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Abstract. We find the greatest value p1 = p1(α) and the least value p2 = p2(α) such that the
double inequality Jp1 (a,b) < αA(a,b)+(1−α)L(a,b) < Jp2 (a,b) holds for any α ∈ (0,1) and
all a,b > 0 with a �= b . Here, A(a,b) , L(a,b) and Jp(a,b) denote the arithmetic, logarithmic
and p -th one-parameter means of two positive numbers a and b , respectively.

1. Introduction

For p ∈ R the p -th one-parameter mean Jp(a,b) , arithmetic mean A(a,b) and
logarithmic mean L(a,b) of two positive real numbers a and b with a �= b are defined
by

Jp(a,b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p(ap+1−bp+1)
(p+1)(ap−bp) , a �= b, p �= 0,−1,

a−b
loga−logb , a �= b, p = 0,

ab(loga−logb)
a−b , a �= b, p = −1,

(1.1)

A(a,b) = (a+b)/2 and L(a,b) = (a−b)/(loga− logb) , respectively.
Recently, the one-parameter, arithmetic and logarithmic means have been the sub-

ject of intensive research. In particular, many remarkable inequalities for these means
can be found in the literature [1–6]. It might be surprising that the logarithmic mean has
applications in physics, economics, and even in meteorology [7–9]. In [7] the authors
study a variant of Jensen’s functional equation involving the logarithmic mean, which
appears in a heat conduction problem.

It is well-known that the one-parameter mean Jp(a,b) is continuous and strictly
increasing with respect to p ∈ R for fixed a,b > 0 with a �= b . Many mean values are
the special case of the one-parameter mean, for example

J1(a,b) = (a+b)/2 = A(a,b), the arithmetic mean,

J1/2(a,b) = (a+
√

ab+b)/3 = He(a,b), the Heronian mean,

J−1/2(a,b) =
√

ab = G(a,b), the geometric mean

Mathematics subject classification (2010): 26E60.
Keywords and phrases: One-parameter mean, arithmetic mean, logarithmic mean.

c© � � , Zagreb
Paper JMI-09-58

699

http://dx.doi.org/10.7153/jmi-09-58


700 Z.-Y. HE, M.-K. WANG AND Y.-M. CHU

and
J−2(a,b) = 2ab/(a+b)= H(a,b), the harmonic mean.

For r ∈ R the power mean Mr(a,b) of order r of two positive numbers a and b
is defined by

Mr(a,b) =

⎧⎨
⎩

( ar+br

2 )1/r, r �= 0,

√
ab, r = 0.

(1.2)

The main properties of the power mean are given in [10].
Gao and Niu [5] presented the best possible parameters p = p(α,β ) , q = q(α,β ) ,

s1 = s1(α,β ) and s2 = s2(α,β ) such that the double inequalities

Jp(a,b) � Aα(a,b)Gβ (a,b)H1−α−β (a,b) � Jq(a,b)

Gs1(a,b) � Aα(a,b)Gβ (a,b)H1−α−β(a,b) � Gs2(a,b)

hold for all a,b > 0 and α,β > 0 with α + β < 1, where Gs(a,b) = [(as + bs)/(a+
b)]1/(s−1) (s �= 1) is the Gini mean.

In [6], the authors found the optimal upper and lower one-parameter mean bounds
for the Second Seiffert mean T (a,b) = (a−b)/[2arctan((a−b)/(a+b))] .

Xia, Chu and Wang [11] answered the question: for any α ∈ (0,1) , what are
the greatest value p and the least value q , such that the double inequality Mp(a,b) <
αA(a,b)+ (1−α)L(a,b) < Mq(a,b) for all a,b > 0 with a �= b .

The purpose of this paper is to find the greatest value p1 = p1(α) and the least
value p2 = p2(α) such that the double inequality Jp1(a,b)< αA(a,b)+(1−α)L(a,b)<
Jp2(a,b) holds for any α ∈ (0,1) and all a,b > 0 with a �= b .

2. Lemmas

In order to establish our main result we need several lemmas, which we present in
this section.

LEMMA 2.1. If α ∈ (0,1) and x ∈ (1,∞) , then

(1−α)xα+1− (1+ α)xα +(1+ α)x− (1−α)> 0. (2.1)

Proof. Let

f (x) = (1−α)xα+1− (1+ α)xα +(1+ α)x− (1−α). (2.2)

Then simple computations lead to

f (1) = 0, (2.3)

f ′(x) = (1−α)(1+ α)xα −α(1+ α)xα−1 +(1+ α), (2.4)
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f ′(1) = 2(1−α2) > 0 (2.5)

and

f ′′(x) = α(1−α)(1+ α)xα−2(x+1) > 0. (2.6)

From (2.5) and (2.6) we clearly see that f (x) is strictly increasing in [0,1]. There-
fore, Lemma 2.1 follows from (2.3) and the monotonicity of f (x) . �

LEMMA 2.2. If α ∈ (0,1) and x ∈ (1,∞) , then

(1−α)2x2α+2 +2(1−α)(1+ α)x2α+1+(1+ α)2x2α

−2(1−α)(1+ α)xα+2−4(1+ α2)xα+1−2(1−α)(1+ α)xα (2.7)

+(1+ α)2x2 +2(1+ α)(1−α)x+(1−α)2 > 0.

Proof. Let

g(x) = (1−α)2x2α+2 +2(1−α)(1+ α)x2α+1+(1+ α)2x2α

−2(1−α)(1+ α)xα+2−4(1+ α2)xα+1 −2(1−α) (2.8)

×(1+ α)xα +(1+ α)2x2 +2(1+ α)(1−α)x
+(1−α)2,

g1(x) = g′(x)/[2(1+ α)], g2(x) = g1
′′(x)/[α(1−α)xα−3] , g3(x) = g′2(x)/2, g4(x) =

g3
′(x)/(1+α) and g5(x) = g4

′(x)/[α(1−α)xα−3] . Then simple computations lead to

g(1) = 0, (2.9)

g1(x) = (1−α)2x2α+1 +(1−α)(1+2α)x2α + α(1+ α)x2α−1

−(1−α)(2+ α)xα+1−2(1+ α2)xα −α(1−α)xα−1

+(1+ α)x+(1−α),

g1(1) = 0, (2.10)

g1
′(x) = (1−α)2(2α +1)x2α +2α(1−α)(2α +1)x2α−1

+α(1+ α)(2α −1)x2α−2− (1−α)(1+ α)(2+ α)xα

−2α(1+ α2)xα−1 + α(1−α)2xα−2 +(1+ α),

g1
′(1) = 0, (2.11)

g2(x) = 2(1−α)(2α +1)xα+2 +2(2α +1)(2α −1)xα+1

−2(1+ α)(2α −1)xα − (1+ α)(2+ α)x2

+2(1+ α2)x− (1−α)(2−α),
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g2(1) = 0, (2.12)

g3(x) = (1−α)(2α +1)(α +2)xα+1 +(α +1)(2α +1)(2α −1)xα

−α(1+ α)(2α −1)xα−1− (1+ α)(2+ α)x+(1+ α2),

g3(1) = 0, (2.13)

g4(x) = (1−α)(2α +1)(α +2)xα + α(2α +1)(2α −1)xα−1

−α(α −1)(2α −1)xα−2−2−α,

g4(1) = 0 (2.14)

and

g5(x) = (2α +1)(α +2)x2− (2α +1)(2α −1)x− (2−α)(2α−1). (2.15)

From (2.15) we know that g′5(x) = 2(2α + 1)(α + 2)x + (1 + 2α)(1− 2α) >
g′5(1) = 10α + 5 > 0 for x ∈ [1,∞) , which implies that g5(x) is strictly increasing
in [1,∞) . Hence g5(x) > g5(1) = 5 > 0 for x ∈ [1,∞) , and g4(x) is strictly increasing
in [1,∞) .

Therefore, Lemma 2.2 follows from (2.8)–(2.14) and the monotonicity of g4(x) .
�

LEMMA 2.3. If α ∈ (0,1) , p = α/(2−α) and x ∈ (1,∞) , then

−2(1−α)x2p−αx2p−1 +2p(1−α)xp+1−2(2α −α p−2)xp

+2p(1−α)xp−1−αx−2(1−α) > 0. (2.16)

Proof. Let

h(x) = −2(1−α)x2p−αx2p−1 +2p(1−α)xp+1

−2(2α −α p−2)xp +2p(1−α)xp−1 (2.17)

−αx−2(1−α),

h1(x) = h′′(x)/(2xp−3) and h2(x) = h1
′′′(x)/[p(1− p)xp−3] . Then simple computa-

tions lead to

h(1) = 0, (2.18)

h′(x) = −4p(1−α)x2p−1−α(2p−1)x2p−2 +2(1−α)p(p+1)xp

−2p(2α −α p−2)xp−1 +2(1−α)p(p−1)xp−2−α,
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h′(1) = 0, (2.19)

h1(x) = −2p(1−α)(2p−1)xp+1−α(2p−1)(p−1)xp

+(1−α)p2(p+1)x2− p(2α −α p−2)(p−1)x
+(1−α)p(p−1)(p−2),

h1(1) = 0, (2.20)

h1
′(x) = −2p(1−α)(2p−1)(p+1)xp−α p(2p−1)(p−1)xp−1

+2(1−α)p2(p+1)x− p(2α−α p−2)(p−1),

h1
′(1) = 0, (2.21)

h1
′′(x) = −2p2(1−α)(2p−1)(p+1)xp−1−α p(2p−1)(p−1)2xp−2

+2(1−α)p2(p+1),

h1
′′(1) =

12α2(1−α)2

(2−α)3 > 0, (2.22)

lim
x→+∞

h1
′′(x) = 2(1−α)p2(p+1) > 0, (2.23)

and

h2(x) = (2p−1)[2p(1−α)(p+1)x+α(1− p)(2− p)]. (2.24)

We divide the proof into two cases.

Case 1. If α ∈ (0,2/3] , then p ∈ (0,1/2] . From (2.24) we clearly see that h′′1(x)
is strictly decreasing in [1,∞) , then (2.23) leads to

h1
′′(x) > lim

x→+∞
h1

′′(x) > 0 (2.25)

for x ∈ [1,∞) . Inequality (2.25) implies that h1
′(x) is strictly increasing in [1,∞) .

Therefore, Lemma 2.3 follows from (2.17)–(2.21) and the monotonicity of h1
′(x) .

Case 2. If α ∈ (2/3,1) , then p∈ (1/2,1) . From (2.24) we clearly see that h1
′′(x)

is strictly increasing in [1,∞) , then (2.22) leads to

h1
′′(x) > h1

′′(1) > 0 (2.26)

for x ∈ (1,∞) . Inequality (2.26) implies that h1
′(x) is strictly increasing in [1,∞) .

Therefore, Lemma 2.3 follows from (2.17)–(2.21) and the monotonicity of h1
′(x) . �
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3. Main result

THEOREM 3.1. Inequality

J α
2−α

(a,b) < αA(a,b)+ (1−α)L(a,b) < Jα(a,b)

holds for any α ∈ (0,1) and all a,b > 0 with a �= b, and J α
2−α

(a,b) and Jα(a,b) are

the best possible lower and upper one-parameter mean bounds for the sum αA(a,b)+
(1−α)L(a,b) , respectively.

Proof. At first, we prove that

αA(a,b)+ (1−α)L(a,b) < Jα(a,b) (3.1)

for any α ∈ (0,1) and all a,b > 0 with a �= b .
Without loss of generality, we assume that a > b . Let x = a/b > 1, then from

(1.1) we get

Jα(a,b)−αA(a,b)− (1−α)L(a,b)

=
α(xα+1 −1)

(1+ α)(xα −1)
− α(1+ x)

2
− (1−α)(x−1)

logx
(3.2)

=
α[(1−α)xα+1− (1+ α)xα +(1+ α)x− (1−α)]

2(1+ α)(xα −1) logx
F(x),

where

F(x) = logx− 2(1−α)(1+ α)(xα+1− xα − x+1)
α[(1−α)xα+1− (1+ α)xα +(1+ α)x− (1−α)]

. (3.3)

Simple computations lead to

lim
x→1+

F(x) = 0, (3.4)

F ′(x) =
1
x

+
4(1−α)(1+ α)(x2α − xα+1− xα−1 +1)

[(1−α)xα+1− (1+ α)xα +(1+ α)x− (1−α)]2

=
F1(x)

x[(1−α)xα+1− (1+ α)xα +(1+ α)x− (1−α)]2
, (3.5)

where

F1(x) = (1−α)2x2α+2 +2(1−α)(1+ α)x2α+1+(1+ α)2x2α

−2(1−α)(1+ α)xα+2−4(1+ α2)xα+1 −2(1−α) (3.6)

×(1+ α)xα +(1+ α)2x2 +2(1+ α)(1−α)x+(1−α)2.

It follows from (3.6) and Lemma 2.2 that

F1(x) > 0 (3.7)
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for x ∈ (1,∞) and α ∈ (0,1) . Therefore, inequality (3.1) follows from (3.2)–(3.5) and
(3.7) together with Lemma 2.1.

Next, we prove that

αA(a,b)+ (1−α)L(a,b) > J α
2−α

(a,b) (3.8)

for α ∈ (0,1) and all a,b > 0 with a �= b .
Without loss of generality, we assume that a > b . Let p = α/(2−α) and x =

a/b > 1, then from (1.1) we have

αA(a,b)+ (1−α)L(a,b)− Jp(a,b)

= α
1+ x

2
+(1−α)

x−1
logx

− p(xp+1−1)
(p+1)(xp−1)

(3.9)

=
α(x− xp)

2(xp−1) logx

[
− logx+

2(1−α)(x−1)(xp−1)
α(x− xp)

]
.

Let

G(x) = − logx+
2(1−α)(x−1)(xp−1)

α(x− xp)
. (3.10)

Then simple computations lead to

lim
x→1+

G(x) = 0, (3.11)

G′(x) = −1
x
− 2(1−α)[x2p− pxp+1 +2(p−1)xp− pxp−1 +1]

α(x− xp)2

=
G1(x)

α(xp − x)2 , (3.12)

where

G1(x) = −2(1−α)x2p−αx2p−1 +2p(1−α)xp+1

−2(2α −α p−2)xp +2(1−α)pxp−1 (3.13)

−αx−2(1−α).

It follows from (3.13) and Lemma 2.3 that

G1(x) > 0 (3.14)

for x∈ (1,∞) and α ∈ (0,1) . Therefore, inequality (3.8) follows from (3.9)–(3.12) and
(3.14).

At last, we prove that J α
2−α

(a,b) and Jα(a,b) are the best possible lower and

upper one-parameter mean bounds for the sum αA(a,b)+(1−α)L(a,b) , respectively.
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For any 0 < ε < α and x > 0, from (1.1) one has

αA(1+ x,1)+ (1−α)L(1+ x,1)− Jα−ε(1+ x,1)

= α
(
1+

x
2

)
+

(1−α)x
log(1+ x)

− (α − ε)[(1+ x)α−ε+1−1]
(α − ε +1)[(1+ x)α−ε −1]

(3.15)

=
H(x)

(α − ε +1)[(1+ x)α−ε −1] log(1+ x)

and

lim
x→+∞

J α
2−α +ε(1,x)

αA(1,x)+ (1−α)L(1,x)

=

α+(2−α)ε
2+(2−α)ε · x

α
2−α +ε− 1

x

x
α

2−α +ε−1

α(1+ 1
x )

2 + (1−α)(1− 1
x )

logx

(3.16)

=
2α +2(2−α)ε
2α + α(2−α)ε

> 1,

where H(x) = α(1 + x
2 )(α − ε + 1)[(1 + x)α−ε − 1] log(1 + x) + (1 − α)x(α − ε +

1)[(1+ x)α−ε −1]− (α − ε)[(1+ x)α−ε+1−1] log(1+ x) .
Let x → 0, making use of the Taylor extension one has

H(x) =
ε(α − ε)(α − ε +1)

12
x4 +o(x4). (3.17)

From (3.15)–(3.17)we clearly see that for any 0 < ε < α , there exist δ = δ (α,ε)>
0 and X = X(α,ε) > 1, such that αA(1+ x,1)+ (1−α)L(1+ x,1) > Jα−ε(1+ x,1)
for x ∈ (0,δ ) and αA(x,1)+ (1−α)L(x,1) < J α

2−α +ε(x,1) for x ∈ (X ,+∞) . �
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