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THE GENERALIZED Lp –WINTERNITZ PROBLEM

TONGYI MA

(Communicated by J. Pečarić)

Abstract. This article introduced the notion of the (i, j) type Lp -affine surface area of convex
body in R

n , and discussed its some proposition. In addition, we consider the more general
Lp -Winterniz monotonicity problem about the (i,0) type Lp -affine surface area and i th Lp -
projection body in R

n , and get a positive answer in all dimensions.

1. Introduction

Let K n denote the set of convex bodies (compact, convex subsets with non-empty
interiors)in Euclidean space R

n , K n
o and K n

c denote the set of convex bodies con-
taining origin in their interiors and the set of origin-symmetric convex bodies in K n ,
respectively. Let Sn−1 denote the unit sphere in R

n , V (K) denote the n -dimensional
volume of body K . If K is the standard unit ball B in R

n , then it is denoted as
ωn = V (B) .

The classical curvature function of convex body is defined as follows (see [5]): A
convex body K ∈K n is said to have a classical curvature function f (K, ·) : Sn−1 → R ,
if its surface area measure S(K, ·) is absolutely continuous with respect to spherical
Lebesgue measure S , and

dS(K, ·)
dS

= f (K, ·). (1)

We write F n to denote the set of all bodies in K n that has a positive continuous
curvature function. Let F n

o and F n
c denote the set of all bodies in K n

o and K n
c ,

respectively, and both of them have a positive continuous curvature function.
Let K ∈ F n , then the affine surface area Ω(K) , of K is defined by (see [4, 6, 9])

Ω(K) =
∫

Sn−1
f (K,u)

n
n+1 dS(u), (2)

where the integration is with respect to spherical Lebesgue measure on Sn−1 .
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Winternitz in [1] proved the following results: If K ∈F n,E is an ellipsoid in R
n ,

and satisfying K ⊂E , then Ω(K) � Ω(E) . Subsequently, Petty in [18] defines a special
convex sets of elliptic type:

V n = {K ∈ F n
o : ∃Q ∈ K n

c s.t. f (K, ·) = h(Q, ·)−(n+1)},
and popularized Winternitz’s monotonicity results: Let K ∈F n and L ∈ V n , if K ⊆ L ,
then Ω(K) � Ω(L) .

In [5], Lutwak defines a special convex sets:

W n = {Q ∈ F n
o : ∃Z ∈ Πn,s.t. f (Q, ·) = h(Z, ·)−(n+1)},

where Πn = {ΠK : K ∈ K n} is set of the classical projection bodies. He proved that
between the projection body and the affine surface area have the similar monotonicity:
Let K ∈ K n , L ∈ W n and ΠK ⊆ ΠL , then Ω(K) � Ω(L) .

Based on the classical affine surface area, Lutwak in [9] introduced the notion of
mixed affine surface area and obtained some isoperimetric inequalities for this notion.
In 1996, Lutwak in [6] showed the following notion of Lp -affine surface area: For
K ∈ F n

o , the Lp -affine surface area, Ωp(K) , of K is defined by

Ωp(K) =
∫

Sn−1
fp(K,u)

n
n+p dS(u), (3)

where fp(K) is the Lp -curvature function of the convex body K .
Further, Lutwak is given the extension of the concept of Lp -affine surface area as

follows (see [6]): For p � 1 and K ∈ K n
o , the Lp -affine surface area, Ωp(K) , of K

can be defined by

n−
p
n Ωp(K)

n+p
n = inf{nVp(K,Q∗)V (Q)

p
n : Q ∈ S n

o }, (4)

where Vp(K,L) is the Lp -mixed volume of body K and L , S n
o denote the set of star

bodies (about the origin).
Lutwak, Yang and Zhang posed the notion of Lp -projection body as follows (see

[10, 14]): For each K ∈ K n and p � 1, the Lp -projection body, ΠpK , of K is an
origin-symmetric convex body whose support function is given by

hp
ΠpK

(u) =
1

nωncn−2,p

∫
Sn−1

|〈u,v〉|pdSp(K,v), (5)

for all u ∈ Sn−1 , where Sp(K, ·) is a positive Borel measure on Sn−1 , called the Lp -
surface area measure of K , and

cn,p =
ωn+p

ω2ωnωp−1
.

The well-known Lp -Winterniz monotonicity problem can be expressed as follows:
If K and L are two origin-symmetric convex bodies in R

n , and both of them have a
positive continuous curvature function. Suppose that

ΠpK ⊆ ΠpL
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for p � 1. Does it follow that

Ωp(K) � Ωp(L)?

The Lp -Winterniz monotonicity problem was solved independently by Yuan, Lv
and Leng ([23]), as well as Ma and Wang ([13]). Yuan, Lv and Leng defines a special
convex sets:

W n
p = {Q ∈ F n

o : ∃Z ∈ Πn
p,s.t. fp(Q, ·) = h(Z, ·)−(n+p)},

where Πn
p = {ΠpK : K ∈ K n} is set of the Lp -projection bodies. And they proved the

following result:

THEOREM A. Let K ∈ K n
o ,L ∈ W n

p and n 
= p � 1 . If ΠpK ⊆ ΠpL, then

Ωp(K) � Ωp(L).

Ma and Wang in [13] proved that the Lp -Winterniz monotonicity problem has a
positive answer if and only if for every Q ∈ F n

c such that (Rn,‖ · ‖ΛpQ) is isometric
embedding to a subspace of Lp , where ΛpL denotes Lp -curvature image of L ∈ F n

o .
Wang and Leng in [22] shown the notion of i th Lp -projection body as follows: For

each K ∈ K n , real p � 1 and i = 0,1, · · · ,n− 1, the i th Lp -projection body, Πp,iK ,
of K is an origin-symmetric convex body whose support function is given by

hp
Πp,iK

(u) =
1

nωncn−2,p

∫
Sn−1

|〈u,v〉|pdSp,i(K,v), (6)

for all u ∈ Sn−1 . Where Sp,i(K, ·) (i = 0,1, · · · ,n−1) is the i th Lp -surface area mea-
sure with n− i−1 copies of K and i copies of B . More precisely, the Borel measure
Sp,i(K, ·) on Sn−1 , is defined by ([7])

Sp,i(K,ω) =
∫

ω
h1−p

K (u)dSi(K,u),

for each Borel ω ⊂ Sn−1 . If i = 0, Sp,i(K, ·) is just Lp -surface area measure Sp(K, ·) .
A convex body M is called the i th Lp -projection body if there is a convex body K
such that M = Πp,iK . Obviously, Πp,0K = ΠpK . For the standard unit ball B , we have
Πp,iB = B .

Recently, Liu, Wang and He ([11]), Lu and Wang ([12]), Ma and Liu ([15,16])
independently proposed the following concept of i th Lp -curvature function of convex
body: Let p � 1, i = 0,1, · · · ,n−1. A convex body K ∈K n

o is said to have an i th Lp -
curvature function fp,i(K, ·) : Sn−1 → R , if its i th Lp -surface area measure Sp,i(K, ·)
is absolutely continuous with respect to spherical Lebesgue measure S , and has the
Radon-Nikodym derivative

dSp,i(K, ·)
dS

= fp,i(K, ·). (7)
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If the i th surface area measure Si(K, ·) is absolutely continuous with respect to
spherical Lebesgue measure S , we have

fp,i(K,u) = h(K,u)1−p fi(K,u), (8)

where fi(K, ·) is called the i th curvature function of a body K ∈ K n
o (see [7]). Obvi-

ously, f0(K, ·) = f (K, ·) and fp,0(K, ·) = fp(K, ·) .
We write F n

i to denote the subset of K n that has a positive continuous i th cur-
vature function. Let F n

i,o,F
n
i,c to denote the subset of all bodies in K n

o ,K n
c , respec-

tively, and both of them have a positive continuous i th curvature function. In particular,
F n

0 := F n , F n
0,o := F n

o , F n
0,c := F n

c .
According to the i th Lp -curvature function fp,i(K, ·) , we have defined the concept

of (i, j) type Lp -affine surface area Ω(i)
p, j(K) of convex body K ∈ K n

o (see Section

3). In particular, the (i,0) type Lp -affine surface area Ω(i)
p (K) = Ω(i)

p,0(K) defined as
follows:

DEFINITION 1.1. For K ∈ F n
i,o and p � 1, the (i,0) type Lp -affine surface area,

Ω(i)
p (K) , of K is defined by

Ω(i)
p (K) =

∫
Sn−1

fp,i(K,u)
n−i

n+p−i dS(u). (9)

Obviously, Ω(0)
p (K) is just Lp -affine surface area Ωp(K) .

Together with the i th Lp -projection body Πp,iK and the (i,0) type Lp -affine sur-

face area Ω(i)
p (K) , a very natural the generalized Lp -Winterniz monotonicity problem

is: Let K and L are two origin-symmetric convex bodies in R
n , and both of them have

a positive continuous i th curvature function. Suppose that

Πp,iK ⊆ Πp,iL

for i = 0,1, · · · ,n−1 and p � 1. Does it follow that

Ω(i)
p (K) � Ω(i)

p (L)?

The main purpose of this article is study specific affirmative answers to the gen-
eralized Lp -Winterniz monotonicity problem for the i th Lp -projection body Πp,iK .
At the same time, some properties of the (i, j) type Lp -affine surface area will be dis-
cussed.

We denote

W n
p,i = {Q ∈ F n

i,c : ∃Z ∈ Πn
p,i, s.t. fp,i(Q, ·) = h(Z, ·)−(n+p−i)},

and
Pn

p,i = {M ∈ F n
i,c : ∃Q ∈ Πn

p,i, s.t. Q∗ = Λp,iM},
where Πn

p,i = {Πp,iK : K ∈ K n} is the set of i th Lp -projection bodies, Λp,iM is the
i th Lp -curvature image of convex body M (see Section 3).

From the definition (27) of the i-th Lp -curvature image, we easily see that

K ∈ W n
p,i if and only if K ∈ Pn

p,i.

Our main result is the following two Theorems.
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THEOREM 1.1. Let n− i 
= p � 1 , i = 0,1, · · · ,n−1 , K ∈ K n
o and L ∈ W n

p,i . If

Πp,iK ⊆ Πp,iL,

then
Ω(i)

p (K) � Ω(i)
p (L).

THEOREM 1.2. Let n− i 
= p � 1 , i = 0,1, · · · ,n−1 , K ∈ K n
o and L ∈ W n

p,i . If
for all Q ∈ K n

o such that
Wp,i(K,Q) � Wp,i(L,Q),

then
Ω(i)

p (K) � Ω(i)
p (L).

Contents of the paper. In Section 2 we will introduce some preparatory knowl-
edge of convex body geometry; In Section 3 we propose two new concepts of the
(i,0) type Lp -affine surface area and (i, j) type Lp -affine surface area. In addition,
some properties for the i th Lp -curvature image and (i, j) type Lp -affine surface area
have been discussed; In Section 4 we will study the answers to the generalized Lp -
Winterniz monotonicity problem, that is to complete the proof of Theorem 1.1 and
Theorem 1.2.

2. Preliminaries

2.1. Support function, radial function and polar body of convex body

If K ∈ K n , then its support function hK = h(K, ·) is defined by h(K,x) =
max{〈x,y〉 : y∈K}, x∈R

n , where 〈x,y〉 denotes the standard inner product of x and y .
Obviously, if K ∈K n , λ is a positive constant and x ∈R

n , then h(λK,x) = λh(K,x) .
If K is a compact star-shaped (about the origin) in R

n , its radial function ρK =
ρ(K, ·) is defined by ρ(K,x)= max{λ � 0 : λx∈K},x∈R

n\{0} . When ρK is positive
and continuous, K is called a star body (about the origin). Let S n

o denote the set of
star bodies (about the origin) in R

n , and let S n
c denote the set of origin-symmetric star

bodies in S n
o . Two star bodied K and L are said to be dilates each other if ρK(u)/ρL(u)

is independent on u ∈ Sn−1 . Obviously, for K ∈ S n
o , α > 0 and x ∈ R

n , we have
ρ(αK,x) = αρ(K,x) and ρ(K,αx) = α−1ρ(K,x) ; If K ∈ S n

o , φ ∈ GL(n) , x ∈ R
n ,

then ρ(φK,x) = ρ(K,φ−1x) .
For K ∈K n

o , the polar body, K∗ , of K is defined by K∗ = {x∈ R
n : 〈x,y〉� 1,y∈

K} . Obviously, we have (K∗)∗ = K . If λ > 0, then (λK)∗ = λ−1K∗ ; If φ ∈ GL(n) ,
then

(φK)∗ = φ−tK∗. (10)

For K ∈ K n
o , the support and radial function of the polar body, K∗ , of K are

defined respectively by (see [2, 17])

hK∗(u) =
1

ρK(u)
and ρK∗(u) =

1
hK(u)

, (11)

for all u ∈ Sn−1 .



602 TONGYI MA

2.2. The Lp -mixed volume and Lp -mixed quermassintegrals

For p � 1, K,L ∈ K n
o and ε > 0, the Firey Lp -combination K +p ε ·L ∈ K n

o is
defined by (see [7])

h(K +p ε ·L, ·)p = h(K, ·)p + εh(L, ·)p,

where “ ·” in ε ·L denotes the Firey scalar multiplication, i.e., ε ·L = ε
1
p L .

Associated with the Firey Lp -combination, the Lp -mixed volume Vp(K,L) of K
and L is defined (see [7])

n
p
Vp(K,L) = lim

ε→0+

V (K +p ε ·L)−V(K)
ε

. (12)

Corresponding to each K ∈ K n
o , there is a positive Borel measure Sp(K, ·) on

Sn−1 such that (see [14])

Vp(K,L) =
1
n

∫
Sn−1

hp
L(v)dSp(K,v), (13)

for each L ∈ K n
o . the measure Sp(K, ·) is just the Lp -surface area measure of K ,

which is absolutely continuous with respect to classical surface area measure S(K, ·) ,
and has the Radon-Nikodym derivative

dSp(K, ·)
dS(K, ·) = h1−p(K, ·). (14)

The mixed quermassintegrals Wi(K,L) with n− i− 1 copies of K , i copies of
L(0,1, · · · ,n−1) is defined by (see [7])

(n− i)Wi(K,L) = lim
ε→0+

Wi(K + ε ·L)−Wi(K)
ε

. (15)

If L = B , then Wi(K,B) is just i th quermassintegrals Wi(K) .
For K ∈ K n and i = 0,1, · · · ,n−1, there exists a regular Borel measure Si(K, ·)

on Sn−1 , such that the mixed quermassintegrals Wi(K,L) has the following integral
representation (see [7, 19]):

Wi(K,L) =
1
n

∫
Sn−1

hL(v)dSi(K,v) (16)

for all L ∈ K n . As a general reference for the mixed surface area measure we rec-
ommend the article by Lutwak ([7]). From the fact that Si(K, ·) is generated only by
i copies of B and (n− 1− i) copies of K , we know that the measure Sn−1(K, ·) is
independent of the body K , and is just ordinary Lebesgue measure S on Sn−1 . In fact,
the i th surface area measure of the unit ball, Si(B, ·) = S for all i . The surface area
measure S0(K, ·) will frequently be written simply as S(K, ·) .
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For K,L∈K n
o , ε > 0 and real p � 1, the Lp -mixed quermassintegrals, Wp,i(K,L) ,

of K and L (i = 0,1, . . . ,n−1) are defined by (see [7])

n− i
p

Wp,i(K,L) = lim
ε→0+

Wi(K +p ε ·L)−Wi(K)
ε

. (17)

Further, Lutwak ([7]) has shown that, for p � 1, i = 0,1, . . . ,n−1 and each K ∈
K n

o , there exists a positive Borel measure Sp,i(K, ·) on Sn−1 , such that the Lp -mixed
quermassintegral Wp,i(K,L) has the following integral representation:

Wp,i(K,L) =
1
n

∫
Sn−1

hp
L(v)dSp,i(K,v), (18)

for all L ∈ K n
o . It turns out that the measure Sp,i(K, ·) (i = 0,1, . . . ,n−1) on Sn−1 is

absolutely continuous with respect to Si(K, ·) , and has the Radon-Nikodym derivative

dSp,i(K, ·)
dSi(K, ·) = h1−p(K, ·). (19)

From the definition (18) of Lp -mixed quermassintegrals and the definition (13)
of Lp -mixed volume, it follows immediately that, for K,L ∈ K n

o and for all p � 1,
Wp,i(K,K) = Wi(K) , Wp,0(K,L) = Vp(K,L) .

If K ∈ F n
i,o , L ∈ K n

o , p � 1, by definition (7), then the formula (18) of the Lp -
mixed quermassintegral can be rewritten as follows:

Wp,i(K,L) =
1
n

∫
Sn−1

h(L,u)p fp,i(K,u)dS(u). (20)

2.3. Dual quermassintegrals and Lp -dual mixed quermassintegrals

For K ∈ S n
o and any real i , the dual quermassintegrals, W̃i(K) , of K are defined

by (see [8])

W̃i(K) =
1
n

∫
Sn−1

ρn−i
K (u)dS(u). (21)

Obviously, W̃0(K) = V (K) .
For K,L ∈ S n

o , p � 1 and ε > 0, the Lp -harmonic radial combination K +−p ε ·
L ∈ Sn

o is defined by (see [7])

ρ(K +−p ε ·L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p.

Note that here “ε ·L” is different from “ε ·L” in Lp -combination.
For K,L∈S n

o , ε > 0, p � 1 and real i 
= n , the Lp -dual mixed quermassintegrals,
W̃−p,i(K,L) , of K and L are defined by (see [21])

n− i
−p

W̃−p,i(K,L) = lim
ε→0+

W̃i(K +−p ε ·L)−W̃i(K)
ε

. (22)
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If i = 0, we easily see that (22) is just definition of Lp -dual mixed volume, i.e.,
W̃−p,0(K,L) = Ṽ−p(K,L) .

From (22), the integral representation of the Lp -dual mixed quermassintegrals is
given by (see [21]): If K,L ∈ S n

o , p � 1, and real i 
= n , i 
= n+ p , then

W̃−p,i(K,L) =
1
n

∫
Sn−1

ρn+p−i
K (u)ρ−p

L (u)dS(u). (23)

Together with (21) and (23), for K ∈ S n
o , p � 1, and i 
= n,n + p , we have

W̃−p,i(K,K) = W̃i(K) .

2.4. The ith curvature function, Lp -curvature function, Lp -curvature image and
ith Lp -curvature image

A body K ∈ K n is said to have a continuous i th curvature function fi(K, ·)) :
Sn−1 → [0,∞) if and only if Si(K, ·) is absolutely continuous with respect to S and has
the Radon-Nikodym derivative (see [7])

dSi(K, ·)
dS

= fi(K, ·). (24)

A convex body K ∈K n
o is said to have a Lp -curvature function fp(K, ·) : Sn−1 →

R , if its Lp -surface area measure Sp(K, ·) is absolutely continuous with respect to
spherical Lebesgue measure S , and has the Radon-Nikodym derivative (see [6])

dSp(K, ·)
dS

= fp(K, ·). (25)

In addition, Lutwak in [6] showed the notion of Lp -curvature image as follows: For
each K ∈ F n

o and p � 1, define ΛpK ∈ S n
o , the Lp -curvature image of K , by

ρ(ΛpK, ·)n+p =
V (ΛpK)

ωn
fp(K, ·). (26)

Note that for p = 1, this definition is different from the classical curvature image (see
[6]).

According to the concept of i th Lp -curvature function of convex body, we intro-
duce the concept of i th Lp -curvature image of convex body as follows:

DEFINITION 2.1. For each K ∈ F n
i,o (i = 0,1, · · · ,n− 1) and real p � 1, define

Λp,iK ∈ S n
o , the i th Lp -curvature image of K , by

ρ(Λp,iK, ·)n+p−i =
W̃i(Λp,iK)

ωn
fp,i(K, ·). (27)

Taking i = 0 in (27), using the formula W̃0(K) = V (K) and fp,0(K, ·) = fp(K, ·) ,
we have Λp,0K = ΛpK .
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2.5. The ith Lp -mixed affine surface area and ith Lp -affine surface area

Luwak in [6] introduced the notion of Lp -mixed affine surface area: For p � 1,
the Lp -mixed affine surface area, Ωp(K1, · · · ,Kn) , of K1, · · · ,Kn ∈ F n

o is defined by

Ωp(K1, · · · ,Kn) =
∫

Sn−1
[ fp(K1,u) · · · fp(Kn,u)]

1
n+p dS(u). (28)

Taking K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = L (i = 0, · · · ,n) in (28),
we denote Ωp,i(K,L) = Ωp(K, · · · ,L, · · · ,L) , with n− i copies of K , and i copies of
L . From this, if i is any real, Wang and Leng (see [20]) introduced the concept of the
i th Lp -mixed affine surface area as follows: For K,L ∈ F n

o , p � 1, i ∈ R , the i th
Lp -mixed affine surface area, Ωp,i(K,L) , of K,L is defined by

Ωp,i(K,L) =
∫

Sn−1
fp(K,u)

n−i
n+p fp(L,u)

i
n+p dS(u). (29)

Specially, for the case i = −p , it follows that

Ωp,−p(K,L) =
∫

Sn−1
fp(K,u) fp(L,u)

−p
n+p dS(u). (30)

If p = 1, then Ω1,−1(K,L) is just Ω−1(K,L) (see [4]).
Let L = B in (29) and write Ωp,i(K,B) = Ωp,i(K) . Then i th Lp -affine surface

area of K ∈ F n
o is expressed as follows:

Ωp,i(K) =
∫

Sn−1
fp(K,u)

n−i
n+p dS(u). (31)

3. The (i, j)type Lp -affine surface area

In this section, based on the concept of i th Lp -curvature function of convex body,
we introduced the notion of the i-type Lp -mixed affine surface area of convex bodies
K1,K2, · · · ,Kn−i (i = 0,1, · · · ,n−1) as follows:

DEFINITION 3.1. For p � 1, i = 0,1, · · · ,n−1, the i-type Lp -mixed affine sur-

face area, Ω(i)
p (K1, · · · ,Kn−i) , of K1, · · · ,Kn−i ∈ F n

i,o is defined by

Ω(i)
p (K1, · · · ,Kn−i) =

∫
Sn−1

[ fp,i(K1,u) · · · fp,i(Kn−i,u)]
1

n+p−i dS(u). (32)

From (32), let K1 = · · ·= Kn−i− j = K and Kn−i− j+1 = · · ·= Kn−i = L ( j = 0, · · · ,n− i) ,
we denote Ω(i)

p, j(K,L) = Ω(i)
p (K, · · · ,K,L, · · · ,L) , with n− i− j copies of K , and j

copies of L . From this, if j is any real, we can define that:

DEFINITION 3.2. For K,L ∈ F n
i,o , i = 0, · · · ,n−1, p � 1, j ∈ R , the (i, j) type

Lp -mixed affine surface area, Ω(i)
p, j(K,L) , of K,L is defined by

Ω(i)
p, j(K,L) =

∫
Sn−1

fp,i(K,u)
n−i− j
n+p−i fp,i(L,u)

j
n+p−i dS(u). (33)
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Specially, for the case j = −p in (33), it follows that

Ω(i)
p,−p(K,L) =

∫
Sn−1

fp,i(K,u) fp,i(L,u)
−p

n+p−i dS(u). (34)

Take L = B in (33), and write

Ω(i)
p, j(K) := Ω(i)

p, j(K,B). (35)

Because for u ∈ Sn−1 , Si(B,u) = S , h(B,u) = 1, using this, (19) and (7) we get
fp,i(B,u) = 1. This, together with (33) and (35) yield

Ω(i)
p, j(K) =

∫
Sn−1

fp,i(K,u)
n−i− j
n+p−i dS(u), (36)

Ω(i)
p, j(K) is called the (i, j) type Lp -affine surface area of K ∈ F n

i,o .
Obviously, from (29), (33), (9) and (36), we have that

Ω(0)
p, j(K,L) = Ωp, j(K,L), (37)

Ω(i)
p,0(K) = Ω(i)

p (K), (38)

Ω(i)
p,0(K,L) = Ω(i)

p (K), (39)

Ω(i)
p, j(K,K) = Ω(i)

p (K), (40)

Ω(i)
p,n−i(K,L) = Ω(i)

p (L). (41)

PROPOSITION 3.1. Let K ∈ F n
i,o , i = 0,1, · · · ,n−1 , j ∈ R and p � 1 , then

Ω(i)
p, j(K) = n

(
ωn

W̃i(Λp,iK)

) n−i− j
n+p−i

W̃i+ j(Λp,iK). (42)

In particular, take j = 0 in (42), then

Ω(i)
p (K) = nω

n−i
n+p−i
n W̃i(Λp,iK)

p
n+p−i . (43)

Proof. From (36), (27) and (21), we have

Ω(i)
p, j(K) =

∫
Sn−1

fp,i(K,u)
n−i− j
n+p−i dS(u)

=
(

ωn

W̃i(Λp,iK)

) n−i− j
n+p−i

∫
Sn−1

ρ(Λp,iK,u)n−i− jdS(u)

=
(

ωn

W̃i(Λp,iK)

) n−i− j
n+p−i

W̃i+ j(Λp,iK). �
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PROPOSITION 3.2. Let p � 1 , K ∈ F n
i,o and i = 0,1, · · · ,n−1 , then

Wp,i(K,Q∗) =
ωn

W̃i(Λp,iK)
W̃−p,i(Λp,iK,Q), (44)

for each Q ∈ K n
o .

Proof. For each Q ∈ K n
o , from (20), (11), (27), (21) and (23), we have

Wp,i(K,Q∗) =
1
n

∫
Sn−1

ρ(Q,u)−p fp,i(K,u)dS(u)

=
ωn

nW̃i(Λp,iK)

∫
Sn−1

ρ(Q,u)−pρ(Λp,iK,u)n+p−idS(u)

=
ωn

W̃i(Λp,iK)
W̃−p,i(Λp,iK,Q). �

PROPOSITION 3.3. If K ∈ F n
i,o and p � 1 , then

(i) For φ ∈ O(n) ,
Λp,iφK = φ−tΛp,iK, (45)

where O(n) denotes orthogonal transformation group in R
n , φ−t denotes the inverse

of the transpose of φ .
(ii) For n− i 
= p � 1 , λ > 0 ,

Λp,iλK = λ
n−p−i

p Λp,iK. (46)

(iii) For the standard unit ball B in R
n ,

Λp,iB = B. (47)

To prove Proposition 3.3, we first give several lemmas.

LEMMA 3.1. (see [7]) Suppose K,L ∈ K n
o , p � 1 and i = 0,1, · · · ,n− 1 . If

φ ∈ O(n) , then
Wp,i(φK,φL) = Wp,i(K,L). (48)

LEMMA 3.2. (see [7]) Suppose K,L ∈ K n
o , p � 1 and i = 0,1, · · · ,n−1 . Then

for any real α,β > 0 ,

Wp,i(αK,βL) = αn−i−pβ pWp,i(K,L). (49)

LEMMA 3.3. (see [14]) Suppose K,L ∈S n
o , p � 1 , and real i ∈ R , i 
= n,n+ p.

Then for any φ ∈ O(n) ,

W̃−p,i(φK,φL) = W̃−p,i(K,L). (50)

From (50), we immediately have that

W̃−p,i(φK,L) = W̃−p,i(K,φ−1L), W̃i(φK) = W̃i(K). (51)
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LEMMA 3.4. Suppose K,L ∈ S n
o , p � 1 , and real i ∈ R , i 
= n,n+ p. Then for

any real α,β > 0 ,

W̃−p,i(αK,βL) = αn+p−iβ−pW̃−p,i(K,L). (52)

Thus, when β = 1 ,
W̃−p,i(αK,L) = αn+p−iW̃−p,i(K,L). (53)

Proof. Because for K ∈ S n
o and μ > 0, we know that ρμK(x) = μρK(x) . This,

together with the formula (23) of Lp -dual mixed quermassintegrals, we easily obtain
(52). �

LEMMA 3.5. (see [14]) Suppose K,L ∈ S n
o , p � 1 , i ∈ R and i 
= n, i 
= n+ p.

Then for all Q ∈ S n
o , either

W̃−p,i(K,Q) = W̃−p,i(L,Q) or W̃−p,i(Q,K) = W̃−p,i(Q,L) (54)

is true if and only if K = L.

Proof of Proposition 3.3. (i) Since φ ∈ O(n) , then from (44), (48), (10), (50) and
(51), we have

W̃−p,i(Λp,iφK,Q)
W̃i(Λp,iφK)

=
Wp,i(φK,Q∗)

ωn
=

Wp,i(φK,φφ−1Q∗)
ωn

=
Wp,i(K,φ−1Q∗)

ωn
=

Wp,i(K,(φ tQ)∗)
ωn

=
W̃−p,i(Λp,iK,φ tQ)

W̃i(Λp,iK)

=
W̃−p,i(φ−tΛp,iK,φ−tφ tQ)

W̃i(φ−tΛp,iK)
=

W̃−p,i(φ−tΛp,iK,Q)

W̃i(φ−tΛp,iK)
.

Take Q = Λp,iφK in the above formula, and note that W̃−p,i(φ−tΛp,iK,φ−tΛp,iK)=
W̃i(φ−tΛp,iK) , we have

W̃−p,i(φ−tΛp,iK,φ−tΛp,iK) = W̃−p,i(φ−tΛp,iK,Λp,iφK).

By the above equation and Lemma 3.5, we immediately yields (45).
(ii) Suppose K ∈ F n

i,o and λ > 0, then hK(λx) = λhK(x) for any x ∈ R
n . From

this and (8) and (24), and note that Si(λK, ·) = λ n−i−1Si(K, ·) , we have

fp,i(λK, ·) = h1−p(λK, ·) fi(λK, ·) = λ 1−ph1−p(K, ·)dSi(λK, ·)
dS

= λ n−p−ih1−p(K, ·)dSi(K, ·)
dS

= λ n−p−ih1−p(K, ·) fi(K, ·)
= λ n−p−i fp,i(K, ·). (55)
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This eq. (55), together with the definition (27) of i th Lp -curvature image, eq. (52) with
L = K and α = β = λ > 0, we have that for K ∈ F n

i,o ,

ρ(Λp,iλK, ·)n+p−i

W̃i(Λp,iλK)
=

fp,i(λK, ·)
ωn

=
λ n−p−i fp,i(K, ·)

ωn

=
λ n−p−iρ(Λp,iK, ·)n+p−i

W̃i(Λp,iK)
=

ρ(λ
n−p−i

p Λp,iK, ·)n+p−i

W̃i(λ
n−p−i

p Λp,iK)
,

i.e.,

ρ(Λp,iλK, ·) =

(
W̃i(Λp,iλK)

W̃i(λ
n−p−i

p Λp,iK)

) 1
n+p−i

ρ(λ
n−p−i

p Λp,iK, ·). (56)

This (56), combined with the formula (21) of the dual quermassintegrals, we have

W̃i(Λp,iλK) = W̃i(λ
n−p−i

p Λp,iK).

Therefore, from (56) we get

ρ(Λp,iλK, ·) = ρ(λ
n−p−i

p Λp,iK, ·).

This immediately yields (46).
(iii) Because of fp,i(B, ·) = 1, this combined with (36), we give

Ω(i)
p, j(B) =

∫
Sn−1

fp,i(B,u)
n−i− j
n+p−i dS(u) =

∫
Sn−1

dS(u) = nωn.

Also according to (43), we can get

W̃i(Λp,iB)
p

n+p−i =
1
n

ω
−(n−i)
n+p−i

n Ω(i)
p,i(B) = ω

p
n+p−i
n ,

therefore, W̃i(Λp,iB) = ωn . Further, by definition (27) of the i th Lp -curvature image,
we have

ρ(Λp,iB, ·)n+p−i =
W̃i(Λp,iB)

ωn
fp,i(B, ·) = 1,

i.e., ρ(Λp,iB, ·) = 1, this yields (47). �

PROPOSITION 3.4. If p � 1 , L ∈ F n
i,o , then

Ω(i)
p (L)n+p−i � nn+p−iWp,i(L,K∗)n−iW̃i(K)p, (57)

for all K ∈ K n
o , with equality if and only if K and Λp,iL are dilates.
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Proof. For L ∈ F n
i,o and each K ∈ K n

o , from (9), (11), (20), (21) and Hölder’s
inequality, we have

Ω(i)
p (L)n+p−i

=
[∫

Sn−1
fp,i(L,u)

n−i
n+p−i dS(u)

]n+p−i

=
[∫

Sn−1

(
ρ(K,u)−p fp,i(L,u)

) n−i
n+p−i

(
ρ(K,u)n−i) p

n+p−i dS(u)
]n+p−i

� nn+p−i
(

1
n

∫
Sn−1

ρ(K,u)−p fp,i(L,u)dS(u)
)n−i(1

n

∫
Sn−1

ρ(K,u)n−idS(u)
)p

= nn+p−i
(

1
n

∫
Sn−1

h(K∗,u)p fp,i(L,u)dS(u)
)n−i(1

n

∫
Sn−1

ρ(K,u)n−idS(u)
)p

= nn+p−iWp,i(L,K∗)n−iW̃i(K)p.

From this, we immediately get (57). According to the condition of equality holds in
Hölder’s inequality, we know that equality holds in (57) if and only if

ρ(K,u)−p fp,i(L,u)
ρ(K,u)n−i = c

for any u ∈ Sn−1 , where c is a constant. Combined with the definition (27) of i th
Lp -curvature image, for any u ∈ Sn−1 , we have

ρ(Λp,iL,u)n+p−i

ρ(K,u)n+p−i =
cW̃i(Λp,iL)

ωn
,

this shows that K and Λp,iL are dilates. Therefore, the equality holds in the inequality
(57) if and only if K and Λp,iL are dilates. The proof is complete. �

According to Proposition 3.4, we can give the extension definition of the (i,0) type
Lp -affine surface area of K ∈ K n

o as follows:

DEFINITION 3.3. If K ∈ K n
o , p � 1, then the (i,0) type Lp -affine surface area,

Ω(i)
p (K) , of K is defined by

n−
p

n−i Ω(i)
p (K)

n+p−i
n−i = inf

{
nWp,i(K,Q∗)W̃i(Q)

p
n−i : Q ∈ S n

o

}
. (58)

Note that for i = 0, this definition is just definition of Lp -affine surface area by Lutwak
proposed in [6].

Since for any K ∈K n
o , the i th Lp -surface area measure, Sp,i(K, ·) is well-defined,

we can gave a natural extension of eq. (34) of (i,−p) type the Lp -mixed affine surface
area Ωp,−p from F n

i,o ×F n
i,o to K n

o ×F n
i,o . Specifically, for K ∈ K n

o and L ∈ F n
i,o ,

let
Ω(i)

p,−p(K,L) =
∫

Sn−1
fp,i(L,u)

−p
n+p−i dSp,i(K,u). (59)

It is defined that for K ∈ F n
i,o , dSp,i(K, ·) = fp,i(K, ·)dS(·) . Thus (59) boils down to

(34) for K ∈ F n
i,o . Note that the case i = 0 was studied by Lv and Leng in [10].
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PROPOSITION 3.5. Suppose n− i 
= p � 1 , i = 0,1, . . . ,n−1 , and K ∈K n
o , then

Ω(i)
p (K)

n+p−i
n−i = inf

{
Ω(i)

p,−p(K,L)Ω(i)
p (L)

p
n−i : ∀L ∈ F n

i,o

}
. (60)

Proof. For K ∈ K n
o , L ∈ F n

i,o , using (18), (11), (27) and (59), we have

Wp,i(K,Λ∗
p,iL) =

1
n

∫
Sn−1

h(Λ∗
p,iL,u)pdSp,i(K,u)

=
1
n

∫
Sn−1

ρ(Λp,iL,u)−pdSp,i(K,u)

=
1
n

(
W̃i(Λp,iL)

ωn

)− p
n+p−i

∫
Sn−1

fp,i(L,u)−
p

n+p−i dSp,i(K,u)

=
1
n

(
W̃i(Λp,iL)

ωn

)− p
n+p−i

Ω(i)
p,−p(K,L),

i.e., for K ∈ K n
o , L ∈ F n

i,o ,

ω
p

n+p−i
n Ω(i)

p,−p(K,L) = nW̃i(Λp,iL)
p

n+p−iWp,i(K,Λ∗
p,iL). (61)

Together with (61) and (43), it shows that

n−
p

n−i Ω(i)
p,−p(K,L)Ω(i)

p (L)
p

n−i = nWp,i(K,Λ∗
p,iL)W̃i(Λp,iL)

p
n−i . (62)

On the other hand, from the definition (58) we know that for K ∈ K n
o and any

Q ∈ S n
o ,

n−
p

n−i Ω(i)
p (K)

n+p−i
n−i � nWp,i(K,Q∗)W̃i(Q)

p
n−i .

Take Q = Λp,iL for L ∈ F n
i,o in the above inequality, then we have

n−
p

n−i Ω(i)
p (K)

n+p−i
n−i � nW̃i(Λp,iL)

p
n−iWp,i(K,Λ∗

p,iL). (63)

Combined with (62) and (63), we immediately get for K ∈ K n
o ,

Ω(i)
p (K)

n+p−i
n−i � Ω(i)

p,−p(K,L)Ω(i)
p (L)

p
n−i , ∀L ∈ F n

i,o. (64)

From (64), we immediately get the results of Proposition 3.5. The proof is com-
plete. �

Proposition 3.5 is the generalization of result by Lv and Leng proved in [10].
From Proposition 3.5, the following corollary is obvious.

COROLLARY 3.1. If n− i 
= p � 1 , i = 0,1, . . . ,n− 1 and K ∈ K n
o , L ∈ F n

i,o ,
then

Ω(i)
p,−p(K,L) � Ω(i)

p (K)
n+p−i

n−i Ω(i)
p (L)

−p
n−i . (65)

Note that if p � 1 and K,L ∈ F n
i,o , then from the Hölder inequality, we obtain

that equality holds in (65) for n− i 
= p = 1 and 0 � i < n−1 if and only if K and L
are homothetic, for n− i 
= p > 1 and 0 � i < n if and only if K and L are dilates.
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4. The generalized Lp -Winternitz monotonicity problem

LEMMAS 4.1. If K,L ∈ K n
o , p � 1 and i = 0,1, · · · ,n−1 , then

Wp,i(L,Πp,iK) = Wp,i(K,Πp,iL). (66)

Proof. From (6), (18) and Fubini theorem, it is easy to prove Lemmas 4.1. �

THEOREM 4.1. Let L ∈ F n
i,c , p � 1 and i = 0,1, · · · ,n−1 . If L ∈ W n

p,i , then for
all K,M ∈ K n

o ,

Ω(i)
p,−p(K,L)

Ω(i)
p,−p(M,L)

� max
u∈Sn−1

h(Πp,iK,u)p

h(Πp,iM,u)p . (67)

Proof. Because L ∈ W n
p,i , then there exists Z ∈ Πn

p,i such that fp,i(L,u)
−p

n+p−i =
h(Z,u)p . Since every i th Lp -projection body is origin-symmetric convex body in R

n ,
let Z = Πp,iQ for some Q ∈ K n

o . From (59), (18) and Lemma 4.1, we have

Ω(i)
p−p(K,L)

Ω(i)
p−p(M,L)

=
∫
Sn−1 fp,i(L,u)

−p
n+p−i dSp,i(K,u)∫

Sn−1 fp,i(L,u)
−p

n+p−i dSp,i(M,u)

=
∫
Sn−1 h(Z,u)pdSp,i(K,u)∫
Sn−1 h(Z,u)pdSp,i(M,u)

=
Wp,i(K,Z)
Wp,i(M,Z)

=
Wp,i(K,Πp,iQ)
Wp,i(M,Πp,iQ)

=
Wp,i(Q,Πp,iK)
Wp,i(Q,Πp,iM)

=
∫
Sn−1 h(Πp,iK,u)pdSp,i(Q,u)∫
Sn−1 h(Πp,iM,u)pdSp,i(Q,u)

� max
Sn−1

h(Πp,iK,u)p

h(Πp,iM,u)p .

The proof is complete. �

The following result is an immediate consequence of Theorem 4.1.

COROLLARY 4.1. Let p � 1 , L ∈ F n
i,c , i = 0,1, · · · ,n−1 . If L ∈ W n

p,i , then

Ω(i)
p,−p(K,L) � Ω(i)

p,−p(M,L)

holds for all K,M ∈ K n
o satisfying Πp,iK ⊆ Πp,iM .

COROLLARY 4.2. If n− i 
= p � 1 , i = 0,1, · · · ,n− 1 , L ∈ W n
p,i and K ∈ K n

o .
Then (

Ω(i)
p (K)

Ω(i)
p (L)

) n+p−i
n−i

� max
u∈Sn−1

h(Πp,iK,u)p

h(Πp,iL,u)p . (68)
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Proof. Take M = L in Theorem 4.1. From the inequality (65) and eq. (40), we
have

max
Sn−1

h(Πp,iK,u)p

h(Πp,iL,u)p �
Ω(i)

p,−p(K,L)

Ω(i)
p,−p(L,L)

� Ω(i)
p (K)

n+p−i
n−i Ω(i)

p (L)
−p
n−i

Ω(i)
p (L)

=
(

Ω(i)
p (K)

Ω(i)
p (L)

) n+p−i
n−i

.

This proves the corollary. �

Proof of Theorem 1.1. From Corollary 4.2, we immediately get Theorem 1.1. �

Theorem 1.1 for the case i = 0 were established by Lv and Leng in [10].

Proof of Theorem 1.2. For K ∈ K n
o , L ∈ W n

p,i , and for all Q ∈ K n
o such that

Wp,i(K,Q) � Wp,i(L,Q).

Because L ∈ n
p,i and every i th Lp -projection body is origin-symmetric convex body

in R
n . Taking Q = Λ∗

p,iL , then

Wp,i(K,Λ∗
p,iL) � Wp,i(L,Λ∗

p,iL),

using the formula (18) of the Lp -mixed quermassintegral, we have∫
Sn−1

h(Λ∗
p,iL,u)pdSp,i(K,u) �

∫
Sn−1

h(Λ∗
p,iL,u)pdSp,i(L,u),

from eq. (11), this is equivalent to∫
Sn−1

ρ(Λp,iL,u)−pdSp,i(K,u) �
∫

Sn−1
ρ(Λp,iL,u)−pdSp,i(L,u). (69)

From (69) and (27), we get∫
Sn−1

fp,i(L,u)
−p

n+p−i dSp,i(K,u) �
∫

Sn−1
fp,i(L,u)

−p
n+p−i dSp,i(L,u). (70)

Together with (59), (40) and (70), we have

Ω(i)
p,−p(K,L) � Ω(i)

p (L).

Using the inequality (65) in the above inequality, then

Ω(i)
p (L) � Ω(i)

p,−p(K,L) � Ω(i)
p (K)

n+p−i
n−i Ω(i)

p (L)
−p
n−i ,

this implies

Ω(i)
p (K) � Ω(i)

p (L).

The proof is complete. �
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