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A RESIDUAL–BASED POSTERIORI ERROR ESTIMATES

FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL

BILINEAR OPTIMAL CONTROL PROBLEMS

ZULIANG LU

Abstract. In this paper, we investigate a residual-based posteriori error estimates for the hp
finite element approximation of general optimal control problems governed by bilinear elliptic
equations. By using the hp discontinuous Galerkin finite element approximation for the control
and the hp finite element approximation for both the state and the co-state, we derive a posteriori
upper error bounds for the optimal control problems governed by bilinear elliptic equations in
L2−H1 norms. We also give a posteriori lower error bounds for the error estimate of the optimal
control problems. These estimates can be readily used for constructing a reliable adaptive finite
element approximation for such optimal control problems.
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