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OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES

RELATED TO POMPEIU’S MEAN VALUE THEOREM

PIETRO CERONE, SEVER S. DRAGOMIR AND EDER KIKIANTY

(Communicated by A. Vukelić)

Abstract. In this paper, some new Ostrowski and trapezoid type inequalities, which are related
to Pompeiu’s mean value theorem, are obtained for absolutely continuous functions. Some ap-
plications to special means and inequalities for f -divergence measures are also given.

1. Introduction

In 1946, Pompeiu [30] derived a variant of Lagrange’s mean value theorem, known
as Pompeiu’s mean value theorem (cf. Sahoo and Riedel [34, p. 83]).

THEOREM 1. For every real-valued function f differentiable on an interval [a,b]
not containing 0 and for all pairs x1 �= x2 in [a,b], there exists a point ξ between x1

and x2 such that
x1 f (x2)− x2 f (x1)

x1− x2
= f (ξ )− ξ f ′ (ξ ) . (1)

In 1938, Ostrowski [26] proved the following estimate of the integral mean:

THEOREM 2. Let f : [a,b] → R be continuous on [a,b] and differentiable on
(a,b) with | f ′(t)| � M < ∞ for all t ∈ (a,b). Then, for any x ∈ [a,b] , we have

∣∣∣∣ f (x)− 1
b−a

∫ b

a
f (t) dt

∣∣∣∣�
⎡
⎣1

4
+

(
x− a+b

2

b−a

)2
⎤
⎦M (b−a). (2)

The constant 1
4 is best possible in the sense that it cannot be replaced by a smaller

quantity.
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Inequality (2) is referred to, in the literature, as the Ostrowski inequality.
Inequalities providing upper bounds for the quantity∣∣∣∣ (x−a) f (a)+ (b− x) f (b)

b−a
− 1

b−a

∫ b

a
f (t) dt

∣∣∣∣ , x ∈ [a,b] (3)

are known in the literature as the (generalized) trapezoid inequalities. Cerone and
Dragomir [7] proved the following result:

THEOREM 3. Under the assumptions of Theorem 2, we have

∣∣∣∣(x−a) f (a)+ (b− x) f (b)
b−a

− 1
b−a

∫ b

a
f (t) dt

∣∣∣∣�
⎡
⎣1

4
+

(
x− a+b

2

b−a

)2
⎤
⎦M (b−a),

(4)
for any x ∈ [a,b] . The constant 1

4 is best possible.

It is important to note that the bounds in inequalities (2) and (4) are the same.
Cerone [6, Remark 1] stated that there is a strong relationship between the Ostrowski
and the trapezoidal functionals which is highlighted by the symmetric transformations
amongst their kernels.

In the next result, Pompeiu’s mean value theorem is utilised in order to provide
another approximation of the integral mean. Throughout the text, we denote by � , the
identity function: �(x) = x , for all x ∈ [a,b].

THEOREM 4. (Dragomir, 2005 [13]) Let f : [a,b] → R be continuous on [a,b]
and differentiable on (a,b)with [a,b] not containing 0. Then for any x ∈ [a,b] , we
have the inequality

∣∣∣∣a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt

∣∣∣∣� b−a
|x|

⎡
⎣1

4
+

(
x− a+b

2

b−a

)2
⎤
⎦∥∥ f − � f ′

∥∥
∞ . (5)

The constant 1
4 is best possible.

By using a mean value theorem, Popa [31] obtained a generalization of (5).

THEOREM 5. Let f : [a,b] → R be continuous on [a,b] and differentiable on
(a,b) . Assume that α /∈ [a,b] . Then for any x ∈ [a,b] , we have the inequality

∣∣∣∣
(

a+b
2

−α
)

f (x)+
α − x
b−a

∫ b

a
f (t)dt

∣∣∣∣�
⎡
⎣1

4
+

(
x− a+b

2

b−a

)2
⎤
⎦(b−a)

∥∥ f − �α f ′
∥∥

∞ ,

(6)
where �α (t) = t−α, t ∈ [a,b].

Pečarić and Ungar [27] have proved a general estimate with the p -norms, where
1 � p � ∞ , which for p → ∞ gives Theorem 4.
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THEOREM 6. Let f : [a,b] → R be continuous on [a,b] and differentiable on
(a,b) with 0 < a < b. Then for 1 � p,q � ∞ with 1

p + 1
q = 1 we have the inequal-

ity ∣∣∣∣a+b
2

· f (x)
x

− 1
b−a

∫ b

a
f (t)dt

∣∣∣∣� PU (x, p)
∥∥ f − � f ′

∥∥
p , (7)

for x ∈ [a,b] , where

PU (x, p) := (b−a)
1
p−1

[(
a2−q− x2−q

(1−2q)(2−q)
+

x2−q−a1+qx1−2q

(1−2q)(1+q)

)1/q

+
(

b2−q− x2−q

(1−2q)(2−q)
+

x2−q−b1+qx1−2q

(1−2q)(1+q)

)1/q
]

.

In the cases (p,q) = (1,∞),(∞,1) and (2,2) , the quantity PU(x, p) has to be taken as
the limit as p → 1,∞ and 2, respectively.

Some related results are presented in Pečarić and Ungar [28] on the estimate of
two-point Ostrowski inequality from which special cases reduce to Theorems 4 and 6.
We also refer the readers to Acu and Sofonea [1] and Acu et al. [2], for other inequalities
in terms of the p -norms of the quantity f − �α f ′, where �α (t) = t−α , t ∈ [a,b] , and
α /∈ [a,b] .

Throughout the text, for any positive numbers a and b , we denote by A := A(a,b)
the arithmetic mean of a and b ; G := G(a,b) the geometric mean of a and b ; and
H := H(a,b) the harmonic mean of a and b , given by:

A(a,b) =
a+b

2
; G(a,b) =

√
ab, H(a,b) =

2ab
a+b

.

Some recent inequalities of Ostrowski type related to Pompeiu’s mean value theo-
rem can be summarised in the following theorem:

THEOREM 7. (Dragomir, 2013 [15]) Let f : [a,b] → C be an absolutely contin-
uous function on the interval [a,b] with b > a > 0 . Then for any x ∈ [a,b] we have∣∣∣∣ f (x)x

− 1
b−a

∫ b

a

f (t)
t

dt

∣∣∣∣ (8)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2
b−a

‖ f − � f ′‖∞

(
log
( x

G

)
+

A− x
x

)
, if f − � f ′ ∈ L∞[a,b],

1

(2q−1)(b−a)
1
q

‖ f − � f ′‖pCq(a,b;x)
1
q , if f − � f ′ ∈ Lp[a,b], p > 1

1
b−a

‖ f − � f ′‖1

(
x2 +ab−2ax

x2a

)
, if f − � f ′ ∈ L1[a,b],

where q > 1 is such that 1
p + 1

q = 1 and

Cq(a,b;x) =
1

x2q−1 (b+a−2x)+
a2−2q +b2−2q−2x2−2q

2(q−1)
, q > 1. (9)
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We also refer the readers to the related results and their applications to the special
means by Dragomir [14].

In this paper, we give refinements of the inequalities in Theorem 7 in Section
2. We also present similar results for trapezoid inequalities in Section 3. In Section
4, we apply these inequalities to compare the special means, in the same spirit to the
applications given in Dragomir [14, Section 4]. Finally, in Section 5, the application
for inequalities for f -divergence measures is established.

2. Ostrowski type inequalities

We start with the following refinement of Theorem 7 for the case of the ∞-norm:

THEOREM 8. Let b > a > 0 and f : [a,b]→ C be an absolutely continuous func-
tion on [a,b] . Then for any x ∈ [a,b] we have∣∣∣∣ f (x)x

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣ (10)

�
[
log
( x

a

)
− x−a

x

]
‖ f ′�− f‖[a,x],∞ +

[
b− x

x
− log

(
b
x

)]
‖ f ′�− f‖[x,b],∞

� 2

(
log
( x

G

)
+

A− x
x

)
‖ f ′�− f‖[a,b],∞.

The constant 2 is best possible.

Proof. We use the Montgomery identity for the absolutely continuous function
g : [a,b] → C :

g(x)(b−a)−
∫ b

a
g(t)dt =

∫ x

a
(t −a)g′(t)dt +

∫ b

x
(t−b)g′(t)dt, (11)

where x ∈ [a,b]. If g(t) = f (t)/t , then g′(t) = ( f ′(t)t− f (t))/t2 ; and with this choice
of g , (11) becomes:

f (x)
x

(b−a)−
∫ b

a

f (t)
t

dt =
∫ x

a

t −a
t2
[
f ′(t)t− f (t)

]
dt +

∫ b

x

t−b
t2
[
f ′(t)t − f (t)

]
dt.

(12)
Taking the modulus in (12) we get∣∣∣∣ f (x)x

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣�
∫ x

a

t−a
t2

dt ‖ f ′�− f‖[a,x],∞ +
∫ b

x

b− t
t2

dt ‖ f ′�− f‖[x,b],∞.

(13)
However, ∫ x

a

t −a
t2

dt =
∫ x

a

1
t

dt−a
∫ x

a

1
t2

dt = log
( x

a

)
− x−a

x
;

and ∫ b

x

b− t
t2

dt =
b− x

x
− log

(
b
x

)
.
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Making use of (13) we get the first inequality in (10). Furthermore,[
log
( x

a

)
− x−a

x

]
‖ f ′�− f‖[a,x],∞ +

[
b− x

x
− log

(
b
x

)]
‖ f ′�− f‖[x,b],∞

�
[
log
( x

a

)
− x−a

x
+

b− x
x

− log

(
b
x

)]
‖ f ′�− f‖[a,b],∞

= 2

(
log
( x

G

)
+

A− x
x

)
‖ f ′�− f‖[a,b],∞.

Now we prove the sharpness of the constant. First, we assume that the inequality holds
for a constant K > 0 instead of 2, i.e.∣∣∣∣ f (x)x

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣� K

(
log
( x

G

)
+

A− x
x

)
‖ f ′�− f‖[a,b],∞. (14)

Choose f (x) = 1 in (14) and thus, ( f ′�− f )(x) = −1, and now we have∣∣∣∣1x (b−a)− log

(
b
a

)∣∣∣∣� K

(
log
( x

G

)
+

A− x
x

)
. (15)

We let x = a in (15) to obtain∣∣∣∣1a(b−a)− log

(
b
a

)∣∣∣∣ � K

(
log
( a

G

)
+

A−a
a

)

= K

[
1
2

log
(a

b

)
+

b−a
2a

]
=

K
2

[
b−a

a
− log

(
b
a

)]
,

which asserts that K
2 � 1, i.e. K � 2 as desired. �

REMARK 1. The function φ(x) = log(x/G) + (A− x)/x is minimal for x = A ,
which can be verified by the derivative tests. Since φ is differentiable on [a,b] for b >
a > 0, φ ′(x) = 1/x−A/x2 = 0 implies that x = A is the stationary point. Furthermore,
φ ′′(A) = A−2 > 0 shows that it is a minimum.

COROLLARY 1. If x = A, then we get∣∣∣∣ f (A)
A

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣� 2log

(
A
G

)
‖ f ′�− f‖∞. (16)

If x = G, then we get∣∣∣∣ f (G)
G

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣� 2

(
A−G

G

)
‖ f ′�− f‖∞. (17)

If x = H , then we get∣∣∣∣ f (H)
H

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣� 2

[
log

(
G
A

)
+

A−H
H

]
‖ f ′�− f‖∞. (18)
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REMARK 2. If we put f (t) = �(t)h(t) = th(t) , then we get f ′(t) = h(t)+ th′(t) .
Then, ( f ′�− f )(t) = t[h(t)+ th′(t)]− th(t) = t2h′(t). From (10), for any x ∈ [a,b] , we
get the Ostrowski inequality∣∣∣∣h(x)(b−a)−

∫ b

a
h(t)dt

∣∣∣∣
�
[
log
( x

a

)
− x−a

x

]
‖�2h′‖[a,x],∞ +

[
b− x

x
− log

(
b
x

)]
‖�2h′‖[x,b],∞

� 2

(
log
( x

G

)
+

A− x
x

)
‖�2h′‖[a,b],∞.

(19)

We recall the definition of the incomplete beta function:

B(z,a,b) =
∫ z

0
ua−1(1−u)b−1du,

to obtain a refinement of Theorem 7 for the case of the p -norms (1 < p < ∞), which is
given in the next result.

THEOREM 9. Let b > a > 0 , f : [a,b] → C be an absolutely continuous function
on [a,b] and 1 < p < ∞ . Then for any x ∈ [a,b] we have

∣∣∣∣ f (x)x
(b−a)−

∫ b

a

f (t)
t

dt

∣∣∣∣
� a

1−q
q [B(1,q−1,q+1)−B(a/x,q−1,q+1)]

1
q ‖ f ′�− f‖[a,x],p

+ b
1−q
q [B(1,1−2q,1+q)−B(x/b,1−2q,1+q)]

1
q ‖ f ′�− f‖[x,b],p

�
[
a

1−q
q [B(1,q−1,q+1)−B(a/x,q−1,q+1)]

1
q

+b
1−q
q [B(1,1−2q,1+q)−B(x/b,1−2q,1+q)]

1
q

]
‖ f ′�− f‖[a,b],p,

(20)

where q is the Hölder’s conjugate of p, i.e. 1/p+1/q = 1 .

Proof. Observe the following inequalities by taking the modulus of (12) and Hölder’s
inequality for p > 1 and its Hölder’s conjugate q ,∣∣∣∣ f (x)x

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
�
∫ x

a

t−a
t2
∣∣ f ′(t)t− f (t)

∣∣ dt +
∫ b

x

b− t
t2
∣∣ f ′(t)t− f (t)

∣∣ dt

�
(∫ x

a

(t−a)q

t2q dt

) 1
q

‖ f ′�− f‖[a,x],p +
(∫ b

x

(b− t)q

t2q dt

) 1
q

‖ f ′�− f‖[x,b],p.
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We evaluate the integrals
(∫ x

a (t −a)q/t2q dt
)1/q

and
(∫ b

x (b− t)q/t2q dt
)1/q

in the fol-

lowing. We have∫ x

a

(t−a)q

t2q dt =
∫ x

a

(
1− a

t

)q 1
tq

dt

=
∫ x

a

(
1− a

t

)q(a
t

)q−2 1
aq−1

a
t2

dt

= a1−q
∫ 1

a
x

uq−2 (1−u)q du

= a1−q [B(1,q−1,q+1)−B(a/x,q−1,q+1)]

(21)

and thus(∫ x

a

(t −a)q

t2q dt

) 1
q

= a
1−q
q [B(1,q−1,q+1)−B(a/x,q−1,q+1)]

1
q .

We also have∫ b

x

(b− t)q

t2q dt =
∫ b

x

(
1− t

b

)q( t
b

)−2q
b−q dt

= b1−q
∫ b

x

(
1− t

b

)q( t
b

)−2q 1
b

dt

= b1−q
∫ 1

x
b

u−2q (1−u)q du

= b1−q [B(1,1−2q,1+q)−B(x/b,1−2q,1+q)]

(22)

and thus(∫ b

x

(b− t)q

t2q dt

) 1
q

= b
1−q
q [B(1,1−2q,1+q)−B(x/b,1−2q,1+q)]

1
q .

Therefore,∣∣∣∣ f (x)x
(b−a)−

∫ b

a

f (t)
t

dt

∣∣∣∣
�
(∫ x

a

(t−a)q

t2q dt

) 1
q

‖ f ′�− f‖[a,x],p +
(∫ b

x

(b− t)q

t2q dt

) 1
q

‖ f ′�− f‖[x,b],p

� a
1−q
q [B(1,q−1,q+1)−B(a/x,q−1,q+1)]

1
q ‖ f ′�− f‖[a,x],p

+b
1−q
q [B(1,1−2q,1+q)−B(x/b,1−2q,1+q)]

1
q ‖ f ′�− f‖[x,b],p

�
[
a

1−q
q [B(1,q−1,q+1)−B(a/x,q−1,q+1)]

1
q

+b
1−q
q [B(1,1−2q,1+q)−B(x/b,1−2q,1+q)]

1
q

]
‖ f ′�− f‖[a,b],p

which completes the proof. �
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REMARK 3. When p = q = 2 in Theorem 9, we have the following inequalities
for all x ∈ [a,b] :∣∣∣∣ f (x)x

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
�
(∫ x

a

(t −a)2

t4
dt

) 1
2

‖ f ′�− f‖[a,x],2 +
(∫ b

x

(b− t)2

t4
dt

) 1
2

‖ f ′�− f‖[x,b],2

=
(−3t2 +3at−a2

3t3

∣∣∣∣
x

a

) 1
2

‖ f ′�− f‖[a,x],2 +

(
−3t2 +3bt−b2

3t3

∣∣∣∣
b

x

) 1
2

‖ f ′�− f‖[x,b],2

=
(

(x−a)3

3ax3

) 1
2

‖ f ′�− f‖[a,x],2 +
(

(b− x)3

3bx3

) 1
2

‖ f ′�− f‖[x,b],2

�

⎡
⎣( (x−a)3

3ax3

) 1
2

+
(

(b− x)3

3bx3

) 1
2

⎤
⎦ ‖ f ′�− f‖[a,b],2.

Finally, a refinement of Theorem 7 for the case of the 1-norm can be stated as:

THEOREM 10. Let b > a > 0 and f : [a,b] → C be an absolutely continuous
function on [a,b] . Then for any x ∈ [a,b] we have∣∣∣∣ f (x)x

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣

�

⎧⎪⎪⎨
⎪⎪⎩

1
4a

‖ f ′�− f‖[a,x],1 +
b− x
x2 ‖ f ′�− f‖[x,b],1, when x � 2a

x−a
x2 ‖ f ′�− f‖[a,x],1 +

b− x
x2 ‖ f ′�− f‖[x,b],1, when x < 2a

� x2 −4ax+4ab
4ax2 ‖ f ′�− f‖[a,b],1.

(23)

Proof. We have the following by Hölder’s inequality∣∣∣∣ f (x)x
(b−a)−

∫ b

a

f (t)
t

dt

∣∣∣∣
�
∫ x

a

t−a
t2
∣∣ f ′(t)t− f (t)

∣∣ dt +
∫ b

x

b− t
t2
∣∣ f ′(t)t− f (t)

∣∣ dt

�
(

max
t∈[a,x]

(t−a)
t2

)
‖ f ′�− f‖[a,x],1 +

(
max
t∈[x,b]

(b− t)
t2

)
‖ f ′�− f‖[x,b],1.

Using the derivative test, we obtain that when x � 2a , the function t �→ (t − a)/t2

attains its maximum at t = 2a , i.e. 1/(4a); otherwise, when x < 2a , the maximum is
achieved at t = x , i.e. (x−a)/x2 . The maximum of t �→ (b− t)/t2 is achieved at t = x
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as it is a decreasing function on [x,b] , thus the maximum is (b− x)/x2 . Therefore, we
now have ∣∣∣∣ f (x)x

(b−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
�

⎧⎪⎪⎨
⎪⎪⎩

1
4a

‖ f ′�− f‖[a,x],1 +
b− x
x2 ‖ f ′�− f‖[x,b],1, when x � 2a

x−a
x2 ‖ f ′�− f‖[a,x],1 +

b− x
x2 ‖ f ′�− f‖[x,b],1, when x < 2a

�

⎧⎪⎪⎨
⎪⎪⎩

x2−4ax+4ab
4ax2 ‖ f ′�− f‖[a,b],1, when x � 2a

b−a
x2 ‖ f ′�− f‖[a,b],1, when x < 2a

� x2−4ax+4ab
4ax2 ‖ f ′�− f‖[a,b],1,

where the last inequality follows by the fact that

b−a
x2 � b−a

x2 +
(x−2a)2

4ax2 =
x2 −4ax+4ab

4ax2

and this completes the proof. �

3. Trapezoid type inequalities

In this section we consider similar results (as described in Section 2) for trapezoid
inequalities. We start with the inequalities in terms of the ∞-norm.

THEOREM 11. Let b > a > 0 and f : [a,b] → C be an absolutely continuous
function on [a,b] . Then for any x ∈ [a,b] we have∣∣∣∣ f (b)

b
(b− x)+

f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣ (24)

�
[
x−a

a
− log

( x
a

)]
‖ f ′�− f‖[a,x],∞ +

[
log

(
b
x

)
− b− x

b

]
‖ f ′�− f‖[x,b],∞

� 2

[
log

(
G
x

)
+

x−H
H

]
‖ f ′�− f‖[a,b],∞.

The constant 2 is best possible.

Proof. We have the trapezoid identity for absolutely continuous function g : [a,b]→
C

g(b)(b− x)+g(a)(x−a)−
∫ b

a
g(t)dt =

∫ b

a
(t− x)g′(t)dt (25)

where x ∈ [a,b] .
If g(t) = f (t)/t , then g′(t) = ( f ′(t)t − f (t))/t2 ; and with this choice of g , (25)

becomes:
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f (b)
b

(b− x)+
f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt =
∫ b

a

t− x
t2
[
f ′(t)t− f (t)

]
dt. (26)

Taking the modulus in (26) produces∣∣∣∣ f (b)
b

(b− x)+
f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
�
∫ b

a

|t − x|
t2

∣∣ f ′(t)t− f (t)
∣∣dt

=
∫ x

a

x− t
t2
∣∣ f ′(t)t− f (t)

∣∣dt +
∫ b

x

t− x
t2
∣∣ f ′(t)t− f (t)

∣∣dt

�
∫ x

a

x− t
t2

dt ‖ f ′�− f‖[a,x],∞ +
∫ b

x

t− x
t2

dt ‖ f ′�− f‖[x,b],∞

=
[
x−a

a
− log

( x
a

)]
‖ f ′�− f‖[a,x],∞ +

[
log

(
b
x

)
− b− x

x

]
‖ f ′�− f‖[x,b],∞

� 2

[
x

(
a+b
2ab

)
−1+ log

(√
ab
x

)]
‖ f ′�− f‖[a,b],∞

= 2

[
log

(
G
x

)
+

x−H
H

]
‖ f ′�− f‖[a,b],∞.

Now we prove the sharpness of the constant. First, we assume that the inequality holds
for a constant M > 0 instead of 2, i.e.∣∣∣∣ f (b)

b
(b− x)+

f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣� M

[
log

(
G
x

)
+

x−H
H

]
‖ f ′�− f‖[a,b],∞.

(27)
Choose f (x) = 1 in (27) and thus, ( f ′�− f )(x) = −1, and now we have∣∣∣∣ (b−a)x

ab
− log

(
b
a

)∣∣∣∣� M

(
log

(
G
x

)
+

x−H
H

)
. (28)

We let x = a in (28) to obtain∣∣∣∣b−a
b

− log

(
b
a

)∣∣∣∣ � M

(
log

(
G
a

)
+

a− G2

A
G2

A

)

= M

[
1
2

log

(
b
a

)
+

a( a+b
2 )−ab

ab

]
=

M
2

[
log

(
b
a

)
− b−a

b

]
,

which asserts that M
2 � 1, i.e. M � 2 as desired. �

REMARK 4. The function ψ(x) = (x−H)/H + log(G/x) is minimal for x = H ,
which can be easily verified by the derivative tests. Since ψ is differentiable on [a,b]
for b > a > 0, ψ ′(x) = 1/H − 1/x = 0 implies that x = H is the stationary point.
Furthermore, ψ ′′(H) = H−2 > 0 shows that it is a minimum.
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REMARK 5. Recall that the (original) Ostrowski and trapezoid inequalities have
the same bound (cf. Section 1). Note the similarity of the bounds in Theorems 8 and
11. Observe the first upper bound of (24) and let a = x , x = b in the first term, and
x = a , b = x in the second term, we get[

b− x
x

− log

(
b
x

)]
‖ f ′�− f‖[x,b],∞ +

[
log
( x

a

)
− x−a

x

]
‖ f ′�− f‖[a,x],∞,

which is the first upper bound in (10) of Theorem 8.

COROLLARY 2. If we take x = A, then we get∣∣∣∣12
[

f (b)
b

+
f (a)
a

]
(b−a)−

∫ b

a

f (t)
t

dt

∣∣∣∣� 2

[
A−H

H
− log

(
A
G

)]
‖ f ′�− f‖[a,b],∞.

(29)
If we take x = G, then we get∣∣∣∣ f (b)

b
(b−G)+

f (a)
a

(G−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣� 2(G−H)
H

‖ f ′�− f‖[a,b],∞. (30)

If we take x = H , then we get∣∣∣∣ f (b)
b

(b−H)+
f (a)
a

(H −a)−
∫ b

a

f (t)
t

dt

∣∣∣∣� 2log

(
G
H

)
‖ f ′�− f‖[a,b],∞. (31)

REMARK 6. If we put f (t) = �(t)h(t) = th(t) , then we get f ′(t) = h(t)+ th′(t) .
Then, ( f ′�− f )(t)t2h′(t). From (24), for any x ∈ [a,b] , we get the trapezoid inequality∣∣∣∣h(b)(b− x)+h(a)(x−a)−

∫ b

a
h(t)dt

∣∣∣∣
�
[
x−a

a
− log

( x
a

)]
‖�2h′‖[a,x],∞ +

[
log

(
b
x

)
− b− x

x

]
‖�2h′‖[x,b],∞

� 2

[
log

(
G
x

)
+

x−H
H

]
‖�2h′‖[a,b],∞.

(32)

The case for the p -norms (1 < p < ∞) is as follows:

THEOREM 12. Let b > a > 0 , f : [a,b]→C be an absolutely continuous function
on [a,b] and 1 < p < ∞ . Then for any x ∈ [a,b] we have∣∣∣∣ f (b)

b
(b− x)+

f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
� x

1−q
q [B(1,1−2q,1+q)−B(a/x,1−2q,1+q)]

1
q ‖ f ′�− f‖[a,x],p

+x
1−q
q [B(1,q−1,q+1)−B(x/b,q−1,q+1)]

1
q ‖ f ′�− f‖[x,b],p

� x
1−q
q

[
(B(1,1−2q,1+q)−B(a/x,1−2q,1+q))

1
q

+(B(1,q−1,q+1)−B(x/b,q−1,q+1))
1
q

]
‖ f ′�− f‖[a,b],p,

(33)
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where q is the Hölder’s conjugate of p, i.e. 1/p+1/q = 1 .

Proof. Observe the following inequalities by taking the modulus of (26) and Hölder’s
inequality for p > 1 and its Hölder’s conjugate q ,∣∣∣∣ f (b)

b
(b− x)+

f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
�
∫ b

a

|t− x|
t2

∣∣ f ′(t)t− f (t)
∣∣dt

=
∫ x

a

(x− t)
t2

∣∣ f ′(t)t− f (t)
∣∣dt +

∫ b

x

(t − x)
t2

∣∣ f ′(t)t − f (t)
∣∣dt

�
(∫ x

a

(x− t)q

t2q dt

) 1
q

‖ f ′�− f‖[a,x],p +
(∫ b

x

(t− x)q

t2q dt

) 1
q

‖ f ′�− f‖[x,b],p

= x
1−q
q [B(1,1−2q,1+q)−B(a/x,1−2q,1+q)]

1
q ‖ f ′�− f‖[a,x],p

+x
1−q
q [B(1,q−1,q+1)−B(x/b,q−1,q+1)]

1
q ‖ f ′�− f‖[x,b],p

� x
1−q
q

[
(B(1,1−2q,1+q)−B(a/x,1−2q,1+q))

1
q

+(B(1,q−1,q+1)−B(x/b,q−1,q+1))
1
q

]
‖ f ′�− f‖[a,b],p,

where the last inequalities follows similarly to the calculations in (21) and (22). �

REMARK 7. Note the similarity of the bounds in Theorems 9 and 12. Observe the
first upper bound of (33) and let a = x , x = b in the first term, and x = a , b = x in the
second term, we get

b
1−q
q [B(1,1−2q,1+q)−B(x/b,1−2q,1+q)]

1
q ‖ f ′�− f‖[x,b],p

+a
1−q
q [B(1,q−1,q+1)−B(a/x,q−1,q+1)]

1
q ‖ f ′�− f‖[a,x],p

which is the first upper bound in (20) of Theorem 9.

REMARK 8. When p = q = 2 in Theorem 12, we have the following inequalities
for all x ∈ [a,b] :∣∣∣∣ f (b)

b
(b− x)+

f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
�
(∫ x

a

(x− t)2

t4
dt

) 1
2

‖ f ′�− f‖[a,x],2 +
(∫ b

x

(t − x)2

t4
dt

) 1
2

‖ f ′�− f‖[x,b],2

=
(−x2 +3tx−3t2

3t3

∣∣∣∣
x

a

) 1
2

‖ f ′�− f‖[a,x],2 +

(
−x2 +3tx−3t2

3t3

∣∣∣∣
b

x

) 1
2

‖ f ′�− f‖[x,b],2
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=
(

(x−a)3

3a3x

) 1
2

‖ f ′�− f‖[a,x],2 +
(

(b− x)3

3b3x

) 1
2

‖ f ′�− f‖[x,b],2

=

⎡
⎣( (x−a)3

3a3x

) 1
2

+
(

(b− x)3

3b3x

) 1
2

⎤
⎦‖ f ′�− f‖[a,b],2.

The case of the 1-norm can be stated as:

THEOREM 13. Let b > a > 0 and f : [a,b] → C be an absolutely continuous
function on [a,b] . Then for any x ∈ [a,b] we have∣∣∣∣ f (b)

b
(b− x)+

f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
�

⎧⎪⎨
⎪⎩

x−a
a2 ‖ f ′�− f‖[a,x],1 +

1
4x

‖ f ′�− f‖[x,b],1, when x � b/2

x−a
a2 ‖ f ′�− f‖[a,x],1 +

b− x
b2 ‖ f ′�− f‖[x,b],1, when x > b/2

� 4x2−4ax+a2

4a2x
‖ f ′�− f‖[a,b],1.

(34)

Proof. We have∣∣∣∣ f (b)
b

(b− x)+
f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
�
∫ b

a

|t− x|
t2

∣∣ f ′(t)t− f (t)
∣∣dt

=
∫ x

a

(x− t)
t2

∣∣ f ′(t)t − f (t)
∣∣dt +

∫ b

x

(t− x)
t2

∣∣ f ′(t)t− f (t)
∣∣dt,

�
(

max
t∈[a,x]

x− t
t2

)
‖ f ′�− f‖[a,x],1 +

(
max
t∈[x,b]

t− x
t2

)
‖ f ′�− f‖[x,b],1

in which we have used Hölder’s inequality. The function t �→ (x− t)/t2 is strictly de-
creasing on [a,x] ; thus, the maximum is achieved at t = a , i.e. (x−a)/a2 . Using the
derivative test, we find that when x � b/2, the function t �→ (t− x)/t2 attains its maxi-
mum at t = 2x , thus, the maximum is 1/4x ; otherwise, when x � b/2 the maximum is
achieved at t = b , i.e. (b− x)/b2 . Therefore,∣∣∣∣ f (b)

b
(b− x)+

f (a)
a

(x−a)−
∫ b

a

f (t)
t

dt

∣∣∣∣
�

⎧⎪⎨
⎪⎩

x−a
a2 ‖ f ′�− f‖[a,x],1 +

1
4x

‖ f ′�− f‖[x,b],1, when x � b/2

x−a
a2 ‖ f ′�− f‖[a,x],1 +

b− x
b2 ‖ f ′�− f‖[x,b],1, when x > b/2
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�

⎧⎪⎪⎨
⎪⎪⎩

4x2−4ax+a2

4a2x
‖ f ′�− f‖[a,b],1, when b � 2x

(b2−a2)x+ba2−ab2

a2b2 ‖ f ′�− f‖[a,b],1, when b < 2x

� 4x2−4ax+a2

4a2x
‖ f ′�− f‖[a,b],1,

where the last inequality follows by the fact that

4x2−4ax+a2

4a2x
=

(2x−a)2

4a2x
� (2x−a)2

4a2x
− (2x−b)2

4b2x
=

(b2−a2)x+ba2−ab2

a2b2

and this completes the proof. �

REMARK 9. Note the similarity of the bounds in Theorems 10 and 13. Observe
the first set of upper bounds in (34) and let a = x , x = b in the first term, and x = a ,
b = x in the second term, we get⎧⎪⎨

⎪⎩
b− x
x2 ‖ f ′�− f‖[x,b],1 +

1
4a

‖ f ′�− f‖[a,x],1, when a � x/2

b− x
x2 ‖ f ′�− f‖[x,b],1 +

x−a
x2 ‖ f ′�− f‖[a,x],1, when a � x/2

which is the first upper bound in (23) of Theorem 10.

4. Applications to special means

Recall the following special means:

1. The identric mean

I = I(a,b) :=

⎧⎨
⎩

a, if a = b,

1
e

(
bb

aa

) 1
b−a

, if a �= b
, a,b > 0.

2. The logarithmic mean

L = L(a,b) :=
{

a, if a = b,
b−a

log(b)−log(a) , if a �= b , a,b > 0.

We note that

L(a,b)−1 =
1

b−a

∫ b

a

1
t

dt.

3. The r -logarithmic mean (or extended logarithmic mean) (r �= 0,−1) for two
positive numbers:

Lr = Lr(a,b) :=

⎧⎨
⎩

a, if a = b,[
br+1−ar+1

(r+1)(b−a)

] 1
r
, if a �= b

, a,b > 0.
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We note that (
Lr(a,b)

)r =
1

b−a

∫ b

a
tr dt.

The r -logarithmic mean is monotonically increasing over r ∈ R . We note that
L1(a,b) = A(a,b) and L−2(a,b) = G(a,b) . By taking the limits of r → 0, we have
L0(a,b) = I(a,b) and L−1(a,b) = L(a,b) . Thus, we have the inequality

G � L � I � A.

The following inequality is also well-known.

H � G � L � I � A.

4.1. Ostrowski type inequalities

We apply Theorem 8 to obtain some inequalities involving the special means.
Let b > a > 0 and r ∈ R , r �= 0,1. If f (x) = xr+1 (x ∈ [a,b]) , then f ′(x) =

(r +1)xr , then f ′(x)�(x)− f (x) = (r +1)xr+1− xr+1 = rxr+1 . Letting f (x) = xr+1 in
(10) and multiplying the results by 1

b−a , we get

|xr − (Lr(a,b))r| =
∣∣∣∣xr − 1

b−a

∫ b

a
tr dt

∣∣∣∣ (35)

� 1
b−a

[
log
( x

a

)
− x−a

x

]
‖r�r+1‖[a,x],∞ +

1
b−a

[
b− x

x
− log

(
b
x

)]
‖r�r+1‖[x,b],∞

� 2
b−a

(
log
( x

G

)
+

A− x
x

)
‖r�r+1‖[a,b],∞

for x ∈ [a,b] . In particular, for r > −1,r �= 0, we have

|xr − (Lr(a,b))r|

� |r|xr+1

b−a

[
log
( x

a

)
− x−a

x

]
+

|r|br+1

b−a

[
b− x

x
− log

(
b
x

)]

� 2|r|br+1

b−a

(
log
( x

G

)
+

A− x
x

)
,

for x ∈ [a,b] ; and when r < −1,

|xr − (Lr(a,b))r|

� rar+1

b−a

[
x−a

x
− log

( x
a

)]
+

rxr+1

b−a

[
log

(
b
x

)
− b− x

x

]

� 2rar+1

b−a

(
x−A

x
− log

( x
G

))
,

for x ∈ [a,b] .
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Let b > a > 0. If f (x) = 1 (x∈ [a,b]) , then f ′(x) = 0 and f ′(x)�(x)− f (x) =−1.
Letting f (x) = 1 in (10) and multiplying the results by 1

b−a , we get∣∣∣∣1x −L(a,b)−1

∣∣∣∣ =
∣∣∣∣1x − 1

b−a

∫ b

a

1
t

dt

∣∣∣∣
� 1

b−a

[
log
( x

a

)
− x−a

x

]
+

1
b−a

[
b− x

x
− log

(
b
x

)]
(36)

=
2

b−a

(
log
( x

G

)
+

A− x
x

)

for x ∈ [a,b] .
Let b > a > 0. If f (x) = −x log(x) (x ∈ [a,b]) , then f ′(x) = − log(x)− 1, and

f ′(x)�(x)− f (x) = −x. We let f (x) = −x log(x) in (10) and multiplying the results by
1

b−a , we get∣∣∣∣ 1
b−a

∫ b

a
log(t)dt − log(x)

∣∣∣∣ � x
b−a

[
log
( x

a

)
− x−a

x

]
+

b
b−a

[
b− x

x
− log

(
b
x

)]

� 2b
b−a

(
log
( x

G

)
+

A− x
x

)

for x ∈ [a,b] . We note that

1
b−a

∫ b

a
log(x)dx = log(I(a,b)) (37)

for x ∈ [a,b] . Thus, for any x ∈ [a,b] , we have:

log

(
I(a,b)

x

)
� x

b−a

[
log
( x

a

)
− x−a

x

]
+

b
b−a

[
b− x

x
− log

(
b
x

)]

� 2b
b−a

(
log
( x

G

)
+

A− x
x

)
. (38)

4.2. Trapezoid type inequalities

We now apply Theorem 11 to get some inequalities involving the special means.
Let b > a > 0 and r ∈ R , r �= 0,1. If f (x) = xr+1 (x ∈ [a,b]) , then f ′(x) =

(r +1)xr , then f ′(x)�(x)− f (x) = (r +1)xr+1− xr+1 = rxr+1 . Letting f (x) = xr+1 in
(24) and multiplying the results by 1

b−a , we get∣∣∣∣b− x
b−a

br +
x−a
b−a

ar − 1
b−a

∫ b

a
tr dt

∣∣∣∣
� 1

b−a

[
x−a

a
− log

( x
a

)]
‖�r+1‖[a,x],∞ +

1
b−a

[
log

(
b
x

)
− b− x

b

]
‖�r+1‖[x,b],∞

� 2
b−a

[
log

(
G
x

)
+

x−H
H

]
‖�r+1‖[a,b],∞.
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for x ∈ [a,b] . We observe that

b− x
b−a

br +
x−a
b−a

ar − 1
b−a

∫ b

a
tr dt =

br+1−ar+1

b−a
− x

br −ar

b−a
− (Lr(a,b))r

= (r+1)(Lr(a,b))r − rx(Lr−1(a,b))r−1 − (Lr(a,b))r

= r
[
Lr(a,b)r − x(Lr−1(a,b))r−1] .

Therefore, we have∣∣Lr(a,b)r − x(Lr−1(a,b))r−1
∣∣ (39)

� 1
b−a

[
x−a

a
− log

( x
a

)]
‖�r+1‖[a,x],∞ +

1
b−a

[
log

(
b
x

)
− b− x

b

]
‖�r+1‖[x,b],∞

� 2
b−a

[
log

(
G
x

)
+

x−H
H

]
‖�r+1‖[a,b],∞

for x ∈ [a,b] . In particular, for r > −1, r �= 0, we have

∣∣Lr(a,b)r − x(Lr−1(a,b))r−1
∣∣ � xr+1

b−a

[
x−a

a
− log

( x
a

)]
+

br+1

b−a

[
log

(
b
x

)
− b− x

b

]

� 2br+1

b−a

[
log

(
G
x

)
+

x−H
H

]
‖�r+1‖[a,b],∞

for x ∈ [a,b] ; and for r < −1, we have the following for any x ∈ [a,b] :

∣∣Lr(a,b)r − x(Lr−1(a,b))r−1
∣∣ � ar+1

b−a

[
x−a

a
− log

( x
a

)]
+

xr+1

b−a

[
log

(
b
x

)
− b− x

b

]

� 2ar+1

b−a

[
log

(
G
x

)
+

x−H
H

]
‖�r+1‖[a,b],∞.

Let b > a > 0. If f (x) = 1 (x∈ [a,b]) , then f ′(x) = 0 and f ′(x)�(x)− f (x) =−1.
Letting f (x) = 1 in (24) and multiplying the results by 1

b−a , we get∣∣∣∣ b− x
b(b−a)

+
x−a

a(b−a)
− 1

b−a

∫ b

a

f (t)
t

dt

∣∣∣∣
� 1

b−a

[
x−a

a
− log

( x
a

)]
+

1
b−a

[
log

(
b
x

)
− b− x

b

]

=
2

b−a

[
log

(
G
x

)
+

x−H
H

]

for x ∈ [a,b] . Observe that

b− x
b(b−a)

+
x−a

a(b−a)
=

x
ab

=
x

G2 .

Thus, ∣∣∣ x
G2 −L−1

∣∣∣� 2
b−a

[
log

(
G
x

)
+

x−H
H

]
, x ∈ [a,b]. (40)
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Let b > a > 0. If f (x) = −x log(x) (x ∈ [a,b]) , then f ′(x) = − log(x)− 1, and
f ′(x)�(x)− f (x) =−x. Letting f (x) =−x log(x) in (24) and multiplying the results by
1

b−a , we get

∣∣∣∣−b− x
b−a

log(b)− x−a
b−a

log(a)+ log(I(a,b))
∣∣∣∣

=
∣∣∣∣−b− x

b−a
log(b)− x−a

b−a
log(a)+

1
b−a

∫ b

a
log(t)dt

∣∣∣∣ (41)

� x
b−a

[
x−a

a
− log

( x
a

)]
+

b
b−a

[
log

(
b
x

)
− b− x

b

]

� 2b
b−a

[
log

(
G
x

)
+

x−H
H

]

for x ∈ [a,b] . Note the use of (37).
Let x = (a+b)/2 = A in Remark 6 and multiply the results by 1/(b−a) , we now

have: ∣∣∣∣h(a)+h(b)
2

− 1
b−a

∫ b

a
h(t)dt

∣∣∣∣ (42)

�
[

1
2a

− 1
b−a

log

(
A
a

)]
‖�2h′‖[a,A],∞ +

[
1

b−a
log

(
b
A

)
− 1

2b

]
‖�2h′‖[A,b],∞

� 2
b−a

[
A−H

H
− log

(
A
G

)]
‖�2h′‖[a,b],∞.

In what follows, we present some special cases of (42):

1. Let b > a > 0. If h(x) = xr (x ∈ [a,b]) , where r �= 0,−1, then h′(x) = rxr−1 ,
and �2(x)h′(x) = rxr+1 . Thus, we have

∣∣A(ar,br)− (Lr(a,b)
)r∣∣= ∣∣∣∣ar +br

2
− 1

b−a

∫ b

a
tr dt

∣∣∣∣
�
[

1
2a

− 1
b−a

log

(
A
a

)]
‖r�r+1‖[a,A],∞ +

[
1

b−a
log

(
b
A

)
− 1

2b

]
‖r�r+1‖[A,b],∞

� 2
b−a

[
A−H

H
− log

(
A
G

)]
‖r�r+1‖[a,b],∞.

In particular, for r > −1, r �= 0, we have∣∣A(ar,br)− (Lr(a,b)
)r∣∣

� |r|Ar+1
[

1
2a

− 1
b−a

log

(
A
a

)]
+ |r|br+1

[
1

b−a
log

(
b
A

)
− 1

2b

]

� 2|r|br+1

b−a

[
A−H

H
− log

(
A
G

)]
,
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and for r < −1, we have

∣∣A(ar,br)− (Lr(a,b)
)r∣∣

� rar+1
[

1
b−a

log

(
A
a

)
− 1

2a

]
+ rAr+1

[
1
2b

− 1
b−a

log

(
b
A

)]

� 2rar+1

b−a

[
log

(
A
G

)
− A−H

H

]
.

2. Let b > a > 0. If we let h(x) = 1/x (x ∈ [a,b]) , then h′(x) = −1/x2 , and
�2(x)h′(x) = −1. Therefore, we have∣∣∣∣∣

1
a + 1

b

2
− 1

b−a

∫ b

a

1
t

dt

∣∣∣∣∣ �
[

1
2a

− 1
b−a

log

(
A
a

)]
+
[

1
b−a

log

(
b
A

)
− 1

2b

]

=
2

b−a

[
A−H

H
− log

(
A
G

)]
.

In terms of the special means, we have

0 � 1
H

− 1
L

� 2
b−a

[
A−H

H
− log

(
A
G

)]
,

since H � L for b > a > 0.

3. Let b > a > 0. If we let h(x) = − log(x) (x ∈ [a,b]) , then h′(x) = −1/x and
�2(x)h′(x) = −x . Therefore,

∣∣∣∣ 1
b−a

∫ b

a
log(t)dt +

− log(a)− log(b)
2

∣∣∣∣
�
[

1
2a

− 1
b−a

log

(
A
a

)]
A+

[
1

b−a
log

(
b
A

)
− 1

2b

]
b

� 2b
b−a

[
A−H

H
− log

(
A
G

)]
.

We note that
− log(a)− log(b)

2
= log

1
G

.

By the above identity and (37), we have the following inequalities

log

(
I
G

)
�
[

1
2a

− 1
b−a

log

(
A
a

)]
A+

[
1

b−a
log

(
b
A

)
− 1

2b

]
b

� 2b
b−a

[
A−H

H
− log

(
A
G

)]
.
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5. Applications to inequalities for f -divergence measures

One of the important issues in many applications of probability theory is find-
ing an appropriate measure of distance (or difference or discrimination) between two
probability distributions. A number of divergence measures for this purpose have been
proposed and extensively studied by Jeffreys [18], Kullback and Leibler [23], Rényi
[33], Havrda and Charvat [17], Kapur [21], Sharma and Mittal [36], Burbea and Rao
[5], Rao [32], Lin [24], Csiszár [10], Ali and Silvey [3], Vajda [42], Shioya and Da-te
[37] and others (see for example Mei [25] and the references therein).

These measures have been applied in a variety of fields such as: anthropology
[32], genetics [25], finance, economics, and political science [35], [40], [41], biology
[29], the analysis of contingency tables [16], approximation of probability distributions
[9], [22], signal processing [19], [20] and pattern recognition [4], [8]. A number of
these measures of distance are specific cases of Csiszár f -divergence and so further
exploration of this concept will have a flow on effect to other measures of distance and
to areas in which they are applied.

The difference between two probability measures p,q on a set A = {αi|1 � i � n}
is commonly measured in a variety of ways. Denote by pi , qi , the associated point
probabilities for the event αi ∈ A . To avoid triviality we assume that pi + qi > 0 for
each i . The variational distance, i.e. �1 -distance, the triangular discrimination (cf.
Topsoe [39]) and information divergence (Kullback–Leibler divergence) (cf. Kullback
and Leibler [23]), between the distributions p and q are defined respectively by

V (p,q) :=
n

∑
i=1

∣∣pi−qi
∣∣, DΔ(p,q) :=

n

∑
i=1

(pi−qi)2

pi +qi
,

D(p,q) :=
n

∑
i=1

pi log

(
pi

qi

)
. (43)

For other divergence measures, we refer the readers to the paper by Kapur [21] or the
book by Taneja [38].

If f : [0,∞) → R is convex, the Csiszár f -divergence between p and q is defined
by

I f (p,q) :=
n

∑
i=1

qi f

(
pi

qi

)
. (44)

The distances D(p,q) and DΔ(p,q) are particular instances of Csiszár f -divergence.
For the basic properties of Csiszár f -divergence, we refer the readers to Csiszár [11],
[12] and Vajda [42].

PROPOSITION 1. Let R > 1 > r > 0 and assume that pi
qi

∈ [r,R] , for all i ∈
{1, . . . ,n} . Let f : [r,R] → R be a convex function on [r,R] . We have the following
inequalities involving the Csiszár f -divergence and Kullback-Leibler divergence be-
tween the distributions p and q:∣∣∣∣I f (p,q)− 1

R− r

∫ R

r

f (t)
t

dt

∣∣∣∣� 2‖ f ′�− f‖[r,R],∞

R− r
[D(p,q)− log(G)−1+A]; (45)
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where G is the geometric mean of r and R, and A is the arithmetic mean of r and R.

Proof. Since f is convex on [r,R] , f is absolutely continuous, thus we may apply
Theorem 8. We let x = pi/qi in (10), and multiply the results by pi/(R− r) , to obtain∣∣∣∣qi f

(
pi

qi

)
− pi

R− r

∫ R

r

f (t)
t

dt

∣∣∣∣
� 2

R− r

[
pi

(
log

(
pi

qi

)
− log(G)−1

)
+qiA

]
‖ f ′�− f‖[r,R],∞.

Taking the sum from 1 to n , we have∣∣∣∣I f (p,q)− 1
R− r

∫ R

r

f (t)
t

dt

∣∣∣∣
�

n

∑
i=1

∣∣∣∣qi f

(
pi

qi

)
− pi

R− r

∫ R

r

f (t)
t

dt

∣∣∣∣
� 2

R− r

[
n

∑
i=1

pi log

(
pi

qi

)
− log(G)−1+A

]
‖ f ′�− f‖[r,R],∞;

and by using (43), the proof is completed. �

We consider a particular case of Proposition 1 in the following.

1. Let R > 1 > r > 0 and assume that pi
qi

∈ [r,R] , for all i ∈ {1, . . . ,n} . Let

f : [r,R] → R a convex function on [r,R] . Let f (x) = (x− 1)2/(x+ 1) in Proposition
1. Then,

I f (p,q) =
n

∑
i=1

qi

(
pi
qi
−1
)2

pi
qi

+1
=

n

∑
i=1

(pi−qi)2

pi +qi
= DΔ(p,q),

and ∫ R

r

(t−1)2

t(t +1)
dt =

∫ R

r

[
1+

1
t
− 4

t +1

]
dt = R− r+ log

(
R(r+1)4

r(R+1)4

)
.

We have

f ′(x) =
(x−1)(x+3)

(x+1)2

and therefore

f ′(x)�(x)− f (x) =
(x−1)(3x+1)

(x+1)2 .

Denote by Φ and Ψ , the functions:

Φ(x) =
(1− x)(3x+1)

(x+1)2 , and Ψ(x) =
(x−1)(3x+1)

(x+1)2 .
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In conclusion, for p and q as above, we have∣∣∣∣DΔ(p,q)−1− 1
R− r

log

(
R(r+1)4

r(R+1)4

)∣∣∣∣
� 2

R− r
[D(p,q)− log(G)−1+A]max{Φ(r),Ψ(R)} .

(46)

We note that Φ is decreasing on [0,1] from 1 to 0, and Ψ is increasing on [0,∞) from
0 to 3. Let γ be a point on [0,1] such that Φ(γ) = Ψ(γ − 1) . We have the following
simplification of the upper bound of (46) above:

2max{Φ(r),Ψ(R)}
R− r

[D(p,q)− log(G)−1+A]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Ψ(R)
R− r

[D(p,q)− log(G)−1+A], R � 1+
√

2

2Φ(r)
R− r

[D(p,q)− log(G)−1+A], 0 < r < γ, and R < γ +1

2Ψ(R)
R− r

[D(p,q)− log(G)−1+A], γ < r < 1, and 1+ γ < R

2max{Φ(r),Ψ(R)}
R− r

[D(p,q)− log(G)−1+A], otherwise.

2. Let R > 1 > r > 0 and assume that pi
qi

∈ [r,R] , for all i ∈ {1, . . . ,n} . Let
f : [r,R] → R be a convex function on [r,R] . Let f (x) = − log(x) in Proposition 1.
Then,

I f (p,q) = −
n

∑
i=1

qi log

(
pi

qi

)
= D(q, p)

1
R− r

∫ R

r

log(t)
t

dt =
1

2(R− r)
(log(x))2

∣∣∣∣
R

r
=

(log(R))2 − (log(r))2

2(R− r)
,

and
f ′(x)�(x)− f (x) = −1+ log(x).

Therefore, for two distributions p and q as above, we have the inequalities∣∣∣∣D(q, p)− (log(R))2 − (log(r))2

2(R− r)

∣∣∣∣ (47)

� 2
b−a

[D(p,q)− log(G)−1+A]max{1− log(r), |1− log(R)|}

=

⎧⎨
⎩

2
b−a [D(p,q)− log(G)−1+A](1− log(r)), 1 < R � e2

2
b−a [D(p,q)− log(G)−1+A]max{1− log(r), log(R)−1}, R > e2.
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