lournal of
athematical
nequalities
Volume 9, Number 2 (2015), 597-614 " doi:10.7153/jmi-09-51

THE GENERALIZED L,-WINTERNITZ PROBLEM

TONGYI MA

(Communicated by J. Pecaric)

Abstract. This article introduced the notion of the (i, j)type L, -affine surface area of convex
body in R", and discussed its some proposition. In addition, we consider the more general
L, -Winterniz monotonicity problem about the (i,0)type L, -affine surface area and ith L,-
projection body in R”, and get a positive answer in all dimensions.

1. Introduction

Let 22" denote the set of convex bodies (compact, convex subsets with non-empty
interiors)in Euclidean space R”, .%." and %" denote the set of convex bodies con-
taining origin in their interiors and the set of origin-symmetric convex bodies in %",
respectively. Let §"~! denote the unit sphere in R”, V(K) denote the n-dimensional
volume of body K. If K is the standard unit ball B in R”, then it is denoted as
w, =V (B).

The classical curvature function of convex body is defined as follows (see [5]): A
convex body K € ™ is said to have a classical curvature function f(K,-):$" ! - R,
if its surface area measure S(K,-) is absolutely continuous with respect to spherical
Lebesgue measure S, and

dS(K,-)
o= (K. (M)

We write .#" to denote the set of all bodies in .#™ that has a positive continuous
curvature function. Let %) and % denote the set of all bodies in ) and 7",
respectively, and both of them have a positive continuous curvature function.

Let K € Z", then the affine surface area Q(K), of K is defined by (see [4, 6, 9])

Q(K) = [ f(Ku) 1S (), (2)

where the integration is with respect to spherical Lebesgue measure on §"~!.
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Winternitz in [1] proved the following results: If K € %" E is an ellipsoid in R",
and satisfying K C E, then Q(K) < Q(F). Subsequently, Petty in [18] defines a special
convex sets of elliptic type:

V" ={K e F}:30 €A st f(K,) =h(Q,) "V},

and popularized Winternitz’s monotonicity results: Let K € %" and L€ ¥",if KC L,
then Q(K) < Q(L).
In [5], Lutwak defines a special convex sets:

W' ={0eZ . IZcl" st f(O,) = h(Z,-)*("H)},

where I1" = {I1K : K € ™} is set of the classical projection bodies. He proved that
between the projection body and the affine surface area have the similar monotonicity:
Let Ke . #", Le#™" and TIK CTIL, then Q(K) < Q(L).

Based on the classical affine surface area, Lutwak in [9] introduced the notion of
mixed affine surface area and obtained some isoperimetric inequalities for this notion.
In 1996, Lutwak in [6] showed the following notion of L, -affine surface area: For
K € #], the L, -affine surface area, Q,(K), of K is defined by

Q,(K) folK,u) w7 dS(u), (3)

sn—1
where f,(K) is the L,-curvature function of the convex body K.
Further, Lutwak is given the extension of the concept of L, -affine surface area as
follows (see [6]): For p > 1 and K € %, the L,-affine surface area, Q,(K), of K
can be defined by

nRQ(K) T = inf{nV, (K,Q)V(Q)F : 0 € 7, 4)
where V,,(K,L) is the L,-mixed volume of body K and L, ./} denote the set of star
bodies (about the origin).

Lutwak, Yang and Zhang posed the notion of L, -projection body as follows (see
[10, 14]): For each K € " and p > 1, the L,-projection body, I1,K, of K is an
origin-symmetric convex body whose support function is given by

1
p _ p
) = e [ NSy (o), 5)
for all u € S" !, where Sp(K, -) is a positive Borel measure on S7—1 called the Ly-
surface area measure of K, and

Wy p

Cn,p =
0 0 B

The well-known L, -Winterniz monotonicity problem can be expressed as follows:
If K and L are two origin-symmetric convex bodies in R”, and both of them have a
positive continuous curvature function. Suppose that

I,K CTI,L
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for p > 1. Does it follow that
Qp(K) < Qp(L)?

The L,-Winterniz monotonicity problem was solved independently by Yuan, Lv
and Leng ([23]), as well as Ma and Wang ([13]). Yuan, Lv and Leng defines a special
convex sets:

Wy ={Q€ Fy:IZ st f,(Q,) =h(Z,-) ")},

where IT}, = {I1,K : K € %"} is set of the L,-projection bodies. And they proved the
following result:

THEOREM A. Let K € X"

o0

LeW) andn#p > 1. If 11,K CII,L, then
Q,(K) <, (L).

Ma and Wang in [13] proved that the L,-Winterniz monotonicity problem has a
positive answer if and only if for every O € .#" such that (R", | -[[s,0) is isometric
embedding to a subspace of L,, where A,L denotes L, -curvature image of L € .7 .

Wang and Leng in [22] shown the notion of ith L, -projection body as follows: For
each K € ", real p>1and i=0,1,---,n—1, the ith L,-projection body, II, ;K
of K is an origin-symmetric convex body whose support function is given by

1

P — P .
) = e [ ) Pyl ), (©)

forall u € S"~'. Where S, ;(K,:) (i=0,1,---,n—1) is the ith L,-surface area mea-
sure with n —i— 1 copies of K and i copies of B. More precisely, the Borel measure
S,.i(K,-) on S"~1 is defined by ([7])

Sp(K.0) = [ B (w)asi(K.w)

for each Borel w C "~ If i =0, S,;(K,-) is just L,-surface area measure S,(K,-).
A convex body M is called the ith L,-projection body if there is a convex body K
such that M =11, ;K . Obviously, I, oK =1II,K . For the standard unit ball B, we have
11,8 =B.

Recently, Liu, Wang and He ([11]), Lu and Wang ([12]), Ma and Liu ([15,16])
independently proposed the following concept of ith L,-curvature function of convex
body: Let p>1,i=0,1,---,n—1. Aconvexbody K € %" is said to have an ith L, -
curvature function f,;(K, ) : S""! — R, if its ith L,-surface area measure S, ;(K,-)
is absolutely continuous with respect to spherical Lebesgue measure S, and has the
Radon-Nikodym derivative

ds,i(K,-)

dS :fp,i(K,'). (7)
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If the ith surface area measure S;(K,-) is absolutely continuous with respect to

spherical Lebesgue measure S, we have

fP,i(K»u) :h(Kvu)l_pfi(Kvu)v (8)
where f;(K,-) is called the ith curvature function of a body K € £ (see [7]). Obvi-
OuSIY’ fO(Ka> :f(Ka) and fp,O(K7') - fp(K7)

We write .%]" to denote the subset of #™" that has a positive continuous ith cur-
vature function. Let .7/, /. to denote the subset of all bodies in ", /", respec-
tively, and both of them have a positive continuous ith curvature function. In particular,
ﬁé’l — g‘n g‘é’l — gn g‘é’l — gn

: s Tt 0 Tt .

According to the ith L, -curvature function f, ;(K,-), we have defined the concept

1(;,) J(K) of convex body K € JZ" (see Section

3). In particular, the (i,0)type L,-affine surface area Qg) (K) = Qg_)O(K) defined as
follows: /

of (i,j)type L,-affine surface area Q

DEFINITION 1.1. For K € #[', and p > 1, the (i,0)type L, -affine surface area,
Qg) (K), of K is defined by

Qi) (k) = /S K uw)rds(u). ()

Obviously, QE,O) (K) is just L,-affine surface area Q,(K).

Together with the ith L,-projection body IT, ;K and the (i,0)type L, -affine sur-
face area Qg) (K), a very natural the generalized L,-Winterniz monotonicity problem
is: Let K and L are two origin-symmetric convex bodies in R, and both of them have

a positive continuous ith curvature function. Suppose that
K € Ip;L
fori=0,1,---,n—1 and p > 1. Does it follow that
Q) (K) < Q5 (L)?
The main purpose of this article is study specific affirmative answers to the gen-
eralized L,-Winterniz monotonicity problem for the ith L,-projection body IT, ;K.
At the same time, some properties of the (i, j)type L,-affine surface area will be dis-

cussed.
We denote

anl = {Q € ‘%nc :3Z ¢ HZJ" S.t. fpﬂ‘(Q’ ) = h(Z, .)*(Vlerfi)}7

and
,@;7,- ={Mec Fi.30€ HZJ’ s.t. Q" = A, M},
where IT), ; = {I1, ;K : K € "} is the set of ith L,-projection bodies, A, ;M is the
ith L,-curvature image of convex body M (see Section 3).
From the definition (27) of the i-th L,-curvature image, we easily see that

KeW,ifandonlyif K € 7 ..

Our main result is the following two Theorems.
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THEOREM 1.1. Letn—i#p>1,i=0,1,---,.n—1, K€ %) andLEWp’fi. If

then

THEOREM 1.2. Letn—i#p>1,i=0,1,---,n—1, Ke 7 andLEV/Ifi. If
forall Q € X" such that
Wp,i(K,Q) S Wp(L,0),
then
o)) (K) < (L).

Contents of the paper. In Section 2 we will introduce some preparatory knowl-
edge of convex body geometry; In Section 3 we propose two new concepts of the
(i,0)type L,-affine surface area and (i, j)type L,-affine surface area. In addition,
some properties for the ith L,-curvature image and (i, j)type L,-affine surface area
have been discussed; In Section 4 we will study the answers to the generalized L), -
Winterniz monotonicity problem, that is to complete the proof of Theorem 1.1 and
Theorem 1.2.

2. Preliminaries

2.1. Support function, radial function and polar body of convex body

If K € %", then its support function hx = h(K,-) is defined by h(K,x) =
max{(x,y):y€ K}, x€R", where (x,y) denotes the standard inner product of x and y.
Obviously, if K € #", A is a positive constant and x € R", then h(AK,x) = Ah(K,x).

If K is a compact star-shaped (about the origin) in R", its radial function px =
p(K,-) is defined by p(K,x) =max{A >0:Ax€ K},x € R"\{0}. When px is positive
and continuous, K is called a star body (about the origin). Let ., denote the set of
star bodies (about the origin) in R”, and let .#* denote the set of origin-symmetric star
bodies in .. Two star bodied K and L are said to be dilates each other if pg (u)/pr(u)
is independent on u € sl Obviously, for K € ., a > 0 and x € R", we have
p(aK,x) = op(K,x) and p(K,ox) = o 'p(K,x); If K € ", ¢ € GL(n), x € R",
then p(¢K,x) =p (K, 'x).

For K € %", the polar body, K*, of K is definedby K* = {xeR": (x,y) <1,y €
K}. Obviously, we have (K*)* =K. If >0, then (AK)* = A~'K*; If ¢ € GL(n),
then

(9K)" = ¢ 'K". (10)

For K € %", the support and radial function of the polar body, K*, of K are
defined respectively by (see [2, 17])
1 1
hig-(u) = and “(u) = , 11
k()= o and pre(u) = e (1)

forall ue "1,
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2.2. The L,-mixed volume and L,-mixed quermassintegrals

For p> 1, K,L € %, and € > 0, the Firey L,-combination K+,&-L & %" is
defined by (see [7])

WK +pe L) =h(K, )"+ eh(L.-)",

1
where “-” in € - L denotes the Firey scalar multiplication, i.e., €-L=¢€PL.
Associated with the Firey L,-combination, the L,-mixed volume V,,(K,L) of K

and L is defined (see [7])

gWAKL%:Hm‘“K+p&L%4“KX (12)

e—0T £

Corresponding to each K € %, there is a positive Borel measure S,(K,-) on
$"=1 such that (see [14])

Vo(K.L) :% [ M0, (), (13)

for each L € JZ". the measure S,(K,-) is just the L,-surface area measure of K,
which is absolutely continuous with respect to classical surface area measure S(K,-),
and has the Radon-Nikodym derivative

ds,(K,-)

meZMWM@ (14)

The mixed quermassintegrals W;(K,L) with n—i— 1 copies of K, i copies of
L(0,1,---,n—1) is defined by (see [7])

(n—i)Wi(K,L) = lim W"(K+3'L)—W,-([().

e—0t £

(15)

If L =B, then W;(K,B) is just ith quermassintegrals W;(K).

For K € #" and i =0,1,---,n— 1, there exists a regular Borel measure S;(K,-)
on §"~!, such that the mixed quermassintegrals W;(K,L) has the following integral
representation (see [7, 19]):

Wi(K,L) = % - hr(v)dSi(K,v) (16)
for all L € #". As a general reference for the mixed surface area measure we rec-
ommend the article by Lutwak ([7]). From the fact that S;(K,-) is generated only by
i copies of B and (n—1—i) copies of K, we know that the measure S,_;(K,-) is
independent of the body K, and is just ordinary Lebesgue measure S on $"~!. In fact,
the ith surface area measure of the unit ball, S;(B,-) =S for all i. The surface area
measure So(K,-) will frequently be written simply as S(K,-).
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For K,Le %", € >0 andreal p > 1, the L,-mixed quermassintegrals, W, ;(K,L),

of K and L (i=0,1,...,n— 1) are defined by (see [7])

— Wi(K+,¢e-L)—W;(K
" w,i(K.L)= lim (K+pe-L) = WilK)
P

e—0t €

(17)

Further, Lutwak ([7]) has shown that, for p > 1, i=0,1,...,n—1 and each K €
', there exists a positive Borel measure S, ;(K,-) on §"~1 such that the L,-mixed
quermassintegral W), ;(K,L) has the following integral representation:

1
Wp,i(KaL) = Z g1 hg(v)dsp,i(K7 V)a (18)

for all L € %" It turns out that the measure S, ;(K,-) (i=0,1,...,n—1) on " ! is
absolutely continuous with respect to S;(K,-), and has the Radon-Nikodym derivative

dSPJ(K?') _11-p

aSi(K.) =h"P(K,). (19)
From the definition (18) of L,-mixed quermassintegrals and the definition (13)

of L,-mixed volume, it follows immediately that, for K,L € 2" and for all p > 1,

Wyi(K,K) =Wi(K), W,o(K,L) =V,(K,L).

If K e Z’fo, Le 2, p>1, by definition (7), then the formula (18) of the L, -

mixed quermassintegral can be rewritten as follows:

WoKoL) = = [ P fpi(K S ). (20)

2.3. Dual quermassintegrals and L, -dual mixed quermassintegrals

For K € .7 and any real i, the dual quermassintegrals, W,(K ), of K are defined
by (see [8])
WiK) = [ piw)as(w). 21)
Obviously, Wy(K) =V (K).
For K,.L € ./}, p>1 and € > 0, the L, -harmonic radial combination K+, € -

o

L € S} is defined by (see [7])
p(K—i_*Pg 'La ')717 = p(K7 ')717 +8p(La ')717'

Note that here “€ - L” is different from “€ - L” in L,-combination.
For K,Lc .7}, €>0, p>1 andreal i # n, the L,-dual mixed quermassintegrals,

[

W_W-(K,L), of K and L are defined by (see [21])

—i~ Wi(K +_,€-L)—Wi(K
"l (KoL) = lim e D) = WilK)

—p e—0" €

(22)
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If i =0, we easily see that (22) is just definition of L,-dual mixed volume, i.e.,

W_po(K,L)=V_,(K,L).
From (22), the integral representation of the L,-dual mixed quermassintegrals is
given by (see [21]): If K,L € .)', p> 1, andreal i # n, i # n+ p, then

1 i _
Wikl =< [ Pk w)p, ()dS (), (23)
_ Together with (21) and (23), for K € ./)), p > 1, and i # n,n+ p, we have
W—pJ(K»K) = ‘/VL(K)

2.4. The ith curvature function, L,-curvature function, L, -curvature image and
ith L, -curvature image

A body K € %™ is said to have a continuous ith curvature function f;(K,-)) :
§"~! — [0,0) if and only if S;(K,-) is absolutely continuous with respect to S and has
the Radon-Nikodym derivative (see [7])

dSi (Kv )
— = fi(K,"). 24
= K 24)
A convex body K € " is said to have a L, -curvature function f,(K,-): "1 —
R, if its L,-surface area measure S,(K,-) is absolutely continuous with respect to
spherical Lebesgue measure S, and has the Radon-Nikodym derivative (see [6])

ds,(K,-)
Py _ £ (K.\). 25
= f(K) (25)
In addition, Lutwak in [6] showed the notion of L,-curvature image as follows: For
each K € .7 and p > 1, define AK€ 7], the L,-curvature image of K, by

nip _ V(AK)
p(APKa> TP = Tpfp([(a) (26)
n
Note that for p = 1, this definition is different from the classical curvature image (see
[6D).
According to the concept of ith L,-curvature function of convex body, we intro-
duce the concept of ith L, -curvature image of convex body as follows:

DEFINITION 2.1. Foreach K € #! (i=0,1,---,n—1) and real p > 1, define

i,0

A, K € 7}, the ith L,-curvature image of K, by
 WilApK
pltg ik i = MR ) @)

Taking i = 0 in (27), using the formula Wy(K) = V(K) and froK,-) = fp(K,-),
we have A, oK = ApK.
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2.5. The ith L,-mixed affine surface area and ith L, -affine surface area

Luwak in [6] introduced the notion of L,-mixed affine surface area: For p > 1,
the L,-mixed affine surface area, Q,(Ki,---,K,), of Ki,---,K, € #] is defined by

Qplks,K) = [ Up(Krou) o (K 7S 0), (28)

Taking K; = =K,_;=K and K,_;41 =--- =K, =L (i=0,---,n) in (28),
we denote Qm-(K,L) Q,(K,---,L,---,L), with n—i copies of K, and i copies of
L. From this, if i is any real, Wang and Leng (see [20]) introduced the concept of the
ith L,-mixed affine surface area as follows: For K,L € F", p>=1,i€R, the ith

[

L, mlxed affine surface area, Q,,;(K,L), of K, L is defined by
Qi(K.L) = | | oK) (L) PP dS (w). (29)
sn—1

Specially, for the case i = —p, it follows that
=
Qpp(KoL) = [ Sl o) (L) P S (), (30)

If p=1,then Q; _(K,L) is just Q_;(K,L) (see [4]).
Let L =B in (29) and write Q,;(K,B) = Q,;(K). Then ith L,-affine surface

area of K € .7 is expressed as follows:

Qi(K) = - (K, u) ¥ ds(u). (31)

3. The (i, j)type L,-affine surface area

In this section, based on the concept of ith L, -curvature function of convex body,
we introduced the notion of the i-type L,-mixed affine surface area of convex bodies
Ki,Ky, -, Ky—i (i=0,1,---,n—1) as follows:

DEFINITION 3.1. For p>1,i=0,1,---,n— 1, the i-type L,-mixed affine sur-
face area, Qg)(Kh < Ky—i),of K1, -, Ky_i € Z”O is defined by

O K1y Ko = [ UpslKi) o Sy S (). (32)

From (32),let K1 =---=K,_;_ j—KandK,, i—jy1 ==K, ;=L (j=0,---,n—i),
we denote Q() (K, L) Q()(K - K,L,---,L), with n—i— j copies of K, and j
copies of L. From this, if j is any real, we can define that:

DEFINITION 3.2. For K,L € 7],,i=0,---,n—1, p>1, j€R, the (i,/)type

L, -mixed affine surface area, Q;),( ,L), of K,L is defined by

—i—j

(K,L) = / Foi(Kou) 570 £y (L) dS (). (33)
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Specially, for the case j = —p in (33), it follows that

i ——pr_
) (KL = [ foa Kt fpalLoai) T3S ) (34)
Take L = B in (33), and write
(@) — o
Q, ;(K) =, ;(K,B). (35)

Because for u € §"~!, S;(B,u) =S, h(B,u) = 1, using this, (19) and (7) we get
fp.i(B,u) = 1. This, together with (33) and (35) yield

n—i—j

) (K) = o S (K)o dS ), (36)

Qg?j(K ) is called the (i, j) type L, -affine surface area of K € 7/,.
Obviously, from (29), (33), (9) and (36), we have that

QK,L) = (K, L), (37)

ol (K) = Q) (K), (38)

QU (K.L) = Q) (K), (39)

QY (K, K) = Q) (K), (40)

QY (KL =)L), (41)

PROPOSITION 3.1. Let K € 7, i=0,1,---,n—1, j€R and p > 1, then
nioj
ol (k) =n (WL(ALPZK)) T W (i), (42)

In particular, take j =0 in (42), then
(i) _ ni;ii (7. . —L
Q) (K) =no, Wi(ApiK)mrpi. (43)

Proof. From (36), (27) and (21), we have

Q;)/(K) = S,prJ(KM) =1 dS(u)
“\Wir K ApiK,u)""dS(u
<‘/V’(APJK)) Sn—lp( P ) ( )

n—i—j

—( On )W'VV (ApiK). O
- ‘XG(APJK) i+j Y2 .
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PROPOSITION 3.2. Let p>1, K € ﬁif'a and i=0,1,---.n—1, then

Wy

mwfp,i([\p,i[(; Q)7 (44)

WI’J(Kv Q*) =

foreach Q €
Proof. Foreach Q € 2, from (20), (11), (27), (21) and (23), we have

1

Wp,i(Ka Q*) = ; S’Flp(Qvu)_pfpai(Kvu)dS(u)
()
=1 ApiK,u)"tPidS
T e P@U PR st
Wy ~
- ~7W_ i A .iK, . ‘:l
WA K) pi(Ap,iK; Q)

PROPOSITION 3.3. If K € 7', and p > 1, then
(i) For ¢ € O(n),
Api0K = ¢*’Ap,iK7 (45)

where O(n) denotes orthogonal transformation group in R", ¢~ denotes the inverse

of the transpose of ¢.
(ii)Forn—i#p>1, A >0,

ApiAK = 7L Ap K. (46)
(iii) For the standard unit ball B in R",
ApiB=B. (47)

To prove Proposition 3.3, we first give several lemmas.

LEMMA 3.1. (see [7]) Suppose K.L € %', p>1and i=0,1,---,.n—1. If
¢ € O(n), then

Wpi(9K, L) =W, i(K,L). (48)
LEMMA 3.2. (see [7]) Suppose K, L€ %', p>1andi=0,1,--- n—1. Then

for any real o, > 0,
Wy.i(aK,BL) = 0P BPW,, (K, L). (49)

LEMMA 3.3. (see [14]) Suppose K,L € .7}, p>1,andreal i € R, i #n,n+p.
Then for any ¢ € O(n),

W_pi(9K,OL) = W_pi(K.L). (50)
From (50), we immediately have that

W_pi(0K,L) =W_pi(K,07'L), Wi(¢K) = Wi(K). (51)
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LEMMA 3.4. Suppose K,L € /"

nop=1,andreal i € R, i # n,n+ p. Then for
any real o, 3 >0,

W_pi(aK,BL) = " P~ BPW_, i(K,L). (52)

Thus, when =1,
W_,i(aK,L) = "7~ 'W_,, :(K,L). (53)

Proof. Because for K € .} and p > 0, we know that pyx(x) = upg(x). This,

together with the formula (23) of L, -dual mixed quermassintegrals, we easily obtain

(52). O

LEMMA 3.5. (see [14]) Suppose K,L € /"

mop=2l,ieRandi#n, i#n+p.
Then for all Q € ./}, either

W pi(K,0) = pt(L Q) or & pi(Q,K) = pt(Q L) (54)
is true if and only if K = L.

Proof of Proposition 3.3. (i) Since ¢ € O(n), then from (44), (48), (10), (50) and
(51), we have

Wopi(Api0K,Q) _ Wpi(0K,0") _ Wyi(6K,097'0")
Wi(ApidK) o o
Wpi(K, 010"  Wpi(K.(9'0)") _ Wopi(ApiK . 9'Q)
On On Wi(Ap,iK)
Wopi(9 7 ApiK. 07'9'Q) _ W_pi(0'ApiK.Q)
W’i(¢7tAp,iK) W(d’ tApl )

Take Q = A, ;0K in the above formula, and note that W,p7i(¢”AP7,-K, 0Ny K) =
Wi(¢~'A,K), we have

Wfpi(q)itAmiKa ¢7ZAPJK) - Wfp,i(¢7tAp,iKa Ami‘bK)-

By the above equation and Lemma 3.5, we immediately yields (45).
(ii) Suppose K € %' and A > 0, then hg(Ax) = Ahg(x) for any x € R"”. From

i,0

this and (8) and (24), and note that S;(AK,-) = A"~"1S;(K,-), we have

FriAK,) = B P(AK, ) fi(AK, ) = AP -r(ic, ) SSAK )

ds
= AR S AR K )

= A", (K. (53)
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This eq. (55), together with the definition (27) of ith L, -curvature image, eq. (52) with
L=K and ¢ = = A > 0, we have that for K € .Z"

i,0°

P(Ap.,iAKf)ner_i _ Ipi(AK,") _ An_p_iﬁw'(Kf)

Wi(ApiAK) Q% On
MDA ) p (T ARy
WK ma ALK
ie.,
1
p(ApiAK,") = (M) K. (56)
Wi(A 7P Ay iK)

This (56), combined with the formula (21) of the dual quermassintegrals, we have

n—p—i

Wi(ApidK) = Wi(A~ 7 A, iK).

Therefore, from (56) we get

n—p—i

p(Ap,iAKa'):P(A P AI”'K,-).

This immediately yields (46).
(iii) Because of f,;(B,-) = 1, this combined with (36), we give

QY B) = | fpiBau)yrrdS(w) = | dS(u) =naw,
NG sn—1

Also according to (43), we can get
—(n—i) . P

(ApB)757 = 0T QY (B) = o,

Ll

therefore, VT/,-(Ap,iB) = @, . Further, by definition (27) of the ith L,-curvature image,
we have

_, Wi(A,B
p(Ap7iB7-)"+p i_ %fpi(&') =1,

ie., p(ApiB,-) =1, this yields (47). O

PROPOSITION 3.4. If p>1, L€ % | then

i,0°
Qg) (L)n+p_i < nn+p_in7i(L7 K*)n_l‘;‘}l([()p7 (57)

forall K € 22", with equality if and only if K and A, ;L are dilates.
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Proof. For L € ﬂl” and each K € 7, from (9), (11), (20), (21) and Holder’s

inequality, we have
Q) (L)
n—i n+17 !
= [ lfw-(L,u)wwdS(u)]
s
_n—i P n+p—i
= | [ P 207 (p ) st
<A1 ok rpataasw) (L
n Js—1 ’ P\ oy

p(K,u>""ds<u>)p

p
p(&u)"—fdsw))

= nn+177i <% h(K*)u)pfpj(L,u)dS(M))nl (l
sn—1

n Jsn—1
= W, (LK) WK

From this, we immediately get (57). According to the condition of equality holds in
Holder’s inequality, we know that equality holds in (57) if and only if

p(Kv u)_pfp-,i(Lv u) _
p(K,u)"

for any u € S"~!, where ¢ is a constant. Combined with the definition (27) of ith
L, -curvature image, for any u € S we have

p(ApiL,u)" P . CVAI}I'(APJL)
p(Kuymtr=i @,

this shows that K and A ;L are dilates. Therefore, the equality holds in the inequality
(57)if and only if K and A, ;L are dilates. The proof is complete. []

According to Proposition 3.4, we can give the extension definition of the (i,0) type
L, -affine surface area of K € %" as follows:

DEFINITION 3.3. If K € %", p > 1, then the (i,0)type L, -affine surface area,
QE,”(K), of K is defined by
__r ; n+p—i
n QW (K) —1nf{an7 (K,0"\Wi(Q)5 0.7 } (58)
Note that for i = 0, this definition is just definition of L, -affine surface area by Lutwak
proposed in [6].

Since forany K € 7", the ith L, -surface area measure, S p7,-(K ,+) is well-defined,
we can gave a natural extension of eq. (34) of (i,—p)type the L,-mixed affine surface
area Q) _p from F, x F[', to A" x F[,. Specifically, for K € ) and L €
let

L

l()7

Q¥ (kL) = / oL S, (K ). (59)
, -

It is defined that for K € 7, dSp(K,-) = fp:(K,-)dS(-). Thus (59) boils down to

(34) for K € 7', Note that the case i = 0 was studied by Lv and Leng in [10].
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PROPOSITION 3.5. Suppose n—i#p>1,i=0,1,...,n—1, and K € X, then

ntp—i L

Qg) (K) n—i — lIlf {Qg)_p(K7 L)QI(;) (L) "

VL e y} (60)

Proof. For K e %', L€ 5‘1”0, using (18), (11), (27) and (59), we have
. 1
Wp,i(KaApﬂ'L) = Z 1 h(A;7l‘L,u)pdSp7[(K,u)
1
= — p(Ap.iL7u)_pdSp i(K,I/L)
n Jsn—1 : ?
~ P
1 (Wi(ApiL)\ #rr _p
=—-|— i(Lou) mr7idSy (K,
~ P
L/ Wi(ApiL)\ ™77 (i)
= - e QY (KL
n ( a)n ) 17,7[)( ) )7
ie.forK €, Le 7],
p_ .
o QY (K, L) = nWi(Ap L) 7= Wy i(K, AL L), (61)

Together with (61) and (43), it shows that
(i i P N P
QY (K, L)QY (L) = nW, (K, Al L)Wi(ApiL) 7. (62)

On the other hand, from the definition (58) we know that for K € %" and any
Q 6 () ’
ntp p

n—%g("(z{) T < W, i(K,QF)Wi(Q) T
Take Q = A, ;L for L € &, ", in the above inequality, then we have

n*ﬁgﬁ,") (K) "W < nWi(Ap L) T Wy (K, A L) (63)
Combined with (62) and (63), we immediately get for K € %",
of) (k) <ol (k,0)Qy (L), VLe Y, (64)

From (64), we immediately get the results of Proposition 3.5. The proof is com-
plete. O

Proposition 3.5 is the generalization of result by Lv and Leng proved in [10].
From Proposition 3.5, the following corollary is obvious.

COROLLARY 3.1. If n—i#p>1,i=0,1,....n—1 and K € %", L€ F],,
then ‘ ‘ i .

Q) (kL) >l (K) 7Ty (L) (65)

Note that if p > 1 and K,L € 9’[’0, then from the Holder inequality, we obtain

that equality holds in (65) forn—i#p=1and 0<i<n—1 ifand only if K and L

are homothetic, for n—i# p > 1 and 0 <i <n ifand only if K and L are dilates.
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4. The generalized L, -Winternitz monotonicity problem
LEMMAS 4.1. If K, Le %), p>1land i=0,1,---.n—1, then

Wy i(L,T1, ;K) = W, (K, T1,,,L). (66)

) )

Proof. From (6), (18) and Fubini theorem, it is easy to prove Lemmas 4.1. [

THEOREM 4.1. Let L€ F,, p>1andi=0,1,---.,n—1. If L€ W}};, then for
all K,.M e )",

ol (K.L h(TL K, u)?
p—p(KL) < max M (67)
Q) 1.1y S BT

7.i such that f,;(L,u) =
h(Z,u)P. Since every ith L pI’O]eCtIOIl body is origin-symmetric convex body in R”,
let Z=11,;0Q for some Q € %,". From (59), (18) and Lemma 4.1, we have

Proof. Because L € V/” then there exists Z € I1”

Q) (KoL) fpos fpilLa) TS (K )
QY (ML) o1 fou(Lou)707dS, (M, u)
- fsn—l h(Z,u)pdSW-(K,u)
" Je1 h(Z,u)PdS, (M, u)
_ Wp.i(K,Z) _ Wp.i(K,11,,Q) Wpt(Q I1,.iK)
- Wp.i(M,Z) - Wp.i(M,11,,,0) Wpt(Q I1,.:M)
_ g1 ATy K, u)PdS ) i(Q, u)
 Jo h(I0, M, u)PdS, (O, u)
< max LK, w) .
sn—1 h(Hp.’iMm)P

The proof is complete. [

The following result is an immediate consequence of Theorem 4.1.

i=0,1,---n—1.IfLeEW"., then

COROLLARY 4.1. Let p> 1, L € F!". T

(@) (i)
Qp,fp(Ka L) < QP77P(M, L)

holds for all K,M € 2" satisfying 11, ;K C 11, ;M.

COROLLARY 4.2. Ifn—i#p=>1,i=0,1,---.n—1, LEW,; and K € F".
Then '

n+p—i

(Qg)(K)> " < max 7h(np7iK7u)p. (68)
Q) et h(ITp L, u)?
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Proof. Take M = L in Theorem 4.1. From the inequality (65) and eq. (40), we
have

h(IL,K,u)p QY (KL ol (k)55 ol (L) (Qg)(m =
G '

max > l > ;
sn—1 h(Hp.’iL,u)P Q() p(L,L) Q;)(L)

P,—

This proves the corollary. [
Proof of Theorem 1.1. From Corollary 4.2, we immediately get Theorem 1.1. [

Theorem 1.1 for the case i = 0 were established by Lv and Leng in [10].
Proof of Theorem 1.2. For K € ', L € #., and for all Q € %" such that

o> pi’ 0
Wp,i(Ka Q) g Wp,i(l‘a Q)

Because L € J)) ; and every ith L,-projection body is origin-symmetric convex body
in R". Taking Q = A;‘,J-L, then
Wpi(K, A}, L) < Wpi(L, A, L),

using the formula (18) of the L,-mixed quermassintegral, we have

h(AL, Lu)PdS, (K u) < h(A, L,u)PdS, (L, u),

sn—1 sn—1
from eq. (11), this is equivalent to
[ P 7S, < /S  p(ApiLaw) PdS, (L) (69)
From (69) and (27), we get
i _—P
[ il a8, () < [ fpalLa) S L) (70)

Together with (59), (40) and (70), we have
ol (kL) <oV (L)
p—p\o ) X 2Ep )

Using the inequality (65) in the above inequality, then

—P

ol (L),

n+p—i
n—i

)= al (kL) >l (K)

this implies
Q) (K) < ().

The proof is complete. [
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