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A RESIDUAL–BASED POSTERIORI ERROR ESTIMATES

FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL

BILINEAR OPTIMAL CONTROL PROBLEMS

ZULIANG LU

(Communicated by M. Aslam Noor)

Abstract. In this paper, we investigate a residual-based posteriori error estimates for the hp
finite element approximation of general optimal control problems governed by bilinear elliptic
equations. By using the hp discontinuous Galerkin finite element approximation for the control
and the hp finite element approximation for both the state and the co-state, we derive a posteriori
upper error bounds for the optimal control problems governed by bilinear elliptic equations in
L2−H1 norms. We also give a posteriori lower error bounds for the error estimate of the optimal
control problems. These estimates can be readily used for constructing a reliable adaptive finite
element approximation for such optimal control problems.

1. Introduction

Optimal control problems are now widely used in physical, biological, engineering
design, fluid mechanics, and social-economic systems etc. The finite element method
is undoubtedly the most widely used numerical method in computing optimal control
problems. Finite element approximation of a class of elliptic optimal control problems
has been studied by Falk as a pioneer in [13]. For some classes of linear and nonlinear
optimal control problems, many researchers have obtained a priori error estimates for
the standard finite element methods in [12, 14, 21, 27, 7] and for the mixed finite ele-
ment methods in [5, 6, 7, 9, 11, 22, 23, 24], but there are very less published results on
this topic for hp -finite element methods for bilinear optimal control problems.

Adaptive finite element approximation is among the most important means to
boost accuracy and efficiency of the finite element discretization. There are three main
versions in adaptive finite element approximation, i.e., p -version, h -version, and hp -
version. The p -version of finite element methods uses a fixed mesh and improves the
approximation of the solution by increasing degrees of piecewise polynomials. The
h -version is based on mesh refinement and piecewise polynomials of low and fixed de-
grees. In hp -version adaptation, one have the option to split an element (h -refinement)
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or to increase its approximation order ( p -refinement). Generally, a local p -refinement
is the more efficient method on regions where the solution is smooth, while a local h -
refinement is the strategy suitable on elements where the solution is not smooth. There
have been many theoretical studies about hp finite element method in [1, 3, 4, 15].

Actually, there are many h -version of adaptive finite element methods for opti-
mal control problems in [8, 16, 21, 19, 20, 17]. But, for high order element such as
hp -version of finite element method for optimal control problems is very few. More
recently, in [7], for the constrained optimal control problem governed by linear elliptic
equations, the authors have derived a posteriori error estimates for the hp finite ele-
ment solutions. Inspired by the work of [7], we consider a posteriori error estimates
in L2 −H1 norms for hp finite element solutions of general optimal control problems
governed by bilinear elliptic equations. To our best knowledge for optimal control prob-
lems, these posteriori error estimates in L2 −H1 norms for the general bilinear convex
optimal control problems are new.

For 1 � p < ∞ and m any nonnegative integer let Wm,p(Ω) = {v∈ Lp(Ω); Dαv ∈
Lp(Ω) if |α| � m} denote the Sobolev spaces endowed with the norm ‖v‖p

m,p =
∑

|α |�m
‖Dαv‖p

Lp(Ω), and the semi-norm | v |pm,p= ∑
|α |=m

‖Dαv‖p
Lp(Ω) . We set Wm,p

0 (Ω) =

{v∈Wm,p(Ω) : v |∂Ω= 0} . For p=2, we denote Hm(Ω)=Wm,2(Ω) , Hm
0 (Ω)=Wm,2

0 (Ω) ,
and ‖·‖m = ‖·‖m,2 , ‖·‖= ‖·‖0,2. In this paper, we focus our attention on the following
general bilinear convex optimal control problems:

min
u∈K

{g(y)+ j(u)}, (1.1)

−div(A∇y)+uy = f in Ω, y|∂Ω = 0, (1.2)

where Ω and ΩU are bounded open sets in R
2 with a Lipschitz boundary ∂Ω and

∂ΩU , g is a convex functional which is continuously differentiable function on the
observation space L2(Ω) , j(u) =

∫
ΩU

h(u)dx , where h(·) is a strictly convex continu-
ously differentiable function and h′(·) is locally lipschitz continuous in a neighborhood
of u . Let f ∈ L2(Ω) , and A(·) = (ai, j(·))2×2 ∈ (W 1,∞(Ω))2×2, satisfying that there is
a constant c > 0 such that for any vector X ∈ R

2 , XtAX � c‖X‖2
R2 . Let K be a closed

convex set defined by K = {u ∈ L2(ΩU) :
∫

ΩU
udx � 0} .

The paper is organized as follows. In Section 2, we shall contruct the hp finite
element approximation for the distributed convex optimal control problem governed by
bilinear elliptic equations. In Section 3, we derive both hp a posteriori upper error
bounds and hp a posteriori lower error bounds for the error estimates of the control,
the state and the co-state. In Section 4, we give conclusions and some possible future
work.

2. hp finite element of bilinear optimal control

In this section, we discuss the hp finite element approximation of general bilinear
optimal control problems (1.1)–(1.2). Now, we shall take the state space V = H1

0 (Ω) ,
the control space U = L2(ΩU) , and H = L2(Ω) to fix the idea. Let the observation
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space Y = L2(Ω) . To consider the hp finite element approximation of the general op-
timal control problems (1.1)–(1.2), we first give a weak formula for the state equation.
Let

a(v,w) =
∫

Ω
(A∇v) ·∇wdx, ∀v,w ∈V,

( f1, f2) =
∫

Ω
f1 f2dx, ∀( f1, f2) ∈ H×H,

(v,w)U =
∫

ΩU

vwdx, ∀(v,w) ∈U ×U.

Then it is easy to see that

( j′(u),v)U =
∫

ΩU

h′(u)vdx.

It follows from the assumptions on A that there are constants c,C > 0 such that

a(v,v) � c‖v‖2
V , |a(v,w)| � C|v|V |w|V , ∀v,w ∈V. (2.1)

Then, the general optimal control problems (1.1)–(1.2) can be restated as follows:

min
u∈K⊂U

{g(y)+ j(u)}, (2.2)

a(y(u),w)+ (uy,w) = ( f ,w), ∀w ∈V = H1
0 (Ω). (2.3)

It is well known (see, i.e., [18]) that the optimal control problems (2.2)–(2.3) has a
solution (y,u) , and that if a pair (y,u) is the solution of (2.2)–(2.3), then there is a co-
state p ∈V such that the triplet (y,u, p) satisfies the following optimality conditions:

a(y,w)+ (uy,w) = ( f ,w), ∀w ∈V = H1
0 (Ω), (2.4)

a(q, p)+ (up,q) = (g′(y),q), ∀q ∈V = H1
0 (Ω), (2.5)

(h′(u)− yp,v−u)U � 0, ∀v ∈ K ⊂U = L2(ΩU), (2.6)

where g′ and h′ are the derivatives of g and h . Here g′ and h′ can be viewed as
functions in Y = L2(Ω) and U = L2(ΩU) , respectively.

Assume that Ω and ΩU are polygonal. We consider the triangulation T of the
set Ω ⊂ R

2 which is a collection of elements τ ∈ T , τ is a parallelogram or a
triangle; associated with each element τ is an affine element map Fτ : τ̂ → τ , where
the reference element τ̂ is the reference square S = (0,1)2 if τ is a parallelogram and
τ̂ is the reference triangle T = {(x,y) ∈ R

2 : 0 < x < 1,0 < y < min(x,1− x)} if τ
is a triangle. We consider the triangulation T which satisfies the standard conditions
defined in [25]. We write hτ = diamτ . Additionally we assume that triangulation T
is γ -shape regular, i.e.,

h−1
τ ‖F ′

τ‖L∞(τ̂) +hτ‖(F ′
τ)

−1‖L∞(τ̂) � γ. (2.7)

This implies that there exists a constant C > 0 that depends solely on γ such that

C−1hτ � hτ ′ � Chτ , τ,τ ′ ∈ T with τ ∩ τ ′ 	= /0, (2.8)
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and there exists a constant M ∈ N that depends solely on γ such that no more than M
elements share a common vertex.

We also assume that the triangulation TU of ΩU which is a collection of elements
τU ∈ TU , is γ -shape regular which satisfies the standard conditions as T . Associated
with each element τU is an affine element map FτU : τ̂ → τU . We further assume the
triangulation T satisfies the relation between the patch and the reference patch in [25].
For each element τ ∈ T , we denote E (τ) the set of edges of τ and by N (τ) the set
of vertices of τ , and choose a polynomial degree pτ ∈ N and collect these numbers in
the polynomial degree vector p1 = (pτ )τ∈T . Similarly, for each element τU ∈TU , we
choose a polynomial degree vector p2 = (pτU )τU∈TU ( pτU ∈ N). And N (T ) denotes
the set of all vertices of T , E (T ) denotes the set of all edges. Next, for V ∈ N (T ) ,
e ∈ E (T ) , we introduce the following notations:

N (e) = {V ∈ N (T ) : V ∈ e},
wV = {x ∈ Ω : x ∈ τ and τ ∩{V} 	= /0}0,

w1
e =

⋃
V∈N (e)

wV , w1
τ =

⋃
V∈N (τ)

wV , (2.9)

pe = max{pτ : e ∈ E (τ)}, hτU = diamτU ,

where χ0 denotes the interior of the set χ . We denote by he the length of the edge e .
Additionally, C or c denotes a general positive constant independent of hτ , pτ , hτU ,
pτU , he , pe , and pτU .

Now, we define the hp finite element space S p 1(T ) ⊂ H1(Ω) and the hp dis-
continuous Galerkin finite element space S p 2(TU ) ⊂ L2(ΩU) by

Sp1(T ) = {v ∈C(Ω); v|τ ◦Fτ ∈ Πpτ (τ̂)},
Sp2(TU) = {v ∈ L2(ΩU); v|τU ◦FτU ∈ ΠpτU

(τ̂)},

where we set

Πk(τ̂) =
{

Pk = span{xiy j : 0 � i+ j � k}, if τ̂ = T,
Qk = span{xiy j : 0 � i, j � k}, if τ̂ = S.

We also assume that the polynomial degree vector p1 = (pτ)τ∈T satisfies:

γ−1pτ � pτ ′ � γ pτ , τ,τ ′ ∈ T with τ ∩ τ ′ 	= /0. (2.10)

Then we can construct the following finite element spaces

Vhp = V ∩S p 1(T ), Khp = K∩S p 2(TU).

Then the hp finite element approximation of (2.2)–(2.3) is as follows:

min
uhp∈Khp

{g(yhp)+ j(uhp)}, (2.11)

a(y(uhp),whp)+ (uhpyhp,whp) = ( f ,whp), ∀whp ∈Vhp. (2.12)
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It is well known that the optimal control problems (2.11)–(2.12) has a solution
(yhp,uhp) and that if a pair (yhp,uhp) ∈Vhp×Khp is the solution of (2.11)–(2.12), then
there is a co-state php ∈ Vhp such that the triplet (yhp, php,uhp) satisfies the following
optimality conditions:

a(yhp,whp)+ (uhpyhp,whp) = ( f ,whp), ∀whp ∈Vhp ⊂V = H1
0 (Ω), (2.13)

a(qhp, php)+ (uhpphp,qhp) = (g′(yhp),qhp), ∀qhp ∈Vhp ⊂V = H1
0 (Ω), (2.14)

(h′(uhp)− yhpphp,vhp−uhp)U � 0, ∀vhp ∈ Khp ⊂U = L2(ΩU). (2.15)

The following lemmas are important in deriving a posteriori error estimates of
residual type [25].

LEMMA 2.1. Let p1 be an arbitrary polynomial degree distribution satisfies (2.10).
Then there exists a linear operator Ehp : H1

0 (Ω) → S p 1(T )∩H1
0 (Ω) , and there exists

a constant C > 0 depending solely on γ such that for every v∈H1
0 (Ω) and all elements

τ ∈ T and all edges e ∈ E (T )

‖v−Ehpv‖L2(τ) +
hτ
pτ

‖∇(v−Ehpv)‖L2(τ) � C
hτ
pτ

‖∇v‖L2(w1
τ ),

‖v−Ehpv‖L2(e) � C

(
he

pe

) 1
2

‖∇v‖L2(w1
e).

LEMMA 2.2. There exists a constant C > 0 independent of v , hτU , and pτU and

a mapping πhτU
pτU

: H1(τU ) → PpτU
(τU) such that ∀v ∈ H1(τU ),τU ∈ TU the following

inequality is valid

‖v−πhτU
pτU

v‖L2(τU ) � C
hτU

pτU

‖v‖H1(τU ).

where we will write v ∈ PpτU
(τU ) if the following satisfied: v|τU ◦FτU ∈ PpτU

(τ̂) if τU

is a triangle; v|τU ◦FτU ∈ QpτU
(τ̂) if τU is a parallelogram.

Proof. For a proof we refer to the Lemma 4.5 in [1]. �
Let H∗(ΩU ,TU ) = {v : v|τU ∈ H1(τU),∀τU ∈ TU} , and then we can define the

mapping that is useful in the estimate of the control, i.e., there exist a mapping Ihp
U :

H∗(ΩU ,TU) → S p 2(TU) such that

Ihp
U v|τU = πhτU

pτU
(v|τU ), ∀τU ∈ TU . (2.16)

3. A residual-based posteriori Error estimates

In this section, we will discuss hp a residual-based posteriori error estimates for
the optimal control problems. Let y(u) and yhp(uhp) are the solutions of (2.2)–(2.3)
and (2.11)–(2.12) respectively. For simplicity of presentation, let

J(u) = g(y(u))+ j(u), Jhp(uhp) = g(y(uhp))+ j(uhp).
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Then the reduced optimal control problems of (2.2) and (2.11) read as

min
u∈K

{J(u)}, (3.1)

and

min
uhp∈Khp

{Jhp(uhp)}, (3.2)

respectively. It can be shown that

(J′(u),v)U = (h′(u)− yp,v)U ,

(J′hp(uhp),v)U = (h′(uhp)− yhpphp,v)U ,

(J′(uhp),v)U = (h′(uhp)− y(uhp)p(uhp),v)U ,

where p(uhp) is the solution of the auxiliary equations:

a(y(uhp),w)+ (uhpy(uhp),w) = ( f ,w), ∀w ∈V = H1
0 (Ω), (3.3)

a(q, p(uhp))+ (uhpp(uhp),q) = (g′(y(uhp)),q), ∀q ∈V = H1
0 (Ω). (3.4)

THEOREM 3.1. Let u and uhp be the solutions of (3.1) and (3.2) respectively.
Assume that

(J′(u)− J′(v),u− v)U � c‖u− v‖2
L2(ΩU ), ∀u,v ∈U. (3.5)

Moreover, we assume that h′(uhp)− yhpphp ∈ H∗(ΩU ,TU) . Then,

‖u−uhp‖2
L2(ΩU ) � C(η2

1 +‖yhp− y(uhp)‖2
L2(Ω) +‖php− p(uhp)‖2

L2(Ω)), (3.6)

where php and p(uhp) are the solutions of the equations (2.14) and (3.4) respectively,
and

η2
1 = ∑

τU

h2
τU

p2
τU

∫
τU

(∇(h′(uhp)− yhpphp))2.

Proof. By using (2.6), (2.15), and (3.5), we have

c‖u−uhp‖2
L2(ΩU )

�(J′(u),u−uhp)U − (J′(uhp),u−uhp)U
� − (J′(uhp),u−uhp)U
� − (J′(uhp),u−uhp)U +(h′(uhp)− yhpphp,vhp−uhp)U
=(J′hp(uhp),uhp−u)U +(J′hp(uhp)− J′(uhp),u−uhp)U +(h′(uhp)− yhpphp,vhp−uhp)U
=(h′(uhp)− yhpphp,uhp−u)U +(y(uhp)p(uhp)− yhpphp,u−uhp)U

+(h′(uhp)− yhpphp,vhp−uhp)U
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=(h′(uhp)− yhpphp,vhp−u)U +((y(uhp)− yhp)p(uhp)+ yhp(p(uhp)− php),u−uhp)U

�(h′(uhp)− yhpphp,vhp−u)U +C‖yhp− y(uhp)‖2
L2(Ω)

+C‖php− p(uhp)‖2
L2(Ω) +

c
4
‖u−uhp‖2

L2(ΩU ). (3.7)

Now, we introduce the L2(ΩU)−projection of u into S p 2(TU ) , i.e., let Phpu∈ S p 2(TU )
be the function defined by

(u−Phpu,whp)U = 0, ∀whp ∈ Sp2(TU). (3.8)

Setting whp = 1 in (3.8), we have∫
ΩU

Phpu =
∫

ΩU

u � 0.

So we have Phpu ∈ Khp . In order to use the scaling argument, we introduce the follow-
ing notation:

G|τU = h′(uhp)− yhpphp,

Ĝ |τ̂= Ĝ|τU = (h′(uhp)− yhpphp)◦FτU ∈ H1(τ̂), Ĝ |τ̂ =
∫

τ̂
Ĝ |τ̂

/∫
τ̂
1.

It follows easily from (3.8) that

‖u−Phpu‖L2(ΩU ) � ‖u− vhp‖L2(ΩU ), ∀vhp ∈ Sp2(TU). (3.9)

Set vhp = Phpu∈ Khp , it follows from (3.8), (3.9), Lemma 2.2, Poincaré inequality, and
scaling argument that

(h′(uhp)− yhpphp,vhp−u)U
=(h′(uhp)− yhpphp,Phpu−u)U

=
(
h′(uhp)− yhpphp− Ĝ |τ̂ − Ihp

U (h′(uhp)− yhpphp− Ĝ |τ̂),Phpu−u
)

U

= ∑
τU

(
h′(uhp)− yhpphp− Ĝ |τ̂ −πhτU

pτU
(h′(uhp)− yhpphp− Ĝ |τ̂),Phpu−u

)
τU

�C∑
τU

(
hτU

pτU

∥∥∥h′(uhp)− yhpphp− Ĝ |τ̂
∥∥∥

H1(τU )
· ‖Phpu−u‖L2(τU )

)

�C∑
τU

h2
τU

p2
τU

∥∥∥h′(uhp)− yhpphp− Ĝ |τ̂
∥∥∥2

H1(τU )
+

c
4
‖Phpu−u‖2

L2(ΩU )

�C∑
τU

h2
τU

p2
τU

‖∇(h′(uhp)− yhpphp)‖2
L2(τU ) +

c
4
‖u−uhp‖2

L2(ΩU ). (3.10)

By using (3.7) and (3.10), we have

‖u−uhp‖2
L2(ΩU ) �C∑

τU

h2
τU

p2
τU

‖∇(h′(uhp)− yhpphp)‖2
L2(τU )

+C‖yhp− y(uhp)‖2
L2(Ω) +C‖php− p(uhp)‖2

L2(Ω).

The proof of Theorem 3.1 is completed. �
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THEOREM 3.2. Let (y, p,u) and (yhp, php,uhp) be the solutions of (2.4)–(2.6)
and (2.13)–(2.15). Supposed all the conditions in Theorem 3.1 are valid. Moreover,
assume that g′ and h′ are locally Lipschitz continuous in a neighborhood of y and u.
Then,

‖u−uhp‖2
L2(ΩU ) +‖y− yhp‖2

H1(Ω) +‖p− php‖2
H1(Ω) � C

3

∑
i=1

η2
i , (3.11)

where

η2
2 = ∑

τ

∫
τ

h2
τ

p2
τ
(g′(yhp)+div(A∗∇php)−uhpphp)2 +∑

e

∫
e

he

pe
[(A∗∇php ·n)]2,

η2
3 = ∑

τ

∫
τ

h2
τ

p2
τ
( f +div(A∇yhp)−uhpyhp)2 +∑

e

∫
e

he

pe
[(A∇yhp ·n)]2,

where e is a edge of an element τ , [(A∗∇php ·n)] and [(A∇yhp ·n)] are the A-normal
derivative jumps over the interior edge e, defined by

[(A∗∇php ·n)]e = (A∗∇php|τ1
e
−A∗∇php|τ2

e
) ·n,

[(A∇yhp ·n)]e = (A∇yhp|τ1
e
−A∇yhp|τ2

e
) ·n,

where n is the unit normal vector on e = τ 1
e ∩ τ 2

e outwards τ1
e . For ease of exposition,

we let [(A∗∇php ·n)]e = [(A∇yhp ·n)]e = 0 when e ⊂ ∂Ω .

Proof. Firstly, let ep = p(uhp)− php and Ehp be the interpolator defined in Lemma
2.1. It follows from (2.1), (2.14), (3.4), and Lemma 2.1 that

c‖ep‖2
H1(Ω) �(∇ep,A∗∇(p(uhp)− php))+ (uhp(p(uhp)− php),ep)

=(∇(ep−Ehpep),A∗∇(p(uhp)− php))+ (uhp(p(uhp)− php),ep−Ehpep)

+ (∇Ehpep,A∗∇(p(uhp)− php))+ (uhp(p(uhp)− php),Ehpep)

= ∑
τ

∫
τ
(g′(yhp)+div(A∗∇php)−uhpphp)(ep−Ehpep)

−∑
e

∫
e
[A∗∇php ·n](ep−Ehpep)ds+(g′(y(uhp))−g′(yhp),ep)

�C(δ )∑
τ

h2
τ

p2
τ

∫
τ
(g′(yhp)+div(A∗∇php)−uhpphp)2

+C(δ )∑
e

he

pe

∫
e
[A∗php ·n]2 +Cδ ∑

τ

p2
τ

h2
τ

∫
τ
|ep−Ehpep|2

+Cδ ∑
e

∫
e

pe

he
|ep−Ehpep|2ds+C‖g′(y(uhp))−g′(yhp)‖L2(Ω) · ‖ep‖L2(Ω)
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�C(δ )∑
τ

h2
τ

p2
τ

∫
τ
(g′(yhp)+div(A∗∇php)−uhpphp)2

+C(δ )∑
e

he

pe

∫
e
[A∗php ·n]2 +C(δ )‖yhp− y(uhp)‖2

L2(Ω) +Cδ‖ep‖2
H1(Ω),

(3.12)

where we have used the embedding theorem ‖v‖L4(Ω) � C‖v‖H1(Ω) and the property
‖php‖H1(Ω) � C . Then, let δ = c

2C , we have

‖php− p(uhp)‖2
H1(Ω) �C∑

τ

h2
τ

p2
τ

∫
τ
(g′(yhp)+div(A∗∇php)−uhpphp)2

+C∑
e

he

pe

∫
e
[A∗php ·n]2 +C‖yhp− y(uhp)‖2

L2(Ω). (3.13)

Similarly, let ey = y(uhp)− yhp and let Ehp be the interpolator defined in Lemma 2.1.
It follows from (2.1), (2.13), (3.3), and Lemma 2.1 that

c‖y(uhp)− yhp‖2
H1(Ω) �(A∇(y(uhp)− yhp),∇ey)+ (uhp(y(uhp)− yhp),ey)

=(A∇(y(uhp)− yhp),∇(ey −Ehpey))

+ (uhp(y(uhp)− yhp),ey −Ehpey)

= ∑
τ

∫
τ
( f +div(A∇yhp)−uhpyhp)(ey −Ehpey)

−∑
τ

∫
∂τ

(A∇yhp ·n)(ey −Ehpey)ds

�C(δ )∑
τ

h2
τ

p2
τ

∫
τ
( f +div(A∇yhp)−uhpyhp)2

+C(δ )∑
e

he

pe

∫
e
[A∇yhp ·n]2 +Cδ‖ey‖2

H1(Ω). (3.14)

Hence,

‖y(uhp)− yhp‖2
H1(Ω) �C∑

τ

h2
τ

p2
τ

∫
τ
( f +div(A∇yhp)−uhpyhp)2

+C∑
e

he

pe

∫
e
[A∇yhp ·n]2. (3.15)

It follows from (3.13), (3.15), and Theorem 3.1 that

‖u−uhp‖2
L2(ΩU ) � C

3

∑
i=1

η2
i . (3.16)

Note that

‖y− yhp‖H1(Ω) � ‖y(uhp)− yhp‖H1(Ω) +‖y− y(uhp)‖H1(Ω), (3.17)
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‖p− php‖H1(Ω) � ‖p(uhp)− php‖H1(Ω) +‖p− p(uhp)‖H1(Ω), (3.18)

and

‖p− p(uhp)‖2
H1(Ω) +‖y− y(uhp)‖2

H1(Ω) � C‖u−uhp‖2
L2(ΩU ). (3.19)

Therefore, (3.11) follows from (3.13), (3.15), (3.16), and (3.17)–(3.19). �
Now, we will derive hp a posteriori lower error bounds for the optimal control

problems governed by bilinear elliptic equations. To obtain the posteriori lower error
bounds, we need the following polynomial inverse estimates [26].

LEMMA 3.1. Let −1 < α < β , δ ∈ [0,1] and let Φê(x) = x(1− x). Then there
exist C1 = C(α,β ) , and C2 = C(δ ) such that for all univariate polynomials ψk of
degree k ∫ 1

0
Φ2α

ê ψ2
k (x)dx � C1k

2(β−α)
∫ 1

0
Φβ

ê ψ2
k (x)dx, (3.20)

∫ 1

0
Φ2δ

ê (ψ ′
k(x))

2dx � C2k
2(2−δ )

∫ 1

0
Φδ

ê ψ2
k (x)dx. (3.21)

LEMMA 3.2. Let τ̂ = S or τ̂ = T and let Φτ̂ = dist(x,∂ τ̂) . Let −1 < α < β and
δ ∈ [0,1]. Then there exist C3 = C(α,β ) and C4 =C(δ ) such that for all polynomials
ψk ∈ Qk ∫

τ̂
(Φτ̂ )

α ψ2
k dxdy � C3k

2(β−α)
∫

τ̂
(Φτ̂)

β ψ2
k dxdy, (3.22)∫

τ̂
Φ2δ

τ̂ |∇ψk|2dxdy � C4k
2(2−δ )

∫
τ̂
(Φτ̂ )

δ ψ2
k dxdy. (3.23)

LEMMA 3.3. Let τ̂ = S or τ̂ = T , α ∈ ( 1
2 ,1] . Set ê = (0,1)×{0} and let Φê

and Φτ̂ be given in Lemma 3.1 and Lemma 3.2 respectively. For every univariate
polynomial ψ ∈ Pk of degree k and every ε ∈ (0,1] , there exists a constant C =Cα > 0
and an extension wê ∈ H1(τ̂) such that

wê|ê = ψ ·Φα
ê and wê|∂ τ̂\ê = 0, (3.24)

‖wê‖2
L2(τ̂) � Cε‖ψΦ

α
2
ê ‖2

L2(ê), (3.25)

‖∇wê‖2
L2(τ̂) � C(εk2(2−α) + ε−1)‖ψΦ

α
2
ê ‖2

L2(ê). (3.26)

Noting that Fτ is the element map for the element τ and e is the image of the
edge ê under Fτ [25], we define Φτ and Φe as follows:

Φτ = cτ Φτ̂ ◦F−1
τ , Φe = ceΦê ◦F−1

τ ,

with scaling factors cτ ,ce > 0 chosen that

‖Φτ‖L∞(τ) = 1, ‖Φe‖L∞(e) = 1. (3.27)

For FτU , we have the same definition as that of Fτ .



hp FINITE ELEMENT OF BILINEAR OPTIMAL CONTROL 675

THEOREM 3.3. Let (y, p,u) and (yhp, php,uhp) be the solutions of (2.4)–(2.6)
and (2.13)–(2.15). Assume that A is a constant matrix, (h′(uhp)− yhpphp)|τU is a
polynomial of degree pτU for any τU ∈TU , the solution u satisfying

∫
ΩU

udx > 0 , and
g′ and h′ are locally Lipschitz continuous in a neighborhood of y and u. Then for any
ε satisfying 0 < ε < 3/2 , we have

3

∑
i=1

η̂2
i � C(‖u−uhp‖H1(ΩU ) +‖y− yhp‖2

H1(Ω) +‖p− php‖2
H1(Ω) + ϖ2), (3.28)

where

η̂2
1 = ∑

τU

∫
τU

h2
τU

p4
τU

(∇(h′(uhp)− yhpphp))2,

η̂2
2 = ∑

τ

∫
τ

h2
τ

p4
τ
(g′(yhp)+div(A∗∇php)−uhpphp)2 +∑

e

∫
e

he

p3+2ε
e

[(A∗∇php) ·n]2,

η̂2
3 = ∑

τ

∫
τ

h2
τ

p4
τ
( f +div(A∇yhp)−uhpyhp)2 +∑

e

∫
e

he

p3+2ε
e

[(A∇yhp ·n)]2,

and

ϖ2 = ∑
τ

h2
τ

p3−2ε
τ

‖ f − f ‖2
L2(τ) +∑

τ

h2
τ

p3−2ε
τ

‖uhpyhp−uhpyhp‖2
L2(τ)

+∑
τ

h2
τ

p3−2ε
τ

‖g′(yhp)−g′(yhp)‖2
L2(τ).

Proof. It follows from (2.6) and
∫

ΩU
udx > 0 that

h′(u)− yp = 0, a.e. in ΩU . (3.29)

It follows from the polynomial inverse estimates (3.23), (3.29), and the affine map FτU

that

h2
τU
‖∇(h′(uhp)− yhpphp)‖2

L2(τU )

�C
p4

τU

h2
τU

h2
τU
‖(h′(uhp)− yhpphp)‖2

L2(τU )

=Cp4
τU
‖(h′(uhp)−h′(u)− yhpphp + yp)‖2

L2(τU )

=Cp4
τU
‖(h′(uhp)−h′(u)− (php− p)yhp− (yhp− y)p‖2

L2(τU )

�Cp4
τU

(‖h′(uhp)−h′(u)‖2
L2(τU ) +‖php− p‖2

L2(τU ) +‖yhp− y‖2
L2(τU )).

Then we have

h2
τU

p4
τU

‖∇(h′(uh)− yhpphp)‖2
L2(τU )

�C(‖h′(uhp)−h′(u)‖2
L2(τU ) +‖php− p‖2

L2(τU ) +‖yhp− y‖2
L2(τU )). (3.30)
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It follows from (3.30) that

η̂2
1 = ∑

τU

h2
τU

p4
τU

‖∇(h′(uhp)−uhpphp)‖2
L2(τU )

�C∑
τU

(‖h′(uhp)−h′(u)‖2
L2(τU ) +‖php− p‖2

L2(τU ) +‖yhp− y‖2
L2(τU ))

�C(‖u−uhp‖2
H1(ΩU ) +‖p− php‖2

H1(Ω) +‖y− yhp‖2
H1(Ω)). (3.31)

To bound η̂2
2 , we define vτ = (g′(yhp)+ div(A∗∇php)− uhpphp)Φα

τ , α ∈ (0,1] . We
use the trivial extension by zero on Ω\τ so that vτ can be viewed as an element of
H1

0 (Ω) . Then we have

‖vτ Φ−α/2
τ ‖2

L2(τ)

=
∫

τ
(g′(yhp)+div(A∗∇php)−uhpphp)vτ

=
∫

τ
(g′(yhp)+div(A∗∇php)−uhpphp−g′(y)−div(A∗∇p)+up)vτ

+
∫

τ
(g′(yhp)−g′(yhp))vτ +

∫
τ
(uhpphp−uhpphp)vτ

= −
∫

τ
(A∇vτ )∇(php− p)+

∫
τ
(up−uhpphp +g′(yhp)−g′(y))vτ

+
∫

τ
(g′(yhp)−g′(yhp))vτ +

∫
τ
(uhpphp−uhpphp)vτ

�C|php− p|H1(τ) · |vτ |H1(τ) +‖(g′(yhp)−g′(y))Φα/2
τ ‖L2(τ) · ‖vτΦ−α/2

τ ‖L2(τ)

+‖(up−uhpphp)Φ
α/2
τ ‖L2(τ) · ‖vτΦ−α/2

τ ‖L2(τ)

+‖(g′(yhp)−g′(yhp))Φ
α/2
τ ‖L2(τ) · ‖vτ Φ−α/2

τ ‖L2(τ)

+‖(uhpphp−uhpphp)Φ
α/2
τ ‖L2(τ) · ‖vτΦ−α/2

τ ‖L2(τ). (3.32)

To estimate |vτ |H1(τ) , we use the inverse estimates (3.22) and (3.23) and the affine map
Fτ . Then we have for α > 1/2

|vτ |2H1(τ) �2
∫

τ
Φ2α

τ |∇(g′(yhp)+div(A∗∇php)−uhpphp)|2

+2
∫

τ
(g′(yhp)+div(A∗∇php)−uhpphp)2|∇Φα

τ |2

�C
p2(2−α)

τ
h2

τ

∫
τ

Φα
τ (g′(yhp)+div(A∗∇php)−uhpphp)2

+C
1
h2

τ

∫
τ

Φ2(α−1)
τ (g′(yhp)+div(A∗∇php)−uhpphp)2
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�C
p2(2−α)

τ
h2

τ

∫
τ

Φα
τ (g′(yhp)+div(A∗∇php)−uhpphp)2

�Cp2(1−α)
τ

p2
τ

h2
τ
‖vτ Φ−α/2

τ ‖2
L2(τ). (3.33)

Thus it follows from (3.32), (3.33), and (3.27) that

‖vτΦ−α/2
τ ‖L2(τ)

�C(p1−α
τ

pτ
hτ

|php− p|H1(τ) +‖g′(yhp)−g′(y)‖L2(τ) +‖up−uhpphp‖L2(τ)

+‖g′(yhp)−g′(yhp)‖L2(τ) +‖uhpphp−uhpphp‖L2(τ)). (3.34)

Combining (3.22) and (3.34), we have for β > 1/2

‖g′(yhp)+div(A∗∇php)−uhpphp‖L2(τ)

�Cpβ
τ ‖(g′(yhp)+div(A∗∇php)−uhpphp)Φ

β/2
τ ‖L2(τ)

�Cpβ
τ

(
p1−β

τ
pτ
hτ

|php− p|H1(τ) +‖g′(yhp)−g′(y)‖L2(τ) +‖up−uhpphp‖L2(τ)

+‖g′(yhp)−g′(yhp)‖L2(τ) +‖uhpphp−uhpphp‖L2(τ)

)
. (3.35)

Setting β = 1/2+ ε (0 < ε < 3/2) in the above result (3.35), we have

h2
τ

p4
τ
‖g′(yhp)+div(A∗∇php)−uhpphp‖2

L2(τ)

�C|php− p|2H1(τ) +C
h2

τ
p3−2ε

τ
‖g′(yhp)−g′(y)‖2

L2(τ) +C
h2

τ
p3−2ε

τ
‖up−uhpphp‖2

L2(τ)

+C
h2

τ
p3−2ε

τ
‖g′(yhp)−g′(yhp)‖2

L2(τ) +C
h2

τ
p3−2ε

τ
‖uhpphp−uhpphp‖2

L2(τ). (3.36)

It follows from the inequality (3.36) that

∑
τ

h2
τ

p4
τ
‖g′(yhp)+div(A∗∇php)−uhpphp‖2

L2(τ)

�C∑
τ

h2
τ

p4
τ
‖g′(yhp)+div(A∗∇php)−uhpphp‖2

L2(τ)

+C∑
τ

h2
τ

p4
τ
‖g′(yhp)−g′(yhp)‖2

L2(τ) +C∑
τ

h2
τ

p4
τ
‖uhpphp−uhpphp‖2

L2(τ)

�C∑
τ
|php− p|2H1(τ) +C∑

τ

h2
τ

p3−2ε
τ

‖g′(yhp)−g′(y)‖2
L2(τ)

+C∑
τ

h2
τ

p3−2ε
τ

‖up−uhpphp‖2
L2(τ) +C∑

τ

h2
τ

p3−2ε
τ

‖g′(yhp)−g′(yhp)‖2
L2(τ)

+C∑
τ

h2
τ

p3−2ε
τ

‖uhpphp−uhpphp‖2
L2(τ)
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�C(‖php− p‖2
H1(Ω) +‖g′(yhp)−g′(y)‖2

L2(Ω) +‖up−uhpphp‖2
L2(Ω))

+C∑
τ

h2
τ

p3−2ε
τ

‖uhpphp−uhpphp‖2
L2(τ)

+C∑
τ

h2
τ

p3−2ε
τ

‖g′(yhp)−g′(yhp)‖2
L2(τ). (3.37)

Next, let e = ∂τ1
e ∩ ∂τ2

e and τ e = τ1
e ∪ τ2

e . We construct a function we|e =
[(A∗∇php) ·n]Φα

e in Lemma 3.3 where we|τ1
e

and we|τ2
e

are defined as the affine trans-
formation of wê on the reference element. It is easy to see that the univariate polyno-
mial ψ is corresponds to [(A∗∇php) ·n] . Then we ∈ H1

0 (τe) , and we can use the trivial
extension of we by zero on Ω\τe so that we can be viewed as an element of H1

0 (Ω) .
Then we obtain

‖weΦ−α/2
e ‖2

L2(e) =‖[(A∗∇php) ·n]Φα/2
e ‖2

L2(e)

=
∫

e
[(A∗∇php) ·n]we

=
∫

τe

(A∗∇php) ·∇we +
∫

τe

div(A∗∇php)we

=
∫

τe

(A∗∇(php− p)) ·∇we +
∫

τe

(g′(y)+div(A∗∇php)−up)we

=
∫

τe

(A∇we) ·∇(php− p)+
∫

τe

(g′(yhp)+div(A∗∇php)−uhpphp)we

+
∫

τe

(uhpphp−g′(yhp)−up+g′(y))we

�C|php− p|H1(τe) · |we|H1(τe) +‖uhpphp−up‖L2(τe) · ‖we‖L2(τe)

+‖g′(yhp)+div(A∗∇php)−uhpphp‖L2(τe) · ‖we‖L2(τe)

+‖g′(y)−g′(yhp)‖L2(τe) · ‖we‖L2(τe). (3.38)

For the case α ∈ (1/2,1] , it follows from (3.25) and (3.26) that

|we|2H1(τe)
� C

1
hτ

(ε p2(2−α)
τ + ε−1)‖[(A∗∇php) ·n]Φα/2

e ‖2
L2(e), (3.39)

‖we‖2
L2(τe)

� Chτ ε‖[(A∗∇php) ·n]Φα/2
e ‖2

L2(e). (3.40)

Then it follows from (3.38), (3.39), and (3.40) that

‖[(A∗∇php) ·n]Φα/2
e ‖2

L2(e)

�C
1
hτ

(ε p2(2−α)
τ + ε−1)|php− p|2H1(τe)

+Chτε‖uhpphp−up‖2
L2(τe)

+Chτε‖g′(y)−g′(yhp)‖2
L2(τe)

+Chτε‖g′(yhp)+div(A∗∇php)−uhpphp‖2
L2(τe)

.

(3.41)
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It follows from (3.36) and (3.41) that for β > 1/2

‖[(A∗∇php) ·n]‖2
L2(e)

�Cp2β
τ ‖[(A∗∇php) ·n]Φβ/2

e ‖2
L2(e)

�Cp2β
τ

1
hτ

(ε p2(2−β )
τ + ε−1)|php− p|2H1(τe)

+Cp2β
τ hτ ε‖uhpphp−up‖2

L2(τe)

+Cp2β
τ hτ ε‖g′(y)−g′(yhp)‖2

L2(τe)
+Cp2β

τ hτε‖g′(yhp)+div(A∗∇php)−uhpphp‖2
L2(τe)

�Cp2β
τ

1
hτ

(ε p2(2−β )
τ + ε−1)|php− p|2H1(τe)

+Cp2β
τ hτ ε‖uhpphp−up‖2

L2(τe)

+Cp2β
τ hτ ε‖g′(y)−g′(yhp)‖2

L2(τe)
+Cp2β

τ hτε‖g′(yhp)+div(A∗∇php)−uhpphp‖2
L2(τe)

+Cp2β
τ hτ ε‖uhpphp−uhpphp‖2

L2(τe)
+Cp2β

τ hτ ε‖g′(yhp)−g′(yhp)‖2
L2(τe)

�Cp2β
τ

1
hτ

(ε p2(2−β )
τ + ε−1)|php− p|2H1(τe)

+Cp4+2β
τ

1
hτ

ε|php− p|2H1(τe)

+Cp1+2ε+2β
τ hτ ε‖uhpphp−up‖2

L2(τe)
+Cp1+2ε+2β

τ hτε‖g′(y)−g′(yhp)‖2
L2(τe)

+Cp1+2ε+2β
τ hτ ε‖uhpphp−uhpphp‖2

L2(τe)

+Cp1+2ε+2β
τ hτ ε‖g′(yhp)−g′(yhp)‖2

L2(τe)
. (3.42)

Setting ε = 1/p2
τ and β = 1/2+ ε (0 < ε < 3/2) in (3.42), we have

‖[(A∗∇php) ·n]‖2
L2(e)

�C
p3+2ε

τ
hτ

|php− p|2H1(τe)
+Cp4ε

τ hτ‖uhpphp−up‖2
L2(τe)

+Cp4ε
τ hτ‖g′(y)−g′(yhp)‖2

L2(τe)

+Cp4ε
τ hτ‖uhpphp−uhpphp‖2

L2(τe)
+Cp4ε

τ hτ‖g′(yhp)−g′(yhp)‖2
L2(τe)

. (3.43)

Then it follows from (3.43) that

∑
e

he

p3+2ε
e

‖[(A∗∇php) ·n]‖2
L2(e)

�C∑
e
|php− p|2H1(τe)

+C∑
e

h2
τ

p3−2ε
τ

‖uhpphp−up‖2
L2(τe)

+C∑
e

h2
τ

p3−2ε
τ

‖g′(y)−g′(yhp)‖2
L2(τe)

+C∑
e

h2
τ

p3−2ε
τ

‖g′(yhp)−g′(yhp)‖2
L2(τe)

+C∑
e

h2
τ

p3−2ε
τ

‖uhpphp−uhpphp‖2
L2(τe)

�C(‖p− php‖2
H1(Ω) +‖uhpphp−up‖2

L2(Ω) +‖g′(y)−g′(yhp)‖2
L2(Ω))

+C∑
τ

h2
τ

p3−2ε
τ

‖g′(yhp)−g′(yhp)‖2
L2(τ) +C∑

τ

h2
τ

p3−2ε
τ

‖uhpphp−uhpphp‖2
L2(τ). (3.44)
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Therefore, it follows from (3.44) that

η̂2
2 = ∑

τ

h2
τ

p4
τ
‖g′(yhp)+div(A∗∇php)−uhpphp‖2

L2(τ) +∑
e

he

p3+2ε
e

‖[(A∗∇php) ·n]‖2
L2(e)

�C(‖p− php‖2
H1(Ω) +‖uhpphp−up‖2

L2(Ω) +‖g′(y)−g′(yhp)‖2
L2(Ω))

+C∑
τ

h2
τ

p3−2ε
τ

‖g′(yhp)−g′(yhp)‖2
L2(τ) +C∑

τ

h2
τ

p3−2ε
τ

‖uhpphp−uhpphp‖2
L2(τ).

(3.45)

Note that

‖uhpphp−up‖2
L2(Ω)

�C‖uhp‖2
L4(Ω) · ‖p− php‖2

L4(Ω) +C‖p‖2
L4(Ω) · ‖u−uhp‖2

L4(ΩU )

�C‖p− php‖2
H1(Ω) +C‖u−uhp‖2

H1(ΩU ). (3.46)

Therefore, it follows from (3.45) and (3.46) that

η̂2
2 �C(‖p− php‖2

H1(Ω) +‖y− yhp‖2
H1(Ω) +‖u−uhp‖2

H1(ΩU ))

+C∑
τ

h2
τ

p3−2ε
τ

‖g′(yhp)−g′(yhp)‖2
L2(τ) +C∑

τ

h2
τ

p3−2ε
τ

‖uhpphp−uhpphp‖2
L2(τ).

(3.47)

Similarly,

η̂2
3 = ∑

τ

h2
τ

p4
τ
‖ f +div(A∇yhp)−uhpyhp‖2

L2(τ) +∑
e

he

p3+2ε
e

‖[(A∇yhp ·n)]‖2
L2(e)

�C(‖p− php‖2
H1(Ω) +‖y− yhp‖2

H1(Ω) +‖u−uhp‖2
H1(ΩU ))+C∑

τ

h2
τ

p3−2ε
τ

‖ f − f‖2
L2(τ).

(3.48)

Then, (3.28) follows from (3.31), (3.47), and (3.48). The proof of Theorem 3.3 is
completed. �

4. Conclusion and future works

In this paper, we use the hp finite element approximation for both the state and
the co-state and the hp discontinuous Galerkin finite element approximation for the
control. And then we derive a posteriori error estimates for the optimal control problem
governed by bilinear elliptic equations in L2 −H1 norms. To our best knowledge in
the context of optimal control problems, these posteriori error estimates for the bilinear
optimal control problems are new.

In future, we shall consider the hp mixed finite element method for optimal control
problems. Furthermore, we shall consider a posteriori error estimates and superconver-
gence of the hp mixed finite element solutions for optimal control problems.
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