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ON AN EXTENSION OF SAKAGUCHI’S RESULT

MAMORU NUNOKAWA AND JANUSZ SOKOL

(Communicated by J. Pecari¢)

Abstract. We improve Pommerenke’s result [15] by using a generalized lemma from [11]. It
gives an extension of Sakaguchi’s result too, [18]. Several applications of main theorems are
presented. A part of them improves the previous results of this type. We consider also Sak-
aguchi’s result under different type of the assumptions.

1. Introduction

Let 7 denote the class of analytic functions in the unit disc U={z: |z] <1} in
the complex plane C. Recall that a set £ C C is said to be starlike with respect to a
point wo € E if and only if the linear segment joining wq to every other point w € E
lies entirely in E, while a set E is said to be convex if and only if it is starlike with
respect to each of its points, that is if and only if the linear segment joining any two
points of E lies entirely in £. A univalent function f maps U onto convex domain E
if and only if [22]
f"(2)
f'(2)

and then f is said to be convex in U (or briefly convex). Let <7 denote the subclass of
¢ consisting of functions normalized by f(0) =0, f/(0) = 1. The set of all functions
f € o/ that are convex univalentin U we denote by .#". The set of all functions f € o7
that are starlike univalent in U with respect to the origin we denote by .. In [18]
Sakaguchi proved that if f € o/ and g € .*, then

{me{gg}w ZEU] = {m{%}w zeU}

This result found many of the applications. It was also generalized, see [8] and [16]. In
this paper we consider an extension two of different manners.

%e{l—k }>0 forallze U (1.1)
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LEMMA 1.1. Let w(z) be an analytic function in |z| < R of the form

wz) ="+ Y, ad', p=>1.
n=p+1

If the maximum of |w(z)| on the circle |z| = r <R is attained at z = zp, then we have

zow'(20)

=[>p, 1.2
w(z0) p (1.2)

which means zow'(z0)/w(z0) is a positive real number.

Proof. Let w(z) be a function defined by
w(z) =2 @(z). (1.3)

Then @(z) is analytic in |z| < R. If |@(z)| takes the maximum at z = zy on the circle
|z] = r, then z moves on the circle |z| = r with positive direction, arg{¢(z)} increase
at z = zo. Therefore, we have

(ﬁarg{“’(ree)})w = W{ZO(%S’) } >0, 2= re?

On the other hand, from the hypothesis, we have

(%w»)zzm ~o.

(35 etz =om{ =TS =0

and so,

This shows that

w(z0)

It completes the proof. [

The above proof can be found also in [1], for p = 1 Lemma 1.1 becomes the well
known Jack’s Lemma [3].

To prove the main results, we also need the following generalization of the Nuno-
kawa’s Lemma, [11], [12].

LEMMA 1.2. Let p(z) be analytic function in |z| < 1 of the form

p@) =1+ ad', a#0,
n=k
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with p(z) #0 in |z| < 1. If there exists a point 2y, |z0| < 1, such that

o

5 for |z] < |zol

larg {p(2)} | <

and
To

g {plao)} = -

for some o« > 0, then we have

/
2P’ (20) _ ima,
p(z0)
where
k 1 o
m>==|a+-) >k when arg{p(z0)} = = (1.4
2 a 2
and
k 1
m<—=|a+~-)<—k when arg{p(z())}:—ﬂ, (1.5)
2 a 2
where
o) =a.
Proof. Let a function g(z) be defined by
q(2) = {p(2)}"/*. (1.6)
Then we easily have the following
q(z) = 1+ b+ b #0.
Moreover, from the hypothesis, we have
Re{q(z)} >0 for |z] < |z0] < 1
and
Re{q(z0)} =0# q(z0)-
If we define the function ¢ by the equation
q(z) —1
= < 5
0@ =I5 K<k
then we have
9(0)=9¢'(0)=9¢"(0)=...=¢*V(0) =0,

moreover
9(z)] <1 for [z <lz| and [¢(z0)| = 1.
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Because ¢(z) satisfies the assumptions of Lemma 1.1, we have

’ o / - ’
209'(z0) _ —2209'(20) _ —2209'(20) _ 1>k,

0(z0) 1—q*(z0)  1+4]q(z0)

where k < [. Therefore, we have

q(z0) —24(z0) (1.7)

204 (z0) _ 1(1+149(z0)?) §(a+}) wheng(z) =ai,
—2 (a+1) when g(z) = —ai.
Since (1.6), we have

204 (20) _ lZOPI(ZO)
q(z0) o p(zo)

)

hence by (1.7) we obtain

where

o

m=—%(a+1) when arg{p(z)} = —Z2.
Because k <, the above m satisfies both (1.4) and (1.5). This completes the proof. [J

{m = % (a+ %) when arg{p(z0)} = 712_067
m:

2. Main results

Ch. Pommerenke has shown in [15] the following theorem.

THEOREM A. If f(z) is analytic, g(z) is convex univalent in |z| < 1 and

‘arg{f’(Z)}'gﬂ, 0<a<l in |z <1, (2.1
g'(2) 2
then e o
2)— /& on
arg{m}‘<7, lzi] < 1, |zo] < 1. (2.2)

Notice that (2.1) implies that f satisfies Ozaki’s univalence condition [14], or that
f strongly close-to-convex of order o with respect to g. Recall [17], that f € .o/ is said
to be in the class %'(a) of strongly close-to-convex functions of order o, 0 < @ < 1,
if and only if there exist g € JZ°, ¢ € R, such that

f(z) To
‘arg{ei(pg/(z) }’ < 5 2 eU. (2.3)

If oo =1, then € (o) becomes the well known class of close-to-convex functions, Ka-
plan [4]. Functions defined by (2.3) with ¢ =0, o = 1 where considered earlier by
Ozaki [14], see also Umezawa [23, 24]. Moreover, Lewandowski [5, 6] defined the
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class of functions f € .7 for which the complement of f(U) with respect to the com-
plex plane is a linearly accessible domain in the large sense. The Lewandowski’s class
is identical with the Kaplan’s class %’(1). It is worthy to note that f € < satisfies the
condition (2.2) with some convex univalent g and oo = 1 if and only if f is close-to-
convex function, see [2, p. 31].

In this work we improve Theorem A in the following one.

THEOREM 2.1. If f(z) is analytic, g(z) is convex univalent in |z < 1, f'(0) =

£'(0) and
arg{ggi }' < %7 in |z| <1, (2.4)

where 0 < o, then

f(z2) = f(z1) T
arg{M}’<“(§‘log2>’ a1l < 1, [z <1, 2.5)

where /2 —1og2 = 0.877649147.. ..

Proof. In this proof we make more precise the Pommerenke’s method [15] by
using the idea from [13]. Let ) (w) be inverse function of w = g(z), and let H(w) =
f(x(w)), with w; = g(z;), j=1,2, then we have

f(z2) = flz1) _ H(w2) —H(wi) _

8(z2) —g(z1) wy — Wi

1
/O H (w4 (wa—w))di.  (2.6)

Then, applying [13], we have

g { L)1 }’ .

8(z2) —g(z1)

arg { /O CH oy (w — wl)t)dt}

1
</ ’arg{H/(wl+(wz—w1)t)}a’dt
0
1 1 o
0 1—z
1 2
.1 P - T
<Oc/0 sin 1+p2dt—(x<§—log2>,

since H'(w) = f'(x(w))/g (x(w)) lies in the convex sector {|arg{| < (am)/2}. O

dr

Applying Theorem 2.1 for a = 7 /(m —log4), we have

COROLLARY 2.2. If f(z) is analytic, g(z) is convex univalent in |z] <1, f'(0) =

£'(0) and
/() n .
< , | <1, 2.7
arg{g’(z) 57— alogd’ " < @7
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then

T
b <3 <t <1, @8)

" e £2) 1

0, 1, 1. 2.9
g(Zz)—g(Zl)}> =t el 29

If £(0) =g(0) =0, then putting z; =0 and z, =z, |z| < 1, instead (2.9) we have

sm{&}w, Gl <1, [o] <1,
g(2)

n? _
2r—2logd —

n
n—log4

r
2

ks = 1789777081 ...

T g

e

Fig.1.

For special choices of the convex function g in Theorem 2.1 we can get several
interesting corollaries. Let us consider in succession g(z) =z and g(z) =z/(1 —z).

COROLLARY 2.3. If f(z) is analyticin |z) <1, f'(0) =1 and
o
g {/' @} < = in <1,

where 0 < o, then

arg{f(zz)—f(m)

2 —1

T
H < a(§—10g2>7 lz1| < 1, |z2] < 1,
where /2 —1og2 = 0.877649147.. ..

COROLLARY 2.4. If f(z) is analyticin |z) <1, f'(0) =1 and

Jarg { (1—22f'(2) }] < &~

5 in 2 <1,

where 0 < o, then

g { U212 2) = 1)

2 —1

T
H <a<§—log2>, lz1] <1, |zo] < 1,

where /2 —1og2 = 0.877649147.. ..
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The next corollaries we obtain by putting zo0 = —z; or zo = 0 in the previous
corollaries.

COROLLARY 2.5. If f(z) is analyticin |z| < 1, f'(0) =1 and

larg {'(2) }| < %, in |z <1,

where 0 < o, then

arg{%}‘ <a(g—log2>7 lz] <1,

where 1 /2 —1og2 =0.877649147 .. ..
COROLLARY 2.6. If f(z) is analyticin |z| < 1, f'(0) =1 and

larg {(1—2)°f'(2)}| <

07/
7, mn ‘Z| < 1,

where 0 < o, then

arg{ a —z)z(f(zz) —f(=2) }' <o (g —log2> .zl < 1,

where /2 —1og2 = 0.877649147.. ..

COROLLARY 2.7. If f(z) is analytic in |z] <1, f(0) =0, f'(0)=1 and

larg {f'(z)}| < o

5 in 2 <1,

where 0 < o, then

arg{@}‘ < a(z—10g2> 2l <1,
2z 2
where /2 —1og2 = 0.877649147.. ..
COROLLARY 2.8. If f(z) is analyticin |z] <1, f(0) =0, f’(0)=1 and

|arg { (1 —z)zf’(z)}’ < %, in |z <1,

where 0 < o, then
1— 2
arg{w}‘ <a(z—log2>7 lz] <1,
z 2

where /2 —1og2 = 0.877649147.. ..
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If we denote f(z) = zp(z), then the Corollary 2.7 becomes

larg {p(z) +2p'(2) }| < ? = larg{p(2)}| < (g —log2>7 Izl <1. (2.10)

If oo =3/2, then we (2.10) becomes
3 3/m
larg {p(z) +2p'(2) }| < = = larg {p(2)}] < 3 (5 —log2>, Izl <1. (2.11)

Writing (2.11) in terms of the subordinations we get

3/2 e
p(2)+2p'(z) = (5) = pl2)=< G—fj) .zl < 1, (2.12)

1—z

where € =3/2 —1log8/m = 0.838.... Therefore, (2.12) improves the result from [9,
p. 75], where instead of € =0.838... thereis 1.
Furthermore, writing (2.10) with o = 1 we get

larg {p(z) +2p'(2) }| < g = larg{p(z)}| < g—logz, lz] < 1. (2.13)

Therefore, (2.13) improves the result from [10], see also the formula (3.1-12) in [9],
where instead of 7 —log2 = 0.877649... there is 6y = 0.9110....

Putting 7, = 0 in Theorem 2.1, we obtain that If f(z) is analytic, g(z) is convex
univalentin |z] <1, f(0) = ¢’(0) and

(£ . mreen

where 0 < o, then

‘arg{%}‘<a(g—log2>7 lz] <1, (2.14)

where /2 —1log2 = 0.877649147.... For similar results see also [19] and [20]. The
next theorem provides a inequality of the type (2.14) under some different assumptions.

THEOREM 2.9. Let o be positive real number and 3 < 1. Let f(z) and g(z) be
analytic in |z| < 1 and let it be of the form

@)=+ Y ad', g)="+ Y, b
n=p+k n=p+1

with 1 < p, 1 < k. Assume also that 0 < x <1, 0 <y and

%e{ 8(2) }> % in |z <1, (2.15)

28'(z)
~ [ 8@) ,
Jm{zg’(z) }' <yinlzl< L (2.16)
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in |z <1,

fle) | f'@) m o, othx
arg{(l—a)%+agl(z) —ﬂ}‘ < §+tan li(aky—kl)p

implies

Eﬁe{&} > B in |z] < 1.

Proof. Let us put

g2
M= 2¢'(z)
and let | £
b4
q(z) = 1-8 (E_B) =1+ +--.
Then it follows that

(-l ol p—(1- B + 0r @12 ),

If there exists a point zg, |z9| < 1, such that

T
larg{q(2)}| < 5 for 2] < |zol
and
larg {q(z0)} | =

then from Lemma 1.2, we have

where ¢(z9) = tia, 0 < a and
m= k(a+1)/2 whenarg{g(z)} = %,
" {m < —k(a+1)/2 when arg{q(z)} = —Z.
For the case arg{q(z0)} = 7/2, we have

f(z0) f'(z0)
ag{“‘“%@@*“g@w‘ﬁ}
= arg{ (1 - B)(q(20) + aA(20)z04 (20)) }

— arg {(1-B)(1 +oc/l(zo)im)}+g

= arg {I(20)} +

SR

691

(2.17)

(2.18)

(2.19)

(2.20)
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Then, by (2.15), it follows that

Im{l(z0)} = Im{(1—B)ai(zo)im}
= a(l—B)mRe{A(z0)}
Z a(l—p)mx/p

~

Moreover, it follows that
Re{l(z0)} = Re{(l - P)ar(zo)im+(1-p)}
= —o(l = B)mIm{A(z)} +(1-B)
< a(l=B)my+(1-p)
=:X.
Therefore, I(zp) lies in the sector

{¢:ReC <X, Im{ >V},

where X,Y >0 so we have arg {I(z9)} > tan~!(Y/X). Hence

- a(l—B)mx/p
arg{I(z)} > tan™" o(l—B)my+(1-P)

1 omx/p
amy+1

L o (atg)x/p
b (a+L)y+1

= tan
> tan

because the function
h(m) = omx/p

amy+1

has positive derivative for m > 0 and & increases in [% (a + é) ,°°) . Moreover,
o5 (atg)x/p

of (a+1)y+1
_, okx/p (a2 + 1)

arg{I(z0)} > tan

= { RN L S
a aky(a®>+1)+2a
> tan”! okx/p ,
oky+1

because the function
ok (a*+1)x/p

s(a) = oky(a®+1)+2a

attains its minimum at ¢ = 1.
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This inequality together with (2.20) contradicts hypothesis (2.17). For the case
arg{q(z0)} = —m@/2 applying the same method as the above one, we have

f(z0) ' (z0) T B otkx
arg{“ " ) T o) ‘B} < (5“3“ e 1>p> '

This is also the contradiction and therefore it completes the proof. [J

Theorem 2.9 is closely related to Ponnusamy and Karunakaran’s result [16, p. 81]

of the form
f'@) | [ } N /3] j%e@ - 2B + k6

0g(z)
%) PIEIPTE ¢~ 27k

where ¢ is a complex number with SRecc > 0.
The conditions (2.15) and (2.16) describe a strip which contains the disc |z —
(x/p+y)| <y, thus Theorem 2.9 provides the following corollary.

[%e >0 and Eﬁe{(l—a)

COROLLARY 2.10. Let o be positive real number and B < 1. Let f(z) and g(z)
be analytic in |z| < 1 and let it be of the form

@)=+ Y ad', g)="+ Y, b
n=p+k n=p+1

with 1 < p, 1 < k. Assume also that 0 < x <1, 0 <y and

;EZ) —(x/p+y)‘ <y in |z7| < 1.
Then
@), f(2) T 1 okx/p
arg{(l—a)@—kag,(z) —BH < E—Han ahy 11 in |z <1,
implies

Eﬁe{%} > B in |z] < 1.

For oo =1 Theorem 2.9 becomes the following corollary.

COROLLARY 2.11. Let B < 1. Let f(z) and g(z) be analytic in |z| < 1 and let
it be of the form

fR) ="+ Y ad", g)="+ Y, b
n=p+k n=p+1

with 1 < p, 1 <k. Assume also that 0 < x <1, 0 <y and

%e{ 8(2) }> % in |z <1, 2.21)

28'(z)
~ [ 8@) ,
Jm{zg’(z) }' <yinlzl< L (2.22)
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Then
‘arg{;g —ﬁH < g—i—tan_lk];xipl in |z <1, (2.23)
implies
%e{&}>ﬁ in |z| <1, (2.24)
g(2)

For x =0 Corollary 2.11 becomes MacGregor’s result, [8], of the form

pg(z) ['() f(z)
[mezg’(z) >0 and %eg’(z) > [3] é%e@ > B,

which is a generalization of Libera’s result [7] with § = 0.

THEOREM 2.12. Let f(z) and be analytic in |z| < 1 and let it be of the form

hz)=z+ 2 e
n=k+1

Assume also that B < 1 and p is positive integer. If

' (z) T k.
arg{m—ﬁ} <5+tan I_) n |Z|<1, (225)
then N
me{TZ)} >B. I2 < 1. (2.26)

Proof. Choose

Q=@ =+ Y ad, g)=1".

n=p+k

For oo = 1 the conditions (2.21) (2.22) become 1/p > x/p, 0 <y so we can allow
x =1, y=0. Then, condition (2.23) becomes (2.25) while (2.24) becomes (2.26). [

For p =k =1 we get the following result.

COROLLARY 2.13. Let f(z) and be analytic in |z| < 1 and let it be of the form
h(z) =z+ Y, ca".
n=2
Assume also that B < 1 is positive integer. If

|larg {h'(z) - B}| < %” in |z] <1, (2.27)

then

%e{@}>ﬁ, lz] < 1. (2.28)
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Recall here another result of this type [21, p. 1550] thatif h € o7, B < 1, then

[H(U) C{weC:lw—2B+1]> |Re{w}—B[}] = [me{@} >B, |2 < 1].

Z

The condition #'(U) C{we C:|w—2B+1| > |Re{w} — |} means that /'(z), z €
U, lies in on the right of a parabola but it hasn’t a simple relation with the sector
described in (2.27).

THEOREM 2.14. Let f(z) and g(z) be analytic in |z| < 1 and let it be of the form

flo) =+ 2 an?', g(2)=2"+ Y bud"
n=p+k n=p+1

Assume also that 0 < o, B<1,0<x<1,0<y and

%e{ gfz) }> iz <1, (2.29)
28'(2) P

Jm{ 8(2) }' <yin |z < 1. (2.30)

z28'(2)
If
[z, fz) ™ o1 opkx
arg{(l —a)@—f—ag/@ —B}’ < qu—i—tan (aoky+ Dp in |z <1, (2.31)

then we have

arg{%—ﬁ}'<g(p in |z <1. (2.32)

Proof. Putting

o0 =125 (L5 ) =1+ad+ a0 - £,

1-p\g() e
and applying the same method as in the proof of Theorem 2.9, we have
f@  f'@) /
l—o)—= —-B=(01- A .
(1-a) @ %0 B=(1-PB)g(z)+ar(z)zq (z))

Then, if there exists a point zg, |zo| < 1, such that
e
g {g(2)} < 5 for [2] <z

and

Jarg {g(z0)} | = 2L
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then from Lemma 1.2, we have

204’ (20)

=ipm where m > k.
q(z0)

For the case arg{q(z0)} = /2, it follows that

f(20)
e
= arg {(1 - B)(q(z0) +
> arg{(q(zo +a7L(Z

20)
v P }
+ oA (20)204 (20)) }
209

(20))}

= arg{q(z0)} +argq (1+aA(z %)}

2o+ arg{(1+ oA (z)igm)
o pkx

r -1
> —(@+tan -_—
2 (a@ky+1)p

This contradicts hypothesis (2.31) and for the case arg{q(z0)} = —7w¢/2 applying the
same method as the above one, we have

S f(z0) (T ol ok
arg{“ Vetwo) T g ) ﬁ}< (2"’“3 <a<pky+1>p)’

which contradicts hypothesis (2.31) too. This completes the proof. [
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