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INEQUALITIES FOR THE GENERALIZED TRIGONOMETRIC,

HYPERBOLIC AND JACOBIAN ELLIPTIC FUNCTIONS

EDWARD NEUMAN

(Communicated by J. Pečarić)

Abstract. This paper deals with the inequalities for the generalized trigonometric, hyperbolic and
the Jacobian elliptic functions. These families of higher transcendental functions are of great
importance in the studies of some problems that arose in the theory of differential equations.
Among the main results established in this paper the Wilker- and Huygens- type inequalities for
the functions under discussion are obtained.

1. Introduction

In the past several years many researchers dealt with the one-parameter general-
ization of trigonometric functions often called the p -trigonometric functions. The latter
have been introduced in 1879 by E. Lundberg and studied systematically by P. Lindqvist
in [17]. For more details regarding this family of functions see [3, 16, 32, 33, 34] and
the references therein. Importance of this class of functions was justified by the fact that
they play a crucial role in some problems that arise in theory of differential equations.
A problem which stimulated an interest in a two-parameter generalization of the p -
trigonometric functions was discussed by P. Drábek and R. Manásevich in [11]. In this
paper the authors gave a solution to the following problem with the Dirichlet boundary
conditions. For T,λ > 0 and p,q > 1 the problem in question is formulated as follows

(Φp(u′(t)))′ + λ Φq(u(t)) = 0, t ∈ (0,T ),
u(0) = u(T ) = 0,

where Φp(s) = |s|m−2s if s �= 0 and Φp(0) = 0. They found that a complete solu-
tion to this problem involves the (p,q)-trigonometric function, namely the (p,q)-sine
function which is denoted in the sequel by sinp,q . Its definition is recalled in Section 2.

Another problem, which also has its origin in theory of differential equations, is
the following bifurcation problem (see [41]):

(Φp(u′(t)))
′
+ λ Φq(u(t))(1−|u(t)|q) = 0, t ∈ (0,T ), p,q > 1,

u(0) = u(T ) = 0,
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where Φp is defined above. It is known that its solution is expressed in terms of the
generalized Jacobian elliptic sine function whose definition is given in the next section
of this paper.

One of the main mathematical tools used in this paper is the (p,q)-version of the
Schwab-Borchardt mean. Its classical version, denoted by SB(x,y) ≡ SB , where x > 0
and y > 0, is defined as follows

SB(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
y2− x2

cos−1(x/y)
, x < y

√
x2− y2

cosh−1(x/y)
, y < x

x, x = y

(1.1)

(see [5, Thm. 8.4], [9, (2.3)]). It follows from (1.1) that SB(x,y) is not symmetric in its
arguments and is a homogeneous function of degree 1 in x and y . This mean has been
studied extensively in [5, 9, 35, 36, 21].

This paper, which can be regarded as continuation of our earlier research whose
outcome is contained in [30, 31, 32, 33, 34], is organized as follows. Definitions of
three families of the generalized trigonometric, hyperbolic and Jacobian elliptic func-
tions, often called in the sequel the (p,q)-functions, are given in Section 2. In this paper
we will also utilize the R-hypergeometric functions of two variables. Their definition
and some basic properties are given in Section 3. The two parameter generalization of
the SB mean, denoted here by SBp,q is introduced in Section 4. Therein some basic
properties of the new mean are discussed. Three inequalities for the mean SBp,q are
established in the next section. The main results of this paper are presented in Section
6. Therein, among other things, the Wilker- and Huygens- type inequalities involv-
ing the (p,q)-trigonometric, hyperbolic and Jacobian elliptic functions are obtained.
Other functional inequalities for functions discussed in this paper are also derived in
this section.

2. The (p,q)-trigonometric, hyperbolic and Jacobian elliptic functions

For the reader’s convenience we recall first definition of the celebrated Gauss hy-
pergeometric function F(α,β ;γ;z) :

F(α,β ;γ;z) =
∞

∑
n=0

(α,n)(β ,n)
(γ,n)

zn

n!
, |z| < 1,

where (α,n) = α(α +1) . . .(α +n−1) (n �= 0) is the shifted factorial or Appell sym-
bol, with (α,0) = 1 if α �= 0, and γ �= 0,−1,−2, . . . .

In what follows we will always assume that the parameters p and q are strictly
greater than 1. We will adopt notation and definitions used in [3]. Let

πp,q = 2
∫ 1

0
(1− tq)−1/pdt =

2
q
B
(
1− 1

p
,
1
q

)
.
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Further, let

mp,q = 2−1/pF
(
1,

1
p
;1+

1
q
;
1
2

)
.

Also, let I = (0,1) . The generalized trigonometric and hyperbolic functions needed in
this paper are the following homeomorphisms

sinp,q : (0,πp,q/2) → I, cosp,q : (0,πp,q/2) → I,

and
sinhp,q : (0,mp,q) → I.

The inverse functions of sinp,q and sinhp,q can be represented as follows [16]:

sin−1
p,q x =

∫ x

0
(1− tq)−1/pdt = xF

(1
p
,
1
q
;1+

1
q
;xp

)
(2.1)

sinh−1
p,q x =

∫ x

0
(1+ tq)−1/pdt = xF

(1
p
,
1
q
;1+

1
q
;−xp

)
. (2.2)

For later use let us record some known definitions and formulas. Let us begin with
the definition of (p,q)-version of the function cosine. We follow [12] to define

cosp,q x =
d
dx

sinp,q x, x ∈ R. (2.3)

This in conjunction with (2.1) yields

|cosp,q x|p + |sinp,q x|q = 1, x ∈ R. (2.4)

Also,

cos−1
p,q y = sin−1

p,q

(
(1− yp)1/q

)
, y ∈ I. (2.5)

Corresponding formulas for the (p,q)-hyperbolic functions read as follows [3,
12]:

coshp,q x =
d
dx

sinhp,q x, x ∈ R, (2.6)

|coshp,q x|p−|sinhp,q x|q = 1, x ∈ R (2.7)

and
cosh−1

p,q y = sinh−1
p,q

(
(yp−1)1/q

)
, y � 1. (2.8)

We shall also utilize functions

tanp,q x =
sinp,q x

cosp,q x
, (2.9)

and

tanhp,q x =
sinhp,q x

coshp,q x
(2.10)
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(see, e.g., [3, 12]).
It is obvious that the functions under discussion become classical trigonometric

and hyperbolic functions when p = q = 2. The (p,q)- trigonometric and hyperbolic
functions, have been first studied by P. Drábek and R. Manásevich (see [11]). For
more details concerning properties of functions under discussion and the inequalities
involving these functions the interested reader is referred to [1, 2, 3, 4, 12, 14, 15, 16,
17, 30, 41, 42].

It is worth mentioning that the (2,4)-trigonometric and hyperbolic functions also
appear in mathematical literature where they are called Gaussian lemniscate functions.
The last two families of higher transcendental functions have been studied extensively
in [5, 9, 19, 25, 26, 28].

For the sake of completeness of presentation and reader’s convenience as well,
we recall now some formulas involving generalized Jacobian elliptic functions. Let
k,x ∈ [0,1] . Parameter k is called the modulus. The inverse function of the (p,q)-
Jacobian elliptic sine function snp,q is defined as follows

sn−1
p,q(x,k) ≡ sn−1

p,q(x) =
∫ x

0
[(1− tq)(1− kqtq)]−1/pdt (2.11)

(see [41, 42]). Also, let
Kp,q(k) ≡ Kp,q = sn−1

p,q(1,k). (2.12)

Function sn−1
p,q : [0,1]→ [0,Kp,q] is strictly increasing on the stated domain. Three

other functions subordinated to snp,q are defined as follows [41, 42]:

cnp,q(x) = (1− snq
p,q(x))

1/p,

dnp,q(x) = (1− kqsnq
p,q(x))

1/p

and

scp,q(x) =
snp,q(x)
cnp,q(x)

,

where x ∈ [0,Kp,q] . It is known that

d
dx

snp,q(x) = cnp,q(x)dnp,q(x). (2.13)

Also, we will deal with the amplitude function amp,q where

amp,q(x,k) ≡ amp,q(x) := sin−1
p,q(snp,q(x)).

This yields
snp,q(x) = sinp,q(amp,q(x)). (2.14)

Clearly amp,q : [0,Kp,q] → [0,πp,q/2] . Making use of formula (2.14) we obtain

scp,q(x) = tanp,q(amp,q(x)). (2.15)
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3. The R-hypergeometric functions of two variables

In this section we give the definition of the bivariate R-hypergeometric functions
which are used in the sequel. Some results for these functions are also included here.

In what follows the symbol R+ will stand for the set of positive numbers. Let
b = (b1,b2) ∈ R

2
+ . By μb , where

μb(t) =
Γ(b1 +b2)
Γ(b1)Γ(b2)

tb1−1(1− t)b2−1

we will denote the Dirichlet measure on the interval [0,1] . It is well-known that μb is
the probability measure on its domain.

Also, let X = (x,y) ∈ R
2
+ . In [8, 10] the R-hypergeometric function Rα(b;X)

(α ∈ R) is defined as follows

Rα(b;X) =
∫ 1

0
(u ·X)α μb(t)dt, (3.1)

where u = (t,1− t) and u ·X = tx+(1− t)y is the dot product of u and X . Many of
the important special functions, including Gauss’ hypergeometric function F and some
elliptic integrals admit the integral representation (3.1). For more details, the interested
reader is referred to Carlson’s monograph [10].

A nice feature of the R-hypergeometric function is its permutation symmetry in
both parameters and variables, i.e.,

Rα(b1,b2;x,y) = Rα(b2,b1;y,x). (3.2)

Another remarkable property of Rα is homogeneity of degree α in its variables:

Rα(b1,b2;γx,γy) = γαRα(b1,b2;x,y) (3.3)

(γ > 0) .
For the later use, let us also record Carlson’s inequality [7, Thm. 3]

[
Rα(b;X)

]1/α
�

[
Rβ (b;X)

]1/β
(3.4)

(α,β �= 0, α � β ).
We will also need the following result which appears in [36, Prop. 2.1]. Let α < 0,

b ∈ R
2
+ , and let X ,Y ∈ R

2
+ . Then the following inequality

Rα

(
b;λX +(1−λ )Y

)
�

[
Rα(b;X)

]λ [
Rα(b;Y )

]1−λ
(3.5)

holds true for all 0 � λ � 1.
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4. Definition and basic properties of the (p,q)-version of SB

Throughout the sequel we will assume that p,q > 1 and also, that x,y ∈ R+ . For
the sake of presentation we recall first a formula for the mean SB in terms of the R-
hypergeometric function:

SB(x,y) = R− 1
2

(1
2
,1;x2,y2

)−1

(see [6, 10]).
We define the (p,q)-version of the mean SB as follows

SBp,q(x,y) = y1−q/pR− 1
p

(1
q
,1;xp,yp

)−q/p
. (4.1)

The right member of (4.1) is a special case of what is called in mathematical
literature the R-hypergeometric mean (see [7, 9, 10]). Using elementary properties of
the R-hypergeometric functions we see that SBp,q(x,y) is the mean value of x and y .
Moreover, this mean is nonsymmetric and homogeneous of degree 1 in its variables.
The well known results on the R-hypergeometric means lead to the conclusion that
SBp,q is strictly increases with and increase in p and/or in q .

For the brevity of notation let us introduce a particular R-hypergeometric function

RT (x,y) = R− 1
p

(1
q
,1;x,y

)
. (4.2)

Clearly function RT is nonsymmetric and homogeneous of degree −1/p in its
variables. Comparison with (4.1) yields

SBp,q(x,y) = y1−q/pRT (xp,yp)−q/p. (4.3)

We shall demonstrate now that SBp,q can also be expressed in terms of cos−1
p,q and

cosh−1
p,q :

SBp,q(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(yp− xp)1/p

[cos−1
p,q(x/y)]q/p

, x < y

(xp − yp)1/p

[cosh−1
p,q(x/y)]q/p

, y < x

x, x = y.

(4.4)

For the proof of the first part of (4.4) we let u = x/y . Also, we record a formula
which shows that the Gauss hypergeometric function F can be expressed in terms of of
the bivariate R-hypergeometric function:

F(α,β ;γ;z) = R−α(β ,γ −β ;1− z,1)

(see, e.g., [10, (5.9-12)]). Application of the last formula to (2.1) yields

sin−1
p,q u = uRT (1−uq,1),
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where 0 < u < 1. This in conjunction with (2.5) gives

cos−1
p,q u = (1−up)1/qRT (up,1).

Letting above u = x/y and utilizing homogeneity of the function RT we obtain

cos−1
p,q(x/y) = y1−p/q(yp− xp)1/qRT (xp,yp).

Raising both sides to the power of −q/p and applying (4.3) we obtain

[cos−1
p,q(x/y)]−q/p = (yp− xp)−1/pSBp,q(x,y).

This completes proof of the first part of (4.4). The second part can be established in an
analogous manner. A key formula needed here reads as follows

cosh−1
p,q u = (up−1)1/qRT (up,1), (4.5)

u > 1. We omit further details.
Function RT admits an integral representation:

RT (x,y) =
1

B( 1
p ,1+ 1

q − 1
p)

∫ ∞

0
t1/q−1/p(t + x)−1/q(t + y)−1dt, (4.6)

where B stands for the beta function. This follows from the known result [39, 19.16.9]

R−α(β1,β2;x,y) =
1

B(α,α ′)

∫ ∞

0
tα ′−1(t + x)−β1(t + y)−β2dt,

where α ′ = β1 + β2−α . Letting α = 1/p , β1 = 1/q and β2 = 1 we obtain formula
(4.6).

5. Inequalities involving SBp,q

This section deals with inequalities involving the SBp,q mean. Our first result
reads as follows.

THEOREM 5.1. Let p,q > 1 . Then the two-sided inequality

x
q

p(q+1) y
1− q

p(q+1) < SBp,q(x,y) < y1−q/p
(xp +qyp

q+1

)q/p2

. (5.1)

holds true for all positive and unequal numbers x and y.

Proof. The following lower and upper bounds for the bivariate R-hypergeometric
function R−α(b1,b2;u,v) can be found in [8, (2.11), (2.15)]

(w1u+w2v)−α < R−α(b1,b2;u,v) <
(
uw1vw2

)−α
, (5.2)
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where 0 < α < c := b1 + b2 , w1 = b1/c and w2 = b2/c . Letting in (5.2) α = 1/p ,
b1 = 1/q , b2 = 1, u = xp and v = yp and next raising each member of the resulting
inequality to the power of −q/p we obtain

x
q

p(q+1) y
q2

p(q+1) < R−1/p(1/q,1;xp,yp)−q/p <
(xp +qyp

q+1

)q/p2

.

Multiplying each member of the last two-sided inequality by y1−q/p and next applying
formula (4.1) we obtain the asserted result. �

THEOREM 5.2. Let the positive numbers x and y be such that x > y. Then

SBp,q(x,y) < SBp,q(y,x). (5.3)

Proof. We shall prove the assertion using integral formula (4.6) and formula (4.3).
Let u > 1 and let t > 0. Then uq > 1 and

(t +uq)1−1/q > (t +1)1−1/q

or what is the same that

t1/q−1/p(t +uq)−1/q(t +1)−1 > t1/q−1/p(t +uq)−1(t +1)−1/q

because 1−1/q > 0. Integration yields

1
B(α,α ′)

∫ ∞

0
t1/q−1/p(t +uq)−1/q(t +1)−1dt

>
1

B(α,α ′)

∫ ∞

0
t1/q−1/p(t +uq)−1(t +1)−1/qdt,

where α = 1/p and α ′ = 1 + 1/q− 1/p . Using (4.6) we see that the last inequality
can be written in the form

RT (uq,1) > RT (1,uq).

Raising both sides to the power of −q/p and next applying formula (4.3) we obtain

SBp,q(u,1) < SBp,q(1,u).

Letting u = x/y and next utilizing homogeneity of SBp,q we obtain the desired re-
sult. �

Another inequality for the SBp,q mean is contained in the following.

THEOREM 5.3. Let x1,x2,y1,y2 > 0 . Then

SBp,q(x1,y1)SBp,q(x2,y2) � SB2
p,q

[
Ap(x1,x2),Ap(y1,y2)

]
. (5.4)
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Proof. First we make the following substitutions in (3.5)

α = − 1
p
, b =

(1
q
,1

)
, X = (xp

1 ,yp
1), Y = (xp

2 ,yp
2), λ =

1
2

next we use (4.2), and finally we raise both sides of the resulting inequality to the power
of −2. This gives

RT (xp
1 ,y

p
1)−1RT (xp

2 ,y
p
2)−1 �

[
RT (Ap

p(x1,x2),Ap
p(y1,y2))−1

]2
.

Raising both sides to the power of p/q and next multiplying both sides of the resulting
inequality by y2(1−q/p) and using (4.3) we obtain the desired inequality (5.4). �

6. Main results

In this section we shall prove, among other things, the Wilker-type and Huygens-
type inequalities which involve the (p,q)-trigonometric, hyperbolic and Jacobian el-
liptic functions.

In the sequel we will utilize the following result [24, 30]:

THEOREM A. Let u,v,λ ,μ be positive numbers. Assume that u and v satisfy the
separation condition

u < 1 < v. (6.1)

Then the inequality

1 <
λ

λ + μ
ur +

μ
λ + μ

vs (6.2)

holds true if either

1 < uγvδ , s > 0 and rλ � sμγ/δ (6.3)

or if
uγvδ < 1, s < 0 and rλ � sμγ/δ , (6.4)

for some γ,δ � 0 with γ + δ = 1 . If u and v satisfy the separation condition (6.1)
together with

1 < γ
1
u

+ δ
1
v
, (6.5)

then the inequality (6.2) is also valid if

r � s � −1 and μγ � λ δ . (6.6)

We are in a position to prove the following.

THEOREM 6.1. Let t ∈ (0,πp,q/2) . Then

(cosp,q t)
1

q+1 <
sinp,q t

t
<

(q+ cosp
p,q t

q+1

) 1
p
. (6.7)
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Proof. First we let x = cosp,q t and y = 1 in (4.4) to obtain

SBp,q(cosp,q t,1) =
(sinp,q t

t

) q
p

(6.8)

and next apply the two-sided inequality (5.1) to obtain

(cosp,q t)
q

p(q+1) <
(sinp,q t

t

) q
p

<
(q+ cosp

p,q t
q+1

) q
p2

.

Hence the desired inequality (6.8) follows. �

A special case of the left inequality in (6.7) when p = q = 2 is commonly referred
to in mathematical literature as the Adamović-Mitrinovć inequality (see [18]). When
p = 2 and q = 4, then the left inequality in (6.8) appears in [19] while the case when
p = q > 1 is obtained in [16].

A result, similar to (6.7), can be obtained for the (p,q)-hyperbolic functions

(coshp,q t)
1

q+1 <
sinhp,q t

t
<

(q+ coshp
p,q t

q+1

) 1
p
, t > 0. (6.9)

We omit further details.
The Wilker and Huygens-type inequality for the (p,q)-trigonometric functions

reads as follows.

THEOREM 6.2. Let t ∈ (0,πp,q/2) let λ ,μ ,s > 0 and let rλ � sμq. Then the
following inequality

1 <
λ

λ + μ

(sinp,q t
t

)r
+

μ
λ + μ

( tanp,q t
t

)s
(6.10)

holds true for all p,q > 1 .

Proof. We shall prove this result utilizing Theorem A with

u =
sinp,q t

t
and v =

tanp,q t

t
. (6.11)

To show that u and v satisfy the separation condition (6.1), i.e., that u < 1 < v we use
(6.8)

SBp,q(cosp,q t,1) =
( sinp,q t

t

) q
p

< 1

where the last inequality is a consequence of the fact that SBp,q(cosp,q t,1) < 1. Thus
we have shown that u < 1. Now we utilize the left hand side of (6.7) and write it as

(cosp,q t)
−q
q+1 <

tanp,q t
t

.
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Taking into account that cosp,q t < 1 we see that the following inequality 1 < (cosp,q t)
−q
q+1

is valid. This in turn yields 1 <
tanp,q t

t
or what is the same that 1 < v . We shall

show now that the first part of (6.3), i.e., 1 < uγvδ is satisfied with γ = q/(q+1) and
δ = 1/(q+1) . To this aim we write the left hand side of (6.7) as

1 <
(sinp,q t

t

)γ( tanp,q t

t

)δ

or what is the same that
1 < uγvδ . (6.12)

Application of Theorem A yields the assertion. �
A similar result is valid for the (p,q)-hyperbolic functions. We omit further de-

tails.

COROLLARY 6.3. Let p,q > 1 and let t ∈ (0,πp,q/2) . Then

2 <
( sinp,q t

t

)q
+

tanp,q t

t
(6.13)

and

q+1 < q
sinp,q t

t
+

tanp,q t

t
. (6.14)

Proof. Inequality (6.13) follows immediately from Theorem 6.2. For, put λ =
μ = s = 1 and r = q . Similarly, (6.14) follows from the same theorem with λ = q and
r = s = μ = 1. �

When p = q = 2 inequality (6.13) becomes the Wilker inequality (see [43]), while
(6.14) is called the Huygens inequality (see [13]) for circular functions. The Wilker
and Huygens inequalities for hyperbolic functions are also published in mathematical
literature. There is a large number of research papers devoted to the study of these
inequalities. An interested reader is referred to [20, 24, 37, 44, 45, 46, 47, 48] and
the references therein. Generalizations of these results when p = q > 1 have been
discussed recently by several researchers. For details see [16, 32, 34].

COROLLARY 6.4. Under the assumptions of Corollary 6.3 the following inequal-
ity ( t

sinp,q t

)q
+

t
tanp,q t

<
(sinp,q t

t

)q
+

tanp,q t

t
(6.15)

holds true.

Proof. The desired result can be obtained by using the following observation made
in [37]: if positive numbers a and b satisfy the condition 1 < ab , then

1
a

+
1
b

< a+b.
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We let a = uq and b = v . Making use of (6.12) we see that 1 < ab . The assertion now
follows. �

Our next result reads as follows.

THEOREM 6.5. Let x ∈ (0,1) . Then

1 <
λ

λ + μ

(sinh−1
p,q x

x

)r
+

μ
λ + μ

(sin−1
p,q x

x

)s
(6.16)

provided

λ ,μ ,s > 0 and rλ � sμ . (6.17)

Proof. For the brevity of notation let

u =
sinh−1

p,q

x
and v =

sin−1
p,q x

x
.

We shall demonstrate first that u and v satisfy the separation condition (6.1). To this
aim we utilize the SBp,q mean twice to obtain

SBp,q((1− xq)1/p,1) =
xq/p

[cos−1
p,q((1− xq)1/p)]q/p

=
( x

sin−1
p,q x

)q/p
=

(1
v

)q/p
< 1

and

SBp,q((1+ xq)1/p,1) =
xq/p

[cosh−1
p,q((1+ xq)1/p)]q/p

=
( x

sinh−1
p,q x

)q/p
=

(1
u

)q/p
> 1.

This yields the condition (6.1). We shall prove now that 1 < uv , i.e., that the first
inequality in (6.3) is satisfied with γ = δ = 1/2. To this aim we shall employ Theorem
5.3 with x1 = (1+ xq)1/p , x2 = (1− xq)1/p and y1 = y2 = 1. This yields Ap(x1,x2) =
Ap(y1,y2) = 1. Thus

SBp,q

[
Ap(x1,x2),Ap(y1,y2)

]
= SBp,q(1,1) = 1.

It follows from the above computations that

SBp,q(x1,y1)SBp,q(x2,y2) =
( 1

uv

)q/p
.

Making use of Theorem 5.3 we obtain 1 < uv . Application of Theorem A completes
the proof. �

We shall establish now the following
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THEOREM 6.6. Let x ∈ (0,1) . Then

sinp,q x
x

>
x

sin−1
p,q x

(6.18)

and
sinhp,q x

x
>

x

sinh−1
p,q x

. (6.19)

Proof. We shall prove that the inequality (6.18) is valid. Using (2.4) and the
known inequality x > sinp,q x we get

cosp,q x = (1− sinq
p,q x)1/p > (1− xq)1/p.

Monotonicity of SBp,q in its first variable together with (6.8) and the formula

SBp,q((1− xq)1/p,1) =
( x

sin−1
p,q x

)q/p

established in the proof of Theorem 6.5 yield

( sinp,q x

x

)q/p
= SBp,q(cosp,q x,1) > SBp,q((1− xq)1/p,1) =

( x

sin−1
p,q x

)q/p
.

Inequality (6.18) now follows. We leave the proof of the inequality (6.19) to the inter-
ested reader. �

For p = q = 2 inequalities (6.18) and (6.19) have been obtained in [15]. For
p = q > 1 these inequalities have been established in [16]. Their counterparts for the
Jacobian elliptic functions are proven in [38].

Our next result reads as follows.

THEOREM 6.7. Let x ∈ (0,1) . If p1 > p2 > 1 and q > 1 , then

(sin−1
p1,q x

x

)p1
<

( sin−1
p2,q x

x

)p2.
(6.20)

Also, if a > 1 , h > 0 and p > a+2h then

(sin−1
p/(a+h),q x)2 < (sin−1

p/a,q x)(sin−1
p/(a+2h),q x). (6.21)

Proof. Inequality (6.20) is an immediate consequence of the monotonicity prop-
erty of the Gauss function F . It has been noticed in [22, (4.33)] that if a > 0 and
c > b > 0, then for x ∈ I function a → F(a,b;c,x)1/a is strictly increasing. This
in conjunction with (2.1) gives the desired result. Inequality (6.21) follows from the
Lapunov’s inequality for integrals (see, e.g., [40]). For the reader’s convenience we
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recall here this result. Let f ∈C[0,1] and let τ be a probability measure on (0,1) . If
0 < r < s < t , then

[∫ 1

0
f s(y)τ(y)dy

]t−r
<

[∫ 1

0
f r(y)τ(y)dy

]t−s[∫ 1

0
f t(y)τ(y)dy

]s−r
. (6.22)

Utilizing a well known integral formula for the Gauss function F (see, e.g., [39, 10]):

F(α,β ;γ;z) =
1

B(β ,γ −β )

∫ 1

0
(1− zy)−αyβ−1(1− y)γ−β−1dy

we obtain using (2.1)
sin−1

p,q x

x
=

∫ 1

0
fp(y)τ(y)dy, (6.23)

where

fp(y) = (1− xqy)−1/p and τ(y) =
1
q
y1/q−1.

To complete the proof we utilize (6.23) three times with p := p/a, p := p/(a+h) and
p := p/(a+2h) and next apply inequality (6.22) with r = a,s = a+h and t = a+2h
to obtain the desired result. �

By the same means one can demonstrate that the inequalities (6.20) and (6.21) are
satisfied with sin−1

p,q replaced by sinh−1
p,q . We omit further details.

We close this section with inequalities for the generalized Jacobian elliptic func-
tions.

THEOREM 6.8. Let x ∈ (0,Kp,q) let λ ,μ ,s > 0 and let rλ � sμq. Then the
following inequality

1 <
λ

λ + μ

( snp,q(x)
amp,q(x)

)r
+

μ
λ + μ

( scp,q(x)
amp,q(x)

)s
(6.24)

holds true for all p,q > 1 .

Proof. In the inequality (6.10) (see Theorem 6.2) we put t = amp,q(x) . Making
use of (2.14) and (2.15) we obtain the desired result. �

For special cases of the last result the interested reader is referred to [26, 27, 30,
31, 32].

To obtain more inequalities for the generalized Jacobian elliptic functions we can
use inequalities established in this section (see, e.g., (6.7), (6.13), (6.14), etc.). Ap-
plication of (2.14) and (2.15) will be needed to obtain new inequalities for family of
transcendental functions under discussion.

We will close this section with a few inequalities involving function snp,q . Let
D = (0,Kp,q) and let

h(x) =
1

snp,q(x)
, x ∈ D. (6.25)

We need the following
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PROPOSITION 6.9. Function h(x) is strictly log-convex on the the stated domain.

Proof. Let g(x) = ln(h(x)) . Then

g
′
(x) = − sn

′
p,q(x)

snp,q(x)
= −cnp,q(x)dnp,q(x)

snp,q(x)
,

where the last equality follows immediately from (2.13). Repeated application of (2.13)
gives

g
′′
(x) = (φ(x))2 +(q/p)snq−2

p,q (x)[cn2−p
p,q (x)dn2

p,q(x)+ cn2
p,q(x)dn2−p

p,q (x)],

where

φ(x) =
cnp,q(x)dnp,q(x)

snp,q(x)
. (6.26)

Taking into account that the functions snp,q,cnp,q and dp,q are strictly positive on D
we have g

′′
(x) > 0. The desired result now follows. �

In what follows, letter J will stand for the domain of some generic function f .
We shall employ now the following result ([40]):

THEOREM B. Let f : J → R+ be a strictly log-convex function and let x,y,z,w ∈
J . Assume that x < z and y < w. If x �= y and z �= w, then

( f (y)
f (x)

)1/(y−x)
<

( f (w)
f (z)

)1/(w−z)
. (6.27)

In particular, if x < y < z, then

f (y)z−x < f (x)z−y f (z)y−x. (6.28)

We are in a position to prove the following

THEOREM 6.10. Let the numbers x,y,z,w ∈D satisfy assumptions of Theorem B.
Then the following inequality

(snp,q(x)
snp,q(y)

)1/(y−x)
<

( snp,q(z)
snp,q(w)

)1/(w−z)
(6.29)

holds true. Moreover, if 0 < x < y < z < Kp,q , then

snp,q(y)z−x > snp,q(x)z−ysnp,q(z)y−x. (6.30)

Proof. To obtain the inequalities (6.29) and (6.30) it suffices to employ Theorem
B and Proposition 6.9. �

In order to prove the last result of this section we recall the following result (see
[23]):
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THEOREM C. Let f : J→R+ be a continuously differentiable log-convex-function
and let x,y, t ∈ J , x �= y. Then

(x− y)
f
′
(y+ t)

f (y+ t)
< ln

( f (x+ t)
f (y+ t)

)
< (x− y)

f
′
(x+ t)

f (x+ t)
. (6.31)

The last result of this section reads as follows.

THEOREM 6.11. Let x,y ∈ D. If x �= y, then

(y− x)φ(y) < ln
( snp,q(y)

snp,q(x)

)
< (y− x)φ(x), (6.32)

where φ is defined in (6.26).

Proof. We shall utilize TheoremC with f (x)= 1/snp,q(x) . Then ln f =− ln(snp,q) .
It follows from the proof of Proposition 6.9 that f

′
/ f = −φ . Application of Theorem

C yields the assertion. �
If p = q = 2, then the inequalities obtained in Theorems 6.10 and 6.11, reduce to

those established in [29].
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