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ASYMPTOTIC FORMULAS FOR THE GAMMA FUNCTION BY GOSPER

LONG LIN AND CHAO-PING CHEN

(Communicated by N. Elezović)

Abstract. The main aim of this paper is to give two general asymptotic expansions for the gamma
function, which include the Gosper formula as their special cases. Furthermore, we present an
inequality for the gamma function.

1. Introduction

Stirling’s formula

n! ≈
√

2πn
(n

e

)n
, n ∈ N := {1,2, . . .} (1.1)

has many applications in statistical physics, probability theory and number theory. Ac-
tually it was discovered by A. De Moivre (1667-1754) in the form

n! ≈C ·√n
(n

e

)n
,

and Stirling (1692–1770) identified the constant C precisely
√

2π .
The following asymptotic formulas are well-known for the gamma function (see,

for example, [1, p. 257]):

Γ(x+1) ∼
√

2πx
(x

e

)x
exp

(
∞

∑
m=1

B2m

2m(2m−1)x2m−1

)

=
√

2πx
(x

e

)x
exp

(
1

12x
− 1

360x3 +
1

1260x5 −
1

1680x7 + · · ·
)

(x → ∞) (Stirling series) (1.2)

and

Γ(x+1)∼
√

2πx
(x

e

)x
(

1+
1

12x
+

1
288x2 −

139
51840x3 −

571
2488320x4 + · · ·

)
(x → ∞) (Laplace formula), (1.3)
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where Bn (n ∈ N0 := N∪{0}) are the n -th Bernoulli numbers defined by the following
generating function:

z
ez−1

=
∞

∑
n=0

Bn
zn

n!
, |z| < 2π .

The Laplace formula (1.3) is sometimes incorrectly called Stirling series (see [14, pp.
2–3]). Stirling’s formula is in fact the first approximation to the asymptotic formula
(1.3).

Stirling’s formula has attracted much interest of many mathematicians and have
motivated a large number of research papers concerning various generalizations and
improvements (see, for example, [3, 4, 5, 7, 8, 9, 11, 12, 16, 18, 20, 21, 22]). See also
an overview at [19].

Gosper [16] replaced
√

2πn by
√

2π(n+1/6) in Stirling’s formula to substan-
tially improve it, to

n! ≈
√

2π
(

n+
1
6

)(n
e

)n
. (1.4)

Buric and Elezovic [9] obtained the following asymptotic expansion which includes the
Gosper formula (1.4) as its special case:

n! ∼
√

2π
(n

e

)n
√

n+
1
6

(
∞

∑
m=0

Pmn−m

)
(1.5)

with the coefficients Pm given by

P0 = 1, Pm =
1
m

m

∑
k=2

[
Bk+1

k+1
+

(−1)k

2 ·6k

]
Pm−k, (1.6)

where Bk are the Bernoulli numbers. Namely,

n! ∼
√

2π
(n

e

)n
√

n+
1
6

(
1+

1
144n2 −

23
6480n3 +

5
41472n4 +

4939
6531840n5

+
11839

1343692800n6 −
1110829

1881169920n7 −
14470283

5417769369600n8 + · · ·
)

. (1.7)

REMARK 1.1. A slight modification of the Theorem 4.1 from [9] gives the general
algorithm in the following form:

The following formula is valid for all real r �= 0,

n! ∼
√

2π
(n

e

)n
√

n+
1
6

(
∞

∑
m=0

Pmn−m

)1/r

, (1.8)

where

P0 = 1, Pm =
r
m

m

∑
k=2

[
Bk+1

k+1
+

(−1)k

2 ·6k

]
Pm−k (1.9)

and Bk are the Bernoulli numbers.
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In this paper, we deal with the same problem. Our proving methods are different
from ones in [9]. Furthermore, we present an inequality for the gamma function.

2. Main results

THEOREM 2.1. Let r be a given nonzero real number. Then the gamma function
has the following asymptotic expansion:

Γ(x+1)∼
√

2π
(

x+
1
6

)(x
e

)x
(

1+
∞

∑
j=1

a j

x j

)1/r

, x → ∞, (2.1)

where the coefficients a j ≡ a j(r) ( j = 1,2, . . .) are given by

a j = (−1) j ∑
k1+2k2+···+ jk j= j

(−1)k1+k2+···+k j

k1!k2! · · ·k j!

(
S1

1

)k1
(

S2

2

)k2

· · ·
(

S j

j

)k j

, (2.2)

the summation being taken over all combinations of nonnegative integers k j satisfying
the equation

k1 +2k2 + · · ·+ jk j = j,

and

S j = S j(r) = r

(
(−1) j−1Bj+1

j +1
− 1

2 ·6 j

)
, j ∈ N.

Proof. To determine a j ( j = 1,2, . . .) , we first express (2.1) as follows:

r ln

⎛
⎝ Γ(x+1)√

2πx
(
1+ 1

6x

)(
x
e

)x
⎞
⎠= ln

(
1+

m

∑
j=1

a j

x j

)
+O(x−m−1) (x → ∞).

By using the fundamental theorem of algebra, we see that there exist unique com-
plex numbers x1, . . . ,xm such that

1+
a1

x
+ · · ·+ am

xm =
(
1+

x1

x

)
· · ·
(
1+

xm

x

)
. (2.3)

By applying the following series expansion:

ln
(
1+

z
x

)
=

m

∑
j=1

(−1) j−1z j

jx j +O(x−m−1) (|z| < |x|; x → ∞), (2.4)

we obtain

ln
(
1+

a1

x
+ · · ·+ am

xm

)
=

m

∑
j=1

(−1) j−1S j

jx j +O(x−m−1), x → ∞, (2.5)
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where
S j = x j

1 + · · ·+ x j
m, j = 1, . . . ,m.

It follows from (1.2) that

ln

(
Γ(x+1)√
2πx(x/e)x

)
∼

∞

∑
j=1

Bj+1

j( j +1)x j (x → ∞).

By using the Maclaurin expansion of ln(1+ x) :

ln(1+ x) =
∞

∑
j=1

(−1) j−1

j
x j, |x| < 1,

we obtain

1
2

ln

(
1+

1
6x

)
=

∞

∑
j=1

(−1) j−1

2 j ·6 jx j , x → ∞.

Moreover, we have, as x → ∞ ,

r ln

⎛
⎝ Γ(x+1)√

2πx
(
1+ 1

6x

)(
x
e

)x
⎞
⎠= r ln

(
Γ(x+1)√
2πx(x/e)x

)
− r

2
ln

(
1+

1
6x

)

∼
∞

∑
j=1

r
j

(
Bj+1

j +1
− (−1) j−1

2 ·6 j

)
1
x j (2.6)

or

r ln

⎛
⎝ Γ(x+1)√

2πx
(
1+ 1

6x

)(
x
e

)x
⎞
⎠∼

m

∑
j=1

r
j

(
Bj+1

j +1
− (−1) j−1

2 ·6 j

)
1
x j +O(x−m−1). (2.7)

From (2.5) and (2.7), we obtain

S j = S j(r) = r

(
(−1) j−1Bj+1

j +1
− 1

2 ·6 j

)
, j = 1,2, . . . ,m. (2.8)

That is, ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 + · · ·+ xm = S1,

x2
1 + · · ·+ x2

m = S2,

. . .

xm
1 + · · ·+ xm

m = Sm.

(2.9)

Let
Pm(x) = xm +b1x

m−1 + · · · +bm−1x+bm

be a polynomial with zeros: x1, . . . ,xm which satisfy the system of equations (2.9). So
we have

Pm(x) = (x− x1) · · · (x− xm).
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The Newton formulas (see, for example, [17] and references therein) give the connec-
tion between the coefficients b j and the power sums S j :

S j +S j−1b1 +S j−2b2 + · · ·+S1b j−1 + jb j = 0, j = 1, . . . ,m.

It is known (see also [17]) that b j can be expressed in terms of S j :

b j = ∑
k1+2k2+···+ jk j= j

(−1)k1+k2+···+k j

k1!k2! · · ·k j!

(
S1

1

)k1
(

S2

2

)k2

· · ·
(

S j

j

)k j

.

Clearly,
(−1)m

xm Pm(−x) =
(
1+

x1

x

)
· · ·
(
1+

xm

x

)
.

We thus have

1+
(−1)b1

x
+

(−1)2b2

x2 + · · ·+ (−1)mbm

xm =
(
1+

x1

x

)
· · ·
(
1+

xm

x

)
. (2.10)

By (2.3) and (2.10), the coefficients a j are given by

a j = (−1) jb j

= (−1) j ∑
k1+2k2+···+ jk j= j

(−1)k1+k2+···+k j

k1!k2! · · · k j!

(
S1

1

)k1
(

S2

2

)k2

· · ·
(

S j

j

)k j

,

where S j are given in (2.8). The proof of Theorem 2.1 is complete. �
Using mainly the Bell polynomials given below, Theorem 2.2 provides a recursive

formula for determining the coefficients a j ( j ∈ N) in (2.1). The representation using
recursive algorithm is better for numerical evaluations.

The Bell polynomials, named in honor of Eric Temple Bell, are a triangular array
of polynomials given by (see [13, pp. 133–134] and [15])

Bn,k(x1,x2, . . . ,xn−k+1)

= ∑ n!
j1! j2! · · · jn−k+1!

(x1

1!

) j1 (x2

2!

) j2 · · ·
(

xn−k+1

(n− k+1)!

) jn−k+1

,
(2.11)

where the sum is taken over all sequences j1, j2, j3, . . . , jn−k+1 of non-negative integers
such that

j1 + j2 + · · ·+ jn−k+1 = k and j1 +2 j2 + · · ·+(n− k+1) jn−k+1 = n.

The sum

Bn(x1,x2, . . . ,xn) =
n

∑
k=1

Bn,k(x1,x2, . . . ,xn−k+1) (2.12)

is sometimes called the n th complete Bell polynomial.
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In order to contrast them with complete Bell polynomials, the polynomials Bn,k

defined above are sometimes called partial Bell polynomials. The complete Bell poly-
nomials appear in the exponential of a formal power series:

exp

(
∞

∑
n=1

xn

n!
un

)
=

∞

∑
n=0

Bn(x1, . . . ,xn)
n!

un. (2.13)

The Bell polynomials are quite general polynomials and they have been found in
many applications in combinatorics. Comtet [13] devoted much to a thorough presen-
tation of the Bell polynomials in the chapter on identities and expansions. For more
results, the reader is referred to [10, Chapter 11] and [23, Chapter 5].

THEOREM 2.2. Let r be a given nonzero real number. Then the gamma function
has the following asymptotic expansion:

Γ(x+1)∼
√

2π
(

x+
1
6

)(x
e

)x
(

∞

∑
k=0

ak

xk

)1/r

, x → ∞, (2.14)

where the coefficients ak ≡ ak(r) (k ∈ N0) are given by the recursion formula

a0 = 1, ak =
r
k

k−1

∑
�=0

(
Bk−�+1

k− �+1
+

(−1)k−�

2 ·6k−�

)
a�, k ∈ N. (2.15)

Proof. We can let⎛
⎝ Γ(x+1)√

2πx
(
1+ 1

6x

)(
x
e

)x
⎞
⎠

r

=
∞

∑
k=0

ak

xk , x → ∞, (2.16)

where ak ≡ ak(r) (for k ∈ N0 ) are real numbers to be determined.
On the other hand, from (2.6) we obtain the following asymptotic expansion:⎛

⎝ Γ(x+1)√
2πx

(
1+ 1

6x

)(
x
e

)x
⎞
⎠

r

∼ exp

(
∞

∑
j=1

c j

x j

)
, x → ∞, (2.17)

where

c j ≡ c j(r) =
r
j

(
Bj+1

j +1
− (−1) j−1

2 ·6 j

)
, j ∈ N. (2.18)

Using (2.17) and (2.13), we have⎛
⎝ Γ(x+1)√

2πx
(
1+ 1

6x

)(
x
e

)x
⎞
⎠

r

∼ exp

(
∞

∑
k=1

k!ck

k!
1
xk

)

∼
∞

∑
k=0

Bk

(
1!c1,2!c2 . . . ,k!ck

)
k!

1
xk .
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Therefore it is seen that the coefficients ak in (2.16) can be expressed in terms of the
Bell polynomials:

ak =
Bk

(
1!c1,2!c2 . . . ,k!ck

)
k!

. (2.19)

Bulò et al. [6, Theorem 1] proved that the complete Bell polynomials can be expressed
using the following recursive formula:

Bk(x1,x2, . . . ,xk) =

{
∑k−1

�=0

(k−1
�

)
xk−�B�(x1,x2, . . . ,x�) if k ∈ N,

1 if k = 0.

Thus, the formula (2.19) can be rewritten as

a0 = 1 and

ak =
1
k!

k−1

∑
�=0

(
k−1

�

)
(k− �)!ck−�B�

(
1!c1,2!c2 . . . , �!c�

)

=
1
k!

k−1

∑
�=0

(
k−1

�

)
(k− �)!ck−��!a�

=
r
k

k−1

∑
�=0

(
Bk−�+1

k− �+1
+

(−1)k−�

2 ·6k−�

)
a� for k ∈ N.

The proof of Theorem 2.2 is complete. �

By using another proving method, we prove Theorem 2.3, which includes Theo-
rems 2.1 and 2.2 as its special case.

THEOREM 2.3. Let r be a given nonzero real number and � � 0 be a given inte-
ger. Then the following asymptotic expression holds:

Γ(x+1)∼
√

2π
(

x+
1
6

)(x
e

)x
(

1+
∞

∑
j=1

d j

x j

)x�/r

(2.20)

with the coefficients d j ≡ d j(�,r)( j ∈ N) given by

d j = ∑
(1+�)k1+(2+�)k2+···+( j+�)k j= j

ck1
1 ck2

2 · · ·ckj
j

k1!k2! · · ·k j!
, (2.21)

where c j are given in (2.18), summed over all nonnegative integers k j satisfying the
equation

(1+ �)k1 +(2+ �)k2 + · · · +( j + �)k j = j.
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Proof. To determine d j ( j ∈ N) , we first express (2.20) as follows:

⎛
⎝ Γ(x+1)√

2π
(
x+ 1

6

)(
x
e

)x
⎞
⎠

r/x�

= 1+
m

∑
j=1

d j

x j +O(x−m−1). (2.22)

Write (2.17) as⎛
⎝ Γ(x+1)√

2πx
(
1+ 1

6x

)(
x
e

)x
⎞
⎠

r

= exp

(
m

∑
k=1

ck

xk +Rm(x)

)
, x → ∞,

where Rm(x) = O(x−m−1) . Further, we have

⎛
⎝ Γ(x+1)√

2π
(
x+ 1

6

)(
x
e

)x
⎞
⎠

r/x�

= eR(x)/x�
exp

(
m

∑
k=1

ck

xk+�

)

= eR(x)/x�
m

∏
k=1

[
1+
( ck

xk+�

)
+

1
2!

( ck

xk+�

)2
+ · · ·

]

= eR(x)/x�
∞

∑
k1=0

∞

∑
k2=0

· · ·
∞

∑
km=0

1
k1!k2! · · ·km!

( c1

x1+�

)k1
( c2

x2+�

)k2 · · ·
( cm

xm+�

)km

= eR(x)/x�
∞

∑
k1=0

∞

∑
k2=0

· · ·
∞

∑
km=0

ck1
1 ck2

2 · · ·ckm
m

k1!k2! · · ·km!
1

x(1+�)k1+(2+�)k2+···+(m+�)km
. (2.23)

Equating the coefficients by the equal powers of x in (2.22) and (2.23), we see that

d j = ∑
(1+�)k1+(2+�)k2+···+( j+�)k j= j

ck1
1 ck2

2 · · · ckj
j

k1!k2! · · · k j!
.

This completes the proof of Theorem 2.3. �
Setting (�,r) = (0,1) in (2.20), yields (1.7). Here, from (2.20), we give several

explicit expressions: as x → ∞ ,

Γ(x+1)∼
√

2π
(

x+
1
6

)(x
e

)x
(

1+
1

24x2 −
23

1080x3 + · · ·
)1/6

, (2.24)

Γ(x+1)∼
√

2π
(

x+
1
6

)(x
e

)x
(

1+
1

12x2 −
23

540x3 + · · ·
)1/12

, (2.25)

Γ(x+1)∼
√

2π
(

x+
1
6

)(x
e

)x
(

1+
1

6x2 −
23

270x3 + · · ·
)1/24

, (2.26)
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Γ(x+1)∼
√

2π
(

x+
1
6

)(x
e

)x
(

1+
1

144x3 −
23

6480x4 + · · ·
)x

. (2.27)

From (2.6) we obtain the following asymptotic expansion:

Γ(x+1)∼
√

2π
(

x+
1
6

)(x
e

)x
exp

(
1

144x2 −
23

6480x3 +
1

10368x4 + · · ·
)

. (2.28)

The formula (2.28) motivate us to observe the following theorem.

THEOREM 2.4. For x � 1 ,√
2π
(

x+
1
6

)(x
e

)x
< Γ(x+1) <

√
2π
(

x+
1
6

)(x
e

)x
exp

(
1

144x2

)
. (2.29)

Proof. The first inequality in (2.29) has been proved in [3, 21]. Here we only
prove the second inequality in (2.29). It follows from a known result (see [2, Theorem
8]) that, for x > 0,

ln

(
Γ(x+1)√
2πx(x/e)x

)
<

1
12x

. (2.30)

It is well-known that

2n

∑
j=1

(−1) j−1

j
x j < ln(1+ x) <

2n+1

∑
j=1

(−1) j−1

j
x j, |x| < 1,

which yields

2n

∑
j=1

(−1) j−1

j
1

6 jx j < ln

(
1+

1
6x

)
<

2n+1

∑
j=1

(−1) j−1

j
1

6 jx j , |x| > 1
6
.

In particular, we have for x > 1
6 ,

1
6x

− 1
72x2 < ln

(
1+

1
6x

)
. (2.31)

By using (2.30) and (2.31), we have, for x � 1,

ln

⎛
⎝ Γ(x+1)√

2πx
(
1+ 1

6x

)(
x
e

)x
⎞
⎠− 1

144x2

= ln

(
Γ(x+1)√
2πx(x/e)x

)
− 1

2
ln

(
1+

1
6x

)
− 1

144x2

<
1

12x
− 1

2

(
1
6x

− 1
72x2

)
− 1

144x2 = 0.

The proof of Theorem 2.4 is complete. �
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REMARK 2.1. Batir [3, Theorem 1.6] proved that for x � 1,

√
2π (x+a)

(x
e

)x
< Γ(x+1) �

√
2π (x+b)

(x
e

)x
(2.32)

with the best possible constants

a =
1
6

= 0.166666 . . . and b =
e2

2π
−1 = 0.176005.

For x > 1.6425, the upper in (2.29) is better than one in (2.32).
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[15] D. CVIJOVIĆ,New identities for the partial Bell polynomials, Appl. Math. Lett. 24 (2011), 1544–1547.
[16] R. W. GOSPER, Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci.

USA 75 (1978) 40–42.
[17] H. W. GOULD, The Girard-Waring power sum formulas for symmetric functions and Fibonacci se-

quences, Fibonacci Quart. 37 (1999), 135–140.
[18] E. A. KARATSUBA, On the asymptotic representation of the Euler gamma function by Ramanujan, J.

Comput. Appl. Math. 135 (2001), 225–240.
[19] P. LUSCHNY, Approximation formulas for the factorial function n!,

http://www.luschny.de/math/factorial/approx/SimpleCases.html.
[20] C. MORTICI, Sharp inequalities related to Gosper’s formula, C. R. Math. Acad. Sci. Paris 348 (2010),

137–140.
[21] C. MORTICI, On Gospers formula for the Gamma function, J. Math. Inequal. 5 (2011), 611–614.



ASYMPTOTIC FORMULAS FOR THE GAMMA FUNCTION BY GOSPER 551

[22] G. NEMES, More accurate approximations for the gamma function, Thai J. Math. 9 (2011), 21–28.
[23] J. RIORDAN, Combinatorial Identities, Reprint of the 1968 original, Robert E. Krieger Publishing

Co., Huntington, NY, 1979.

(Received May 25, 2012) Long Lin
School of Mathematics and Informatics

Henan Polytechnic University
Jiaozuo City 454000, Henan Province, China

e-mail: linlong1978@sohu.com

Chao-Ping Chen
School of Mathematics and Informatics

Henan Polytechnic University
Jiaozuo City 454000, Henan Province, China

e-mail: chenchaoping@sohu.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


