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TWO-WEIGHT INEQUALITIES FOR
HARDY OPERATOR AND COMMUTATORS

WENMING LI, TINGTING ZHANG AND LIMEI XUE

(Communicated by J. Pecaric)

Abstract. For the maximal operator N related to the Hardy operator P and its adjoint Q, we
give the characterizations for weights (u,v) such that N is bounded from LP(v) to LP*(u)
and from L”(v) to LP(u) respectively. We also obtain some A, type conditions which are
sufficient for the two-weight inequalities for the Hardy operator P, the adjoint operator Q and
the commutators of these operators with CMO functions.

1. Introduction

Let P and Q be the Hardy operator and its adjoint on (0,e0),

P =1 [ 1o ort = [y

Hardy [8, 9] established the Hardy integral inequalities

/0 \Pf(y)|Pdy < p'? A lf)|Pdy, p>1,

and

/w 0f(y)[Pdy < p”/mlf(y)\”dy, p>1,
0 0

where p'=p/(p—1).

The two inequalities above go by the name of Hardy’s integral inequalities. For
the earlier development of this kind of inequality and many applications in analysis, see
[10, 15].

The Calderdn operator S is defined as S = P+ Q and plays a significant role in
the theory of real interpolation, see [1]. Duoandikoetxea, Martin-Reyes and Ombrosi in
[7] introduced the maximal operator N related to the Calderén operator and obtained a
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new characterization for the weighted inequalities on S. Given a measurable function
S on (0,e0), the maximal operator N is defined as

1
Nf(x) = sup— If( )|dy.
>x
Notice that Nf is a decreasing function, and that |Pf| < Nf < S(|f|) for any f.
Let 1 < p < oo, we say b is a one-side dyadic CMO? function, if

17 1/p
—buanlP — -
S;:g (21 / 1b(y) = b(0.21)] d)’> = [|b]lcmor < oo,

where b = 37 fo f(x)dx, we then say that b € CMO”.

It is easy to see BMO(0,%0) G CMO”, where 1 < p < eo. CMO? & CMO? for
1< p<g<oo.

Let b be a locally integrable function on (0, o), we define the commutators of the
Calder6n operator S with b as S, = P, + Qp,, where

1> < (b(x)—=b(y))f(y
Pf() = 1 [ 00— bO)S )y, 0ufe) = [ LN,
Long and Wang in [12] established the Hardy’s integral inequalities for commutators
generated by P and Q with one-sided dyadic CMO functions.
For operator T such as N, P, Q, S and Sy, it is natural to consider the problem
of characterizing the pairs (#,v) of nonnegative measurable functions such that

([T irrmmman)” <c( [Tlrmmvma)” (11)

holds with a positive constant C independent of f, where 0 < p,q < oo.
For p > 1, Muckenhoupt in [14] proved that P is bounded from L”(v) to LP(u)
if and only if there exists C > 0 such that for all # > 0 it holds that

(/tm %‘@ " (/0, v (v)ay) e

Bradley [2] and Maz’ya [13] obtained the similar results for the case 1 < p < g < oo.
For operator Q, they also obtained the similar results.

For 1 < p < e, we say a pair of weights (u,v) satisfies the two-weight A, o
condition, denoted (u,v) € Ap, if

1 1/t , p/p
_ 2 Z -p'/p oo
[u,v]p fgop( ; /0 u(y)dy)( ; /O v(y) dy) < oo,

=1, we write (u,v) € A, for the class of nonnegative functions such that
Nu(y) < Cv(y), a.e. and [u,v]; denotes the constant for which the inequality holds.
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When u = v, the classes of A, weights were introduced by Duoandikoetxea,
Martin-Reyes and Ombrosi in [7]. They proved that the Calderén operator S are
bounded on L”(w) if and only if w € A, o when p > 1. For N, the result is same.

In this paper, we obtain the characterizations for weights (u,v) such that N is
bounded from L”(v) to LP**(u) and from LP(v) to LP(u) respectively. We also give
some A, type conditions which are sufficient for the two-weight strong (p, p) inequal-
ities for the operators P, P,, Q and Q;. Our conditions differ from the conditions in
Muckenhoupt in [14], Bradley [2] and Maz’ya [13].

THEOREM 1.1. For 1 < p <eo, N is bounded from LP(v) to L"*(u) if and only
if (u,v) € App. More precisely,

sup Zau( {x: Nf(x %) > ANV < [Nl -

THEOREM 1.2. For 1 < p <eo,0 < g <eo, N is bounded from LP(v) to L{(u) if
and only if for any t > 0, (u,v) satisfies

([0 zomiuma) " <c( [y 7a) " <o (2

But for 1 < p <o, N is not bounded from L”(v) to LP(u) if (u,v) € A, 0, the
proof is same as the case for the Hardy-Littlewood maximal function on R", see [6].
Notice that |Pf| < Nf < S(|f|), by Theorem 1.1, we have that (u,v) € A, ¢ is necessary
but not sufficient for S is bounded from L?(v) to L (u).

THEOREM 1.3. Let 1 < p < oo,
(1) If (u,v) is a pair of weights for which there exists r > 1 such that, for every

t>0,
1 1 / p/re
- Z =rp'/p < oo
(7 [ uoiar) (5 /O W) P ray) " <€ < (1.3)
Then .
/ P ()[Pu(x)dx < C / X, (1.4)
0
(2) If (u,v) is a pair of weights for which there exists r > 1 such that, for every
t>0,
L/ Ur 1 1 / p/r
2z r - =p'/p < oo
(7 [ utra) " (5 [ vy rray)"™" <c < (15)
Then
/ 0 () [Pulx dx<C/ 0)Pv(x)dx. (1.6)

THEOREM 1.4. Let 1 <p<eo, b€ cMO” max{p-r'} gpg (u,v) be a pair of weights
for which there exists r > 1 such that for every t >0,

<1 /Ot u(y)’dy) l/r(l /Otv(y)"l’//pdyy/rp, <Cco amn

t t
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then
| Preruear<c |1 (18)

and

[ leselrumax<c [Ty (19)

2. The Proofs of Theorem 1.1 and Theorem 1.2

In the proofs of Theorem 1.1 and Theorem 1.2, we need the maximal operator N,
associated to a fixed positive measurable function g. We defined N, as

~ JolfO)lg(y)dy
Nefx) =0 Ofég(y)dy '

THEOREM 2.1. [7] Let g be a nonnegative measurable function such that 0 <
g(0,0) = fé’g(y)dy < oo forall b>0.
(i) Ny is of weak type (1,1) with respect to the measure g(t)dt. Actually,

g()dy < ;L If()lg(y)dy

~/{x:Ngf(x)>7L} {x:Ng f(x)>A}

for all A >0 and all measurable functions f.
(ii) Ny is of strong type (p,p), 1 < p < eo, with respect to the measure g(t)dt.

More precisely,
| NI s iy < (07 [ 17017

Proof of Theorem 1.1. For 1 < p < oo, the proof for the necessity of A, weights
is standard, we omitted here. For sufficiency, we observe that Nf is decreasing and
continuous. Therefore, if {x: Nf(x) > A} is not empty, then it is a bounded interval
(0,d), thus

d
ar= ["1)ay
Then
1 1/p
Au({x:Nf(x) > ANVP = )L( u y)

d
()
0
<2 ([ rorvea) " ([Cuma) ([ vrera)"
<ty ([ o).

This ends the proof. [
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Proof of Theorem 1.2. Denote 0 = vi=r' . The necessity of (1.2) follows by a
standard argument if we substitute f = 6 x (o) into [|[Nfl|za) < Cllf][1r(v)-

To show that (1.2) is sufficient, fix a bounded nonnegative function f with com-
pact support. Since Nf is decreasing and continuous, for each k € Z, if {x € (0,00) :
Nf(x) > 2F} is not empty, then there exists d; such that {x € (0,0) : Nf(x) > 2k} =
(0,dy). Thus 0 < djy1 < di, Q = {x € (0,00) : 2K < Nf(x) <281} = [di11,dy) and

dy.
2y = /O F()dy.

Fix a large integer K > 0, which will go to infinity later, and let Ax = {k € Z :
|k] < K}. We have

K k
de= [ oropears 3 240 " uay

k=—K djv1

= quzi_K/ddk u(y)dy(%/odkf(y)dyy

k+1

2y [ (- /Odkawy)q(fo Yo Doty

kK /i1 félk o(y)dy

_y /Z Ti(fo)dv,

where v is the measure on Z given by

v = [ uwar( [ o),

k+1

and, for every measurable function £, the operator Tk is defined by

J&en(y)o(v)dy
_ Jo H)ob)y

Txh(k
et o o(y)dy

XAk (k)

If we prove that Ty is uniformly bounded from L?((0,e),0) to LY(Z,v) indepen-
dently of K, we shall obtain

q/p

sx <€ [ etpoyav<e( [T(re  mIrotdy)
=c( [ rorviman ™

The uniformity in K of this estimate and the monotone convergence theorem will lead
to the desired inequality.

Now we prove that Tx is a bounded operator from L?((0,e0),0) to LY(Z,V).
It is clear that Tx : L”((0,0),0) — L=(Z,v) with constant less than or equal 1. The
Marcinkiewicz interpolation theorem says that it is enough to prove the uniform bound-
edness of the operators Tx from L'((0,e0),6) to LY/P>(Z,v). For this, fix h >0 a
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bounded function with compact support and put F; = {k € Z : Tgh(k) > A} = {|k|] <
K : Txh(k) > A}, and ko = min{k : k € F) }. Using (1.2), we have

v(F;) :ke% /d:’: <dik /()dkg(y)dy>qu(x)dx

dy
<kez& /d (N(0X(0.4)) () Tu(x)dx

k+1

k+1

dy
<z | V(62040 ux)dx

N

/Odko<N<<fx(o,dk0>>(x>qu<x>dx
s C( /Odko h(y)o (y)dy) o
o %h() (o (>dy)q/”
<c / h(y q/p’

where the constant C does not depend on K. This ends the proof. [

N

3. The Proofs of Theorem 1.3 and Theorem 1.4

LEMMA 3.1. [12] Let b € CMO!, j,k € Z, then

|b(1) = bo 21| < 1b(t) = bg oy | 4217 = Kl[[bll cmor -

Proof of Theorem 1.3. We first prove (1.4). By Holder inequality and condition
(1.3), we have

| Prwrutas
Z /sz T /O f(y)dy‘pu(x)dx

Jj=—c0
k41

2 /2 /k \f(y)ldy‘pu(x)dx

jomes
i (% i </2k \f(y)|Pv(y)dy>l/”</2k V()’)_p//pdy>l/pl>p/2j u(x)dx
Pl

S e

(S |f<y>vv<y>dy>“"</2k o) ()

2]+1

N

N
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2k+1

<c 3 (29 ([ yommary

j=—oo “k=—oo
2k+1

cc 3 (325 S [ mmon

j=—o0 “k=—oo k=—co

<c [T oI

Now we prove (1.6). By Holder inequality and condition (1.5), we have

/ Qf ()P u(x)dx
-

]_°°

oo 2J+1

z

Jj=—o0

2k+1

N

Fldy| uwyax

lzzk/

2/2/ u(x)dx

J=—00

N

VA
/~
o
=
=
N
=
N—
~
3
[\S)
S~

This ends the proof.

Proof of Theorem 1.4. We first prove (1.8).

Jy 1 ateyas
-EL

Jj=—o0

= [ 6w -penrea]| uwas

659
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2k+1

2_ /22 zi i o 106 =000y u(xjax
< 2v/v Z/ 2k
k41

2i J /2 |(b(x) = bo 241 f(¥) Idy‘pu(x)dx
2!+1 -
w2 2 / / . I(b(y>—b(o,z,»ﬂ])f(y)\dy”’u(x)dx

2Jj+1

Kk
=I+1IL

For I, by Holder inequality and condition (1.7), we have

2k+1

y 2/“ J P
1—2’”’,2 g fy 10— bawe s X[ o))
, 1, P NV 1r
/ _ _ ) r r
< 2°/P jz{m 77 (/0 |b(x) b(o,21+1]|p dX> (/0 u(x) dx)
j 2k+1 2k+l 2k+l
P 1/P/ —rp'/p 1/rp / 1/7p\P
(3 (O () an )
= o+l , 1 2t Lo\ Ur
<Ml X (g ), )
S G Gy o 2 p, 1 271 , Urp'\ P
rp’ ! - r/ /rp
(2T o) g v )
p k—j) 2k+l l/p p
< Ol 2 ( 3 2 [ oI’
k=—co
plp J k=j)p 2kt
<Pl > ( S 253 [
k=—oco k=—oo

<clpll,,. / Iy

For II, by Lemma 3.1, we have

2k+1

2/+1 j
11 = 20/7 z ) / (b0) = bioaer) S (3)|dy] ulx)dx

2]+1 j 2k+1
4op/P Z 2”7/2 p /k

= 111+112.

. P
20j = OCblleyior F )y ux)ax
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For II;, by Holder inequality and condition (1.7), we have

St ok+1 1/rp
r/ /
I, = 20/7 Z 2,p/2 x)dx (/ [6(y) = byg 2ty de)

2k+1 2 k+1

(3
(o orsonn) ([ vor ) )

oo 2k+1

< CIBIP, ,:ZM > (i AT 1))

< Il [ 1OIPVO)

For II,, we have

f = ClblEyor Y5 f " ki(j—k)( /22 FO)P)ay) "
X (/;M V(y)_’l"/l’dy>l/rpl(/;k+ d)’>1//p/)p
< Bl 2 <k_2_wf 2 ( /22 o) ")
< B2, o0 /0 FO)Pv(s)dy
Now we prove (1.9). We have
| 100 utx)ax
- 2 /22 [ew —l;(y))f(y) "t
<y /fﬂ\izk L 10— b 0] o

Jj=—o0
2k+1

< orlv Z /2 3 / |(b(x)—b(o,zm])f(y)\dy)pu(x)dx

Jj=—o0

42p/P Z /

Jj=—oo

2J+1 ok+1

S fo 100~ boas) ] utoas

=J+J.
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For J, by Holder inequality and condition (1.7), we have

2J+l 2k+l
J = oplt Z / — b i |Pulx dx sz/ \dy
j_ oo
L& 27t ;N1 g2 1/r
< 2p/p D (/0 |b(x) — b [ dx) (/0 u(x)rdx>
[A—
i 1 2k+l l/p k+1 // l/p/ P
= Py(v\d / -r'/rg
(T om0 ([ o))

< bl

= ) 2k+1 1/r
i (L r
Mo’ ';ooz’ <2k+1 /0 u(x) dx)
2k+1

(T o) |

2k+1

v(y)ip,/pdy) 1/p/>17

oo oo ik 2k+l | »
< o 3 (327 / FO)Pv)ay)7)
2 (2
oo oo j 17/17 2k+1
gCHbHI(;MO/”I Z (ZZ / y)[Pv(y)dy
J=—o0 k=] 2
- p
Clo o [ 1IP0Iy
For JJ, by Lemma 3.1, we have
2]+1 oo 2k+l p
w=2r 3 [0 S 7L 160) bzl uwax
j__°<’
2/+1 oo 2k+1
23 S L 2 e 0
j__°<’
=JI +1),.

For JJ;, by Holder inequality and condition (1.7), we have

2k+1

2/+l
_2P/I7 2 / dx‘z/zk/ 2k+1])f(y)|dy‘17
e
' 2J+ 1r 2k+1 / 1y
’ r 4
<C,=2_N2”/ (/ ut dx) <,§,?</2k 160) ~ ooy | )
k41 1/ 2k+1 , 1/rp'
([ o) ([ verray) )

2k+1

ENNTRYA P S G 1/p\p
o T 2 (B2 ([ 0non) )

< ClplI7
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2k+1

<Mlygr 3 (T27 ([, 170P0)'")
< ClBllyo [, DIV

For JJ,, we have

UEL TS o jas( 3 55 [ i)
=j
([ o)y
< oy Z (Zk 727 ( /2 FOvoy) ")

<cllpl}? /°°|f<y>|f’v<y>dy.

cmor'"!

This ends the proof.
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