):
if k;>(xy, ) =0 (y€R\Bya), then k7 (1,1) =0 (0<u<1), k' (5) =k (%).
Assuming that k&l.z.(%), kfz(%) eRy, fori,j=0,1,2, setting

FL ) Py KD ) f)dx, v e {ye Ry f(2) >0},
1) =
0, ye{yeRf(5) =0},
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then it follows that F; o(y) = F (), and by (5.19), we have

[ (P iy dx]l<k53(§)k<f,( ) Wilpa 520

where, the constant factor k' )(%)k512>J(%) (i,j = 0,1,2) is the best possible.
We still can find that

[/0“’ i (/ K (o DF 500 )dy) a’x]l <K (%)FM

Fiillno <t (5 ) Iflo (=0.1.2), (522)

Ip.@ (5.21)

where, the constant factors k'’ )(%) and & )(%) are the best possible.

6. Two kinds of compositions of Hilbert-Hardy-type integral operators

For F € Ly o(Ry), we set h(x) :=x*~" [, &"(x,y)F(y)dy (x € Ry). Then by
(5.17), we have '
Hth(ng)“( NIE | p.p- (6.1)

DEFINITION 6.1. As the assumptions of Theorem 3.1, define a Hilbert-Hardy-
0 Lyo(Ry) — Lyo(Ry) as follows: Forany F € L, (R ), there

exists a unified expression T( 'F=he Ly.o(Ry), suchthatforany xe Ry, T, Tl )F(x) =
h(x).

type operator T)

By (6.1), we have || F|.p < &) (11)[|F||q. Hence T,” is a bounded linear
operator with

; 1T F e 0
1T = sup LR <l ).

F(£0)eLyo®y) Fllpg

Since the constant factor in (6.1) is the best possible, we have HTl(i) || = kﬁlz (u).

DEFINITION 6.2. As the assumptions of Theorem 3.1, define a Hilbert-Hardy-
type operator T( o L, (p(RJr) — Ly o(Ry) as follows: Forany f € L, o(R,), there ex-

ists a unified expression T2 f =F, ; €Ly (R ), suchthatforany ye R, T, ;j)f(y) =
F ().

By (5.18), we have ||T37f|],.0 = ||F;
bounded linear operator with

2 i) .
oo <KD W||f]].p- Hence T, is a

0
= sp T Slbe o)
F#0)eLpo®s)  fllpe ’
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Since the constant factor in (5.18) is the best possible, we have HT H = ( ).
DEFINITION 6.3. As the assumptions of Theorem 3.1, define a First kind of Hil-

bert-Hardy-type operator 7; j : L, o(Ry) — L, o(R4) as follows: Forany f €L, o(R;),
there exists a unified expression T; ; f = Tl(l)FA,j €L, o(Ry), suchthat forany x e Ry,

Tl 0) =T Fy 0 = [ KDy )y

It is evident that T; ;f = Tl(i)F,Lj = Tl(i)(Tz(j)f) = (Tl(i) Tz(j))f7 and then T;; =
Tl(i) . Tz(j ), Hence, T; ; is a composition of Tl(i) and Tz(j ), and (cf. [20])

1Tl = I B < 77 = kD ok ().

By (5.16), we have

i 1 2
T3 fllpo = 1T Fa il pp <K OKD ()11

Since the constant factor in (5.16) is the best possible, we have

THEOREM 6.4. As the assumptions of Theorem 3.1, if kﬁ(u),kf)j(u) e Ry
(i,j=0,1,2), then we have

|I7i

il

=117 = I = K R () (5 =0,1,2). (©6.2)

For F € L, »(R.), we set h(x) :=x 1 s, ksll)(xy, 1)F(y)dy (x € R;). Then by
(5.21), we have

~ A
|0 < &) <5> 1F]lp.o- (6.3)

DEFINITION 6.5. As the assumptions of Theorem 4.1, define a Hilbert-Hardy-
type operator T() L,o(Ry) — pq,(R+) as follows: For any F € L, »(R ), there
exists a unified expression T( JF=he Ly o(Ry), such that forany x e R, T} TVF (x)=

h(x).

By (6.3), we have Hi(i)FHp,fb (%)HFHpq) Hence T() is a bounded linear
operator with
7(i)
~(i T,)'F A
\|T1<’)|\ = sup 7, Fllpe <k§”. =)
Fy ] p.0 "\ 2
F j(#0)€Lyo(Ry) P

Since the constant factor in (5.21) is the best possible, we have Hfl(i) || = kﬁlz(%)
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DEFINITION 6.6. As the assumptions of Theorem 4.1, define a Hilbert-Hardy-

7V .

type operator 7,” : L, q>(R+) — Ly o(Ry) asfollows: Forany f € L, »(R.), there ex-

ists a unified expression T f F; €L,o(R;), suchthatforany ye R, ,T. (j)f(y) =
Fjj().

By (5.22), we have || Ty fllp0 = |IF2 jllpo < & (2)||/]p.0. Hence T3 is

bounded linear operator with

U 1 fllpo _ ) (A
HTZU)H:: sup #gkﬁﬂ, 5 )

F#0)eL,o®y)  |flpo

Since the constant factor in (5.22) is the best possible, we have HT H = (%)

DEFINITION 6.7. As theNassumptions of Theorem 4.1, define a Second kind of
Hilbert-Hardy-type operator T;; : L, o»(Ry) — Ly, o(R) as follows: For any f €

L,o(R), there exists a unified expression T; ;f = fl(l)fl,j € L,o»(Ry), such that
forany x € R4,

ot 00 =TT 00 =2 [ 0 (o0 )T ()
It is evident that
T =TFo =100 ) = (1R))s,
and then Tl i= Tl(i) T"z(j ), Hence, T: ; 1s the composition of Tl(i) and T"z(j ), and (cf. [20])

o A\ o) A
171 = IEOTN < IFO ) =4 (5 ) 40565

By (5.20), we have

1Tiflpo = ITF

W (AN ,@ (A
|p7<1> < kA,i (E) k}L,j (E) ||f|‘177‘1>'

Since the constant factor in (5.20) is the best possible, then we have

THEOREM 6.8. As the assumptions of Theorem 4.1, if k (%) k;zz(%) e Ry

(i,j=0,1,2), then we have

T

A A ..
TR =TT =0 ()62 (5) @i=o12. 64
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