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SOME ESTIMATES FOR HAUSDORFF OPERATORS
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(Communicated by J. Kyu Kim)

Abstract. In this paper, we give some sufficient conditions for the boundedness of three types of
Hausdorff operators on the Lebesgue spaces with power weights. In some cases, these conditions
are also necessary and the corresponding operator norms are worked out. We extend and improve
some known results in [6, 11].

1. Introduction

The one-dimensional Hausdorff operator is defined by

hΦ f (x) =
∫

R

Φ(x/t)
|t| f (t)dt,

where Φ ∈ L1(R) . Liflyand and Móricz [22] proved that hΦ is a bounded linear op-
erator on the real Hardy space H1(R) by the theory of Fourier transform and Hilbert
transform. Furthermore, Hausdorff operators were considered in various spaces, for ex-
ample, see [2, 17, 23, 25]. If we choose Φ(t) = α(1− t)α−1χ(0,1)(t) for α = 1,2, ...,
then HΦ = Cα is called the Cesàro operator of order α . A brief history of the study of
the Cesàro operator can be found in [17].

On the other hand, the operator hΦ contains the classical Hardy operator and its
adjoint operator if we choose suitable functions Φ . For x > 0, when one chooses Φ(t)
as t−1χ(1,∞)(t) and χ(0,1](t), we obtain the classical Hardy operator h and the adjoint
Hardy operator h∗ respectively, where

h f (x) :=
1
x

∫ x

0
f (t)dt and h∗ f (x) :=

∫ ∞

x

f (t)
t

dt.

It is well known that Hardy operators are important operators in Harmonic analysis, for
instance, see [8, 15, 16].

Hausdorff operators (Hausdorff summability methods) have a deep root in the
study of the one-dimensional Fourier analysis, particularly the summability of the clas-
sical Fourier series. A broad and comprehensive overview of the study for Hausdorff
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operators can be found in [21]. One can see [1–7, 10–13, 17–27] to find details of some
recent developments for Hausdorff operators.

For multidimensional Hausdorff operators, there are many kinds of definitions [1,
3–5, 18–21, 24, 25]. One of the interesting definitions of the Hausdorff operators is

HΦ f (x) =
∫

Rn

Φ(x/|y|)
|y|n f (y)dy.

Similar to hΦ , HΦ contains the high dimensional Hardy operator H and its adjoint
operator H∗ (see [4, 9]). Recently, the authors obtained the following theorem in [11].

THEOREM A. ([11]) Let 1 � p, q � ∞ and α, γ ∈ R satisfy γ+n
q = α+n

p . For
any general function Φ(x) , if

KΦ,s,n,p,α = ω
1
p′

n−1

(∫
Sn−1

(∫ ∞

0
|Φ(ρϕ)|sρ−1+ (α+n)s

p dρ
) q

s
dϕ

) 1
q

< ∞,

where s satisfies 1
q = 1

p + 1
s −1 , then the operator HΦ from Lp(Rn, |x|α) into Lq(Rn, |x|γ )

is bounded, i.e.,
‖HΦ f‖Lq(Rn,|x|γ ) � KΦ,s,n,p,α‖ f‖Lp(Rn,|x|α )

for all f ∈ Lp(Rn, |x|α ) .

Here we point out that some partial cases of Theorem A were given in [4] and
[26]. In this paper, we firstly prove that in some case, KΦ,s,n,p,α < ∞ is necessary for
the boundedness of HΦ on the Lebesgue spaces with power weights. See Section 2 for
the details. In Section 3, we consider another multidimensional Hausdorff operator H̃Φ
(see the below definition) and obtain its boundedness on some Lebesgue spaces with
power weights. At the same time, we prove some best estimate of H̃Φ on the Lebesgue
spaces with power weights. In last section, we consider the following multilinear Haus-
dorff operator.

For a locally integrable function F(u1,u2, ...,um) , we define

TΦ(F)(x) =
∫

Rnm

Φ(x/|u|)
|u|nm F(u1,u2, ...,um)du,

where x ∈ Rn , u = (u1,u2, ...,um) with ui ∈ Rn and |u|=
√
|u1|2 + |u2|2 + · · ·+ |um|2 .

When Φ is a radial function, Chen, Fan and Zhang in [6] proved

THEOREM B. ([6]) Suppose β = n(m−1) and p � 1 . If

K1 = ω
1
p′

nm−1ω
1
p

n−1

∫ ∞

0

Φ(r)
r

r
nm
p dr < ∞,

then we have a constant K1 > 0 such that

‖TΦ(F)‖Lp(Rn,|x|β dx) � K1‖F‖Lp(Rnm),
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where Snm−1 is the unit sphere in Rnm and Sn−1 is the unit sphere in Rn with Lebesgue
measures ωnm−1 and ωn−1 , respectively.

In Section 4, we will remove the radial condition for Φ in the above theorem and
obtain the same boundedness. See Theorem 4.1.

Throughout this paper, ωnm−1 denotes the area of the unit sphere Snm−1 in Rnm

with Lebesgue measures for m,n ∈ Z
+ .

2. The best estimate of HΦ on Lp(Rn, |x|α)

THEOREM 2.1. Let 1 � p � ∞ , α ∈ R and Φ � 0 . Then HΦ is a bounded
operator on Lp(Rn, |x|α ) if and only if

KΦ,n,p,α = ω
1
p′

n−1

(∫
Sn−1

(∫ ∞

0
Φ(ρϕ)ρ−1+ α+n

p dρ
)p

dϕ
) 1

p
< ∞. (2.1)

Moreover, when (2.1) holds, the operator norm of HΦ on Lp(Rn, |x|α) is given by

‖HΦ‖Lp(Rn,|x|α )→Lp(Rn,|x|α ) = KΦ,n,p,α . (2.2)

Proof. Sufficiency. If we choose α = γ in Theorem A, then p = q . So using
Theorem A, we obtain HΦ is a bounded operator on Lp(Rn, |x|α) if the inequality (2.1)
holds. See [11] for the detailed proof.

Necessity. If HΦ is a bounded operator on Lp(Rn, |x|α) , then there exists a con-
stant C > 0 such that

‖HΦ f‖Lp(Rn,|x|α ) � C‖ f‖Lp(Rn,|x|α )

for all f ∈ Lp(Rn, |x|α) . Next we take

fε (x) = |x|− α+n+ε
p χ{|x|>1}(x)

for any ε > 0, then fε ∈ Lp(Rn, |x|α ) and ‖ fε‖Lp(Rn,|x|α ) = ω
1
p
n−1ε−

1
p . Therefore,

‖HΦ fε‖Lp(Rn,|x|α ) � C‖ fε‖Lp(Rn,|x|α ). (2.3)

On the other hand, we express HΦ in polar coordinates by writing x = |x|x′ . Then

HΦ fε (x) =
∫

Rn

Φ(|x|x′/|y|)
|y|n |y|− α+n+ε

p χ{|y|>1}(y)dy

=
∫ ∞

1

∫
Sn−1

Φ(|x|x′/t)
t

t−
α+n+ε

p dθdt

= ωn−1|x|−
α+n+ε

p

∫ |x|

0

Φ(ρx′)
ρ

ρ
α+n+ε

p dρ .
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Then we obtain

‖HΦ fε‖Lp(Rn,|x|α ) = ωn−1

(∫
Rn

(
|x|− n+ε

p

∫ |x|

0

Φ(ρx′)
ρ

ρ
α+n+ε

p dρ
)p

dx

) 1
p

� ωn−1

(∫
|x|� 1

ε

(
|x|− n+ε

p

∫ 1
ε

0

Φ(ρx′)
ρ

ρ
α+n+ε

p dρ
)p

dx

) 1
p

= ωn−1

(∫ ∞

1
ε

∫
Sn−1

(∫ 1
ε

0

Φ(ρx′)
ρ

ρ
α+n+ε

p dρ
)p

t−ε−1dtdx′
) 1

p

= ωn−1εε ε−
1
p

(∫
Sn−1

(∫ 1
ε

0

Φ(ρx′)
ρ

ρ
α+n+ε

p dρ
)p

dx′
) 1

p

.

Note that ‖ fε‖Lp(Rn,|x|α ) = ω
1
p

n−1ε−
1
p , so we have

‖HΦ fε‖Lp(Rn,|x|α ) � ω
1
p′

n−1‖ fε‖Lp(Rn,|x|α )εε
(∫

Sn−1

(∫ 1
ε

0

Φ(ρϕ)
ρ

ρ
α+n+ε

p dρ
)p

dϕ
) 1

p

.

Applying the inequality (2.3) and the above inequality, we get

ω
1
p′

n−1

(∫
Sn−1

(∫ 1
ε

0

Φ(ρϕ)
ρ

ρ
α+n+ε

p dρ
)p

dϕ
) 1

p

� C
εε .

Letting ε → 0+ in the above inequality, we obtain the inequality (1), i.e.

KΦ,n,p,α = ω
1
p′

n−1

(∫
Sn−1

(∫ ∞

0
Φ(ρϕ)ρ−1+ α+n

p dρ
)p

dϕ
) 1

p
< ∞.

When the inequality (2.1) holds, the operator HΦ is bounded and

‖HΦ f‖Lp(Rn,|x|α ) � KΦ,n,p,α‖ f‖Lp(Rn,|x|α ).

Therefore, we have

‖HΦ‖Lp(Rn,|x|α )→Lp(Rn,|x|α ) � KΦ,n,p,α .

On the other hand, using the above fε , we have

‖HΦ‖Lp(Rn,|x|α )→Lp(Rn,|x|α ) � KΦ,n,p,α .

So we obtain the inequality (2.2). �
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3. Some estimates of H̃Φ

In this section, we consider the following multidimensional Hausdorff operator,

H̃Φ f (x) =
∫

Rn

Φ(y)
|y|n f

(
x
|y|

)
dy.

Using Minkowski’s inequality, we obtain if

K̃Φ,p,n =
∫

Rn
|Φ(y)||y|−n+ n

p dy < ∞,

then
‖H̃Φ f‖Lp(Rn) � ‖ f‖Lp(Rn).

In general, we will prove the following results.

THEOREM 3.1. Let 1 � p � q � ∞ and α, γ ∈ R satisfy γ+n
q = α+n

p . For any
general function Φ(x) , if

K̃Φ,s,p,n,α = ω
1
s′
n−1

(∫
Rn

|Φ(y)|s|y|−n+ (n+α)s
p dy

) 1
s

< ∞,

where s satisfies 1
q = 1

p + 1
s −1 , then we have

‖H̃Φ f‖Lq(Rn,|x|γ ) � K̃Φ,s,p,n,α

(∫
Sn−1

(∫ ∞

0
| f (ρϕ)|pρα+n−1dρ

) q
p
dϕ

) 1
q

.

In particular, we obtain

‖H̃Φ f‖Lq(Rn,|x|γ ) � K̃Φ,s,p,n,αω
− 1

s′
n−1‖ f‖Lp

rad(Rn,|x|α ),

where Lp
rad(R

n, |x|α ) = { f ∈ Lp(Rn, |x|α) : f is a radial function} .

Proof. By polar coordinates, we have

H̃Φ f (x) =
∫ ∞

0

∫
Sn−1

Φ(tθ )
t

f
(x

t

)
dθdt

and

‖H̃Φ f‖q
Lq(Rn,|x|γ ) =

∫ ∞

0

∫
Sn−1

∣∣∣∫ ∞

0

∫
Sn−1

Φ(tθ ) f
(ρϕ

t

)
dθ

dt
t

∣∣∣qργ+ndϕ
dρ
ρ

.

We apply γ+n
q = α+n

p and Fubini’s theorem for interchange of integrals in ρ and ϕ .
Then

‖H̃Φ f‖q
Lq(Rn,|x|γ )

=
∫ ∞

0

∫
Sn−1

∣∣∣∫ ∞

0

∫
Sn−1

Φ(tθ )t
n+α

p f (ρϕt−1)(ρt−1)
n+α

p dθ
dt
t

∣∣∣qdϕ
dρ
ρ

�
∫

Sn−1

∫ ∞

0

(∫
Sn−1

∫ ∞

0
|Φ(tθ )|t n+α

p | f (ρϕt−1)|(ρt−1)
n+α

p
dt
t

dθ
)q dρ

ρ
dϕ .
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Using Minkowski’s inequality, we have

(∫ ∞

0

(∫
Sn−1

∫ ∞

0
|Φ(tθ )|t n+α

p | f (ρϕt−1)|(ρt−1)
n+α

p
dt
t

dθ
)q dρ

ρ

) 1
q

�
∫

Sn−1

(∫ ∞

0

∣∣∣∫ ∞

0
|Φ(tθ )|t n+α

p | f (ρϕt−1)|(ρt−1)
n+α

p
dt
t

∣∣∣q dρ
ρ

) 1
q
dθ .

For ∫ ∞

0
|Φ(tθ )|t n+α

p | f (ρϕt−1)|(ρt−1)
n+α

p
dt
t

,

we can regard it as a convolution inequality on the multiplicative group R+ with Haar
measure dt

t . Applying Young’s inequality (see [14]) for 1
q = 1

s + 1
p −1, we have

(∫ ∞

0

(∫ ∞

0
|Φ(tθ )|t n+α

p | f (ρϕt−1)|(ρt−1)
n+α

p
dt
t

)q dρ
ρ

) 1
q

�
(∫ ∞

0
|Φ(ρθ )|sρ (n+α)s

p
dρ
ρ

) 1
s
(∫ ∞

0
| f (ρϕ)|pρn+α dρ

ρ

) 1
p

=
(∫ ∞

0
|Φ(ρθ )|sρ−1+ (n+α)s

p dρ
) 1

s
(∫ ∞

0
| f (ρϕ)|pρα+n−1dρ

) 1
p

.

Therefore, we get

‖H̃Φ f‖q
Lq(Rn,|x|γ )

�
∫

Sn−1

(∫
Sn−1

(∫ ∞

0
|Φ(ρθ )|sρ−1+ (n+α)s

p dρ
) 1

s
dθ

)q
(∫ ∞

0
| f (ρϕ)|pρα+n−1dρ

) q
p

dϕ

=
(∫

Sn−1

(∫ ∞

0
|Φ(ρθ )|sρ−1+ (n+α)s

p dρ
) 1

s
dθ

)q(∫
Sn−1

(∫ ∞

0
| f (ρϕ)|pρα+n−1dρ

) q
p

dϕ .

Applying Hölder’s inequality ( 1
s + 1

s′ = 1) , we obtain

∫
Sn−1

(∫ ∞

0
|Φ(ρθ )|sρ−1+ (n+α)s

p dρ
) 1

s
dθ

� ω
1
s′
n−1

(∫
Sn−1

∫ ∞

0
|Φ(ρθ )|sρ−1+ (n+α)s

p dρdθ
) 1

s

= ω
1
s′
n−1

(∫
Rn
|Φ(y)|s|y|−n+ (n+α)s

p dy

) 1
s

:= K̃Φ,s,p,n,α .

Hence, we have

‖H̃Φ f‖Lq(Rn,|x|γ ) � K̃Φ,s,p,n,α

(∫
Sn−1

(∫ ∞

0
| f (ρϕ)|pρα+n−1dρ

) q
p
dϕ

) 1
q

.
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In particular, when f (x) is a radial function, noting that 1
q = 1

p + 1
s −1, we easily obtain

that (∫
Sn−1

(∫ ∞

0
| f (ρϕ)|pρα+n−1dρ

) q
p
dϕ

) 1
q

= ω
1
q
n−1

(∫ ∞

0
| f (ρ)|pρα+n−1dρ

) 1
p

= ω
1
q− 1

p
n−1

(∫ ∞

0

∫
Sn−1

| f (ρ)|pρα+n−1dρ
) 1

p

= ω
− 1

s′
n−1‖ f‖Lp

rad(Rn,|x|α ).

Therefore, we obtain

‖H̃Φ f‖Lq(Rn,|x|γ ) � K̃Φ,s,p,n,αω
− 1

s′
n−1‖ f‖Lp

rad(Rn,|x|α ). �

COROLLARY 3.1. (See [4]) Let 1 � p � ∞ and α ∈ R . For any general function
Φ(x) , if

K̃Φ,p,n,α =
∫

Rn
|Φ(y)||y|−n+ n+α

p dy < ∞,

then
‖H̃Φ f‖Lp(Rn,|x|α ) � K̃Φ,p,n,α‖ f‖Lp(Rn,|x|α ).

Proof. In Theorem 3.1, if we choose α = γ , then p = q and s = 1. Therefore we
obtain the desired result by Theorem 3.1. �

THEOREM 3.2. Let 1 � p � ∞ , α ∈ R and Φ � 0 . Then H̃Φ is a bounded
operator on Lp(Rn, |x|α ) if and only if

K̃Φ,p,n,α =
∫

Rn
Φ(y)|y|−n+ n+α

p dy < ∞. (3.1)

Moreover, when (3.1) holds, the operator norm of HΦ on Lp(Rn, |x|α) is given by

‖H̃Φ‖Lp(Rn,|x|α )→Lp(Rn,|x|α ) = K̃Φ,p,n,α .

Proof. Sufficiency. The proof is obvious by Corollary 3.1.
Necessity. The proof is similar to that of Theorem 2.1. Here note that we choose

the same radial function fε in Theorem 2.1, i.e.,

fε (x) = |x|− α+n+ε
p χ{|x|>1}(x).

Then we have

H̃Φ fε (x) = |x|− α+n+ε
p

∫
|y|<|x|

Φ(y)
|y|n |y| α+n+ε

p dy.
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Therefore, we obtain

‖H̃Φ fε‖Lp(Rn,|x|α ) =
(∫

Rn

(
|x|− n+ε

p

∫
|y|<|x|

Φ(y)
|y|n |y| α+n+ε

p dy
)p

dx

) 1
p

�
(∫

|x|� 1
ε

(
|x|− n+ε

p

∫
|y|� 1

ε

Φ(y)
|y|n |y| α+n+ε

p dy
)p

dx

) 1
p

= ω
1
p

n−1ε−
1
p εε

∫
|y|� 1

ε

Φ(y)
|y|n |y| α+n+ε

p dy

= εε‖ fε‖Lp(Rn,|x|α )

∫
|y|� 1

ε

Φ(y)
|y|n |y| α+n+ε

p dy.

The remaining proof is the same as that of Theorem 2.1. So we omit it. �

4. Multilinear Hausdorff operator

We firstly recall the definition of multilinear Hausdorff operator TΦ(F) . Let
x ∈ Rn , u = (u1,u2, ...,um) with ui ∈ Rn and |u| =

√
|u1|2 + |u2|2 + · · ·+ |um|2 . The

operator TΦ(F) is defined by

TΦ(F)(x) =
∫

Rnm

Φ(x/|u|)
|u|nm F(u1,u2, ...,um)du.

THEOREM 4.1. Suppose β = n(m−1) and p � 1 . If Φ satisfies

KΦ,p,n,m = ω
1
p′

nm−1

(∫
Sn−1

(∫ ∞

0

∣∣Φ(ρϕ)
∣∣ρ mn

p −1dρ
)p

dϕ
) 1

p

< ∞,

then we have
‖TΦ(F)‖Lp(Rn,|x|β dx) � KΦ,p,n,m‖F‖Lp(Rnm).

Proof. By polar coordinates, we have

TΦ(F)(x) =
∫ ∞

0

∫
Snm−1

F(tθ )
t

Φ
(x

t

)
dθdt.

and

‖TΦ(F)‖p
Lp(Rn,|x|β dx)

=
∫ ∞

0

∫
Sn−1

∣∣TΦ(F)(ρϕ)
∣∣pρmndϕ

dρ
ρ

,

where β = n(m−1) . Therefore,

‖TΦ(F)‖p
Lp(Rn,|x|β dx)

�
∫ ∞

0

∫
Sn−1

(∫ ∞

0

∫
Snm−1

∣∣Φ(ρϕt−1)
∣∣∣∣F(tθ )

∣∣dθ
dt
t

)p
ρmndϕ

dρ
ρ

=
∫ ∞

0

∫
Sn−1

(∫ ∞

0

∫
Snm−1

∣∣Φ(ρϕt−1)(ρt−1)
mn
p
∣∣∣∣F(tθ )t

mn
p
∣∣dθ

dt
t

)p
dϕ

dρ
ρ

=
∫

Sn−1

∫ ∞

0

(∫
Snm−1

∫ ∞

0

∣∣Φ(ρϕt−1)(ρt−1)
mn
p
∣∣∣∣F(tθ )t

mn
p
∣∣dt

t
dθ

)p dρ
ρ

dϕ .



SOME ESTIMATES FOR HAUSDORFF OPERATORS 649

By Hölder’s inequality, we have(∫
Snm−1

∫ ∞

0

∣∣Φ(ρϕt−1)(ρt−1)
mn
p
∣∣∣∣F(tθ )t

mn
p
∣∣dt

t
dθ

)p

� ω
p
p′

nm−1

(∫
Snm−1

∫ ∞

0

∣∣Φ(ρϕt−1)(ρt−1)
mn
p
∣∣∣∣F(tθ )t

mn
p
∣∣dt

t
dθ

)p

.

Hence,

‖TΦ(F)‖p
Lp(Rn,|x|β dx)

� ω
p
p′

nm−1

∫
Sn−1

∫
Snm−1

∫ ∞

0

(∫ ∞

0

∣∣Φ(ρϕt−1)(ρt−1)
mn
p
∣∣∣∣F(tθ )t

mn
p
∣∣dt

t

)p dρ
ρ

dθdϕ .

As the proof of Theorem 3.1, using Young’s inequality, we have

(∫ ∞

0

(∫ ∞

0

∣∣Φ(ρϕt−1)(ρt−1)
mn
p
∣∣∣∣F(tθ )t

mn
p
∣∣dt

t

)p dρ
ρ

) 1
p

�
(∫ ∞

0

∣∣F(ρθ )
∣∣pρmn−1dρ

) 1
p
(∫ ∞

0

∣∣Φ(ρϕ)
∣∣ρ mn

p −1dρ
)

.

So applying Minkowski’s integral inequality, we obtain

‖TΦ(F)‖p
Lp(Rn,|x|β dx)

� ω
p
p′

nm−1

∫
Sn−1

(∫
Snm−1

∫ ∞

0

∣∣F(ρθ )
∣∣pρmn−1dρdθ

)
×

(∫ ∞

0

∣∣Φ(ρϕ)
∣∣ρ mn

p −1dρ
)p

dϕ

= ω
p
p′

nm−1

∫
Sn−1

(∫ ∞

0

∣∣Φ(ρϕ)
∣∣ρ mn

p −1dρ
)p

dϕ · ‖F‖p
Lp(Rnm).

Therefore, we have

‖TΦ(F)‖Lp(Rn,|x|β dx) � KΦ,p,n,m‖F‖Lp(Rnm),

where

KΦ,p,n,m = ω
1
p′
nm−1

(∫
Sn−1

(∫ ∞

0

∣∣Φ(ρϕ)
∣∣ρ mn

p −1dρ
)p

dϕ
) 1

p

. �

REMARK 4.1. As described in [6], if we take

F(u1,u2, ...,um) = f1(u1) f2(u2)... fm(um),

then TΦ(F) becomes an m-linear operator

TΦ( f1, f2, ..., fm)(x) =
∫

Rnm

Φ(x/|u|)
|u|nm

m

∏
j=1

f j(u j)du.
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So by Theorem 4.1 and Hölder’s inequality, we obtain

‖TΦ( f1, f2, ..., fm)‖Lp(Rn,|x|β dx) � KΦ,p,n,m

m

∏
j=1

‖ f j‖Lp j (Rn),

where 1
p1

+ 1
p2

+ ...+ 1
pm

= 1
p , p j, p � 1 and j = 1, ...,m .

REMARK 4.2. Obviously, when Φ is a radial function in Theorem 4.1, we obtain
Theorem B in the introduction.
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