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ON THE EXTREMAL ENERGY OF BICYCLIC DIGRAPHS

MEHTAB KHAN, RASHID FAROOQ AND AZAD A. SIDDIQUI

(Communicated by A. Aglić Aljinović)

Abstract. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. The energy of a
graph is the sum of absolute values of its eigenvalues. Recently, the concept of energy of graphs
is extended to digraphs. Minimal and maximal energy among n -vertex unicyclic digraphs is
known, where n � 2 . In this paper, we address the problem of finding minimal and maximal
energy among n -vertex bicyclic digraphs which contain vertex-disjoint directed cycles, where
n � 4 .

1. Introduction

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. The eigen-
values of a graph form the spectrum of this graph. The energy of a graph is defined to
be the sum of the absolute values of its eigenvalues. The concept of energy of simple
graphs was first introduced by Gutman [3]. This topic has stimulated extensive research
due to its close links to Chemistry. Several extensions and variations of the energy of
graph have been studied in the literature. The reader is referred to [1, 6, 5, 4, 11] for
a comprehensive study on the bounds for the energy of bipartite graphs, trees and ben-
zenoids. Hou [7] addressed the problem of finding the unicyclic graphs with minimal
energy. He showed that the unicyclic graphs S3

n has the minimum energy among all uni-
cyclic graphs with n vertices. Here S3

n denotes the graph obtained from the star graph
with n vertices by joining two pendent vertices by an edge. Hou et al. [8] consid-
ered the problem of finding unicyclic graphs with maximal energy. They find unicyclic
graphs with maximum energy among all unicyclic graphs with fixed number of vertices
and with fixed length of cycles. Moreover, the authors show that the energy of any
unicyclic bipartite graph on n vertices is always less than the energy of P6

n . Here P6
n

denotes the unicyclic graph obtained by connecting a vertex of the cycle C6 of length
6 � n with a terminal vertex of the path Pn−6 of length n−6.

Pena and Rada [9] extended the concept of energy to digraphs. In case of digraphs,
the eigenvalues may be complex numbers since the adjacency matrix of a digraph is not
symmetric. The energy of a digraph is defined to be the sum of the absolute values of
the real parts of its eigenvalues. The authors find the unicyclic digraphs which have
minimal and maximal energy among all unicyclic digraphs with fixed number of ver-
tices. Furthermore, the increasing property of the energy of digraphs is discussed.

In this paper, we continue the study of finding extremal energy for digraphs. We
find minimal and maximal energy among all those n -vertex bicyclic digraphs which
contain vertex-disjoint directed cycles, where n � 4.
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2. Preliminaries

First, we give few definitions and terminologies. A directed graph (or digraph) is
a pair G = (V ,A ) of disjoint finite sets V and A where A ⊆ V ×V . The elements
of V are called vertices and the elements of A are called arcs. If there is an arc from a
vertex u to a vertex v , we denote it by uv . A directed path Pn of length n−1 (n � 2)
is a digraph with vertex set {vi | i = 1, . . . ,n} of n elements and arc set {vivi+1 | i =
1, . . . ,n−1} of n−1 elements. A directed cycle Cn of length n (n � 2) is a digraph
with vertex set {vi | i = 1, . . . ,n} of n elements and arc set {vivi+1 | i = 1, . . . ,n−1}∪
{vnv1} of n elements. A unicyclic digraph is a connected digraph which contains a
unique directed cycle. A bicyclic digraph is a connected digraph which contains exactly
two directed cycles.

The adjacency matrix A(G) = [ai j]n×n of an n -vertex digraph G = (V ,A ) is
defined as

ai j =
{

1 if viv j ∈ A
0 otherwise

(∀vi,v j ∈ V ).

Let Cn be a directed cycle of length n . Then Pena and Rada [9] show that the
spectrum of Cn consists of the values exp{2kπι} , where k = 0,1, . . . ,n−1. Therefore,
the energy of Cn is given by

E(Cn) =
n−1

∑
k=0

∣∣cos
2kπ
n

∣∣. (1)

It is readily seen that
E(Ck) = 2 for k = 2,3,4. (2)

Moreover, if G is an n -vertex unicyclic digraph with a unique directed cycle Cr of
length r (2 � r � n ), then it is shown in [9] that

E(G) = E(Cr) =
r−1

∑
k=0

∣∣cos
2kπ
r

∣∣. (3)

The following theorem gives the extremal energy among n -vertex unicyclic digraphs.

THEOREM 1. (Pena and Rada [9]) Among all n-vertex unicyclic digraphs, the
minimal energy is attained in digraphs which contain a cycle of length 2, 3 or 4. The
maximal energy is attained in the cycle Cn on length n.

From the proof of Theorem 1, we derive the following inequalities:

E(Cr) > 2 for r � 5 (4)

E(Cr1) � E(Cr2) for r1 � r2 � 5. (5)

The inequality in (5) is strict if r1 > r2 .
A digraph G = (V ,A ) is strongly connected if for each u,v ∈ V , there is a

directed path from u to v and one from v to u . The strong components of a digraph
are its maximal strong subdigraphs. Next theorem gives the energy of a digraph which
contains k strong components, k � 1.
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THEOREM 2. (Pena and Rada [9]) Let H1, . . . ,Hk be the strong components of a
digraph G. Then

E(G) =
k

∑
i=1

E(Hi).

We know that any positive integer n has one of the forms: n ≡ 0(mod4) or n ≡
2(mod4) or n ≡ 1(mod2) . Pirzada and Bhat [10] derived the following formulae to
calculate the energy of a directed cycle Cn :

E(Cn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2cot π
n if n ≡ 0(mod4)

2csc π
n if n ≡ 2(mod4)

csc π
2n if n ≡ 1(mod2).

(6)

Next lemma will be used in finding extremal energy of bicyclic digraphs.

LEMMA 1. Let x,a,b be real numbers such that x � a > 0 and b > 0 . Then

xπ
bx2−π2 � aπ

ba2−π2 . (7)

Proof. Let x,a,b be real numbers such that x � a > 0 and b > 0. Then we have

bx � ba, (8)

−π2

x
� −π2

a
. (9)

Inequalities (8) and (9) give

bx− π2

x
� ba− π2

a
.

That is,
πx

bx2−π2 � πa
ba2−π2 . �

For any real number x with 0 � x � π
2 , the following inequalities hold:

sinx � x, sinx � x− x3

3!
, cosx � 1− x2

2
(10)

cotx � 1
x
, cotx � 1

x
− x

2
if x �= 0. (11)

3. Energy of bicyclic digraphs

We consider the set Dn consisting of n -vertex bicyclic digraphs such that directed
cycles in a digraph are vertex-disjoint, where n � 4. Let G ∈Dn be a digraph with two
cycles Cr1 and Cr2 of lengths r1 and r2 respectively, where 2 � r1,r2 � n− 2. Then
Theorem 2 gives

E(G) = E(Cr1)+E(Cr2).

Next lemma is easily seen from (2) and (5).
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LEMMA 2. Let n and m be positive integers where n � 4 such that 2 � m � 4 or
2 � n−m � 4 . Then

E(Cn−2)+E(C2) � E(Cn−m)+E(Cm),

where Cn−2,C2,Cn−m and Cm are vertex-disjoint directed cycles.

Next lemma gives lower bounds for the sum of energies of two vertex-disjoint
directed cycles Cn−2 and C2 , where n � 4.

LEMMA 3. Let Cn−2 and C2 be two vertex-disjoint directed cycles, n � 4 . Then
we have the following inequalities:

E(Cn−2)+E(C2) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n
π − 4

π − π2

3(n−2)2 +2 if n ≡ 0(mod4)

2n
π − 4

π − π
(n−2) +2 if n ≡ 2(mod4)

2n
π − 4

π − π2

12(n−2)2 +2 if n ≡ 1(mod2).

Proof. By (2), E(C2) = 2. If n ≡ 0(mod4) then (6) and (10) yield

E(Cn−2)+E(C2) = 2

(
csc

π
n−2

+1

)

= 2

(
1+ sin π

n−2

sin π
n−2

)

� 2

⎛
⎝1+ π

n−2 − π3

6(n−2)3
π

n−2

⎞
⎠

=
2n
π

− 4
π
− π2

3(n−2)2 +2.

Next, we consider the case when n ≡ 2(mod4) . From (6) and (10), we get

E(Cn−2)+E(C2) = 2

(
cot

π
n−2

+1

)

� 2

(
n−2

π
− π

2(n−2)
+1

)

=
2n
π

− 4
π
− π

(n−2)
+2.
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Finally, we consider the case when n ≡ 1(mod2) . In this case, (6) and (10) give

E(Cn−2)+E(C2) = csc
π

2(n−2)
+2

=

(
1+2sin π

2(n−2)

sin π
2(n−2)

)

�
1+2

(
π

2(n−2) − π3

48(n−2)3

)
π

2(n−2)

=
2n
π

− 4
π
− π2

12(n−2)2 +2.

This completes the proof. �
Lemmas 4−6 give different upper bounds for the sum of energies of vertex-

disjoint directed cycles Cn−m and Cm , where m , n−m � 2.

LEMMA 4. If n ≡ 0(mod4) , m, n−m � 2 then the following holds:

E(Cn−m)+E(Cm) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n
π if m ≡ 0(mod4)

2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 2(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2),

where Cn−m and Cm are vertex-disjoint directed cycles

Proof. We consider three cases. First, let m ≡ 0(mod4) . By (6) and (11), we get

E(Cn−m)+E(Cm) = 2

(
cot

π
n−m

+ cot
π
m

)

� 2

(
n−m

π
+

m
π

)

=
2n
π

.

Next, we take m ≡ 2(mod4) . By (6) and (10), we get

E(Cn−m)+E(Cm) = 2

(
csc

π
n−m

+ csc
π
m

)

� 2

⎛
⎝ 1

( π
n−m)(1− π2

6(n−m)2 )
+

1

( π
m)(1− π2

6m2 )

⎞
⎠

=
2n
π

+2

(
(n−m)π

6(n−m)2−π2 +
mπ

6m2−π2

)
.
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If m ≡ 1(mod2) then one can analogously show that

E(Cn−m)+E(Cm) = csc
π

2(n−m)
+ csc

π
2m

� 2n
π

+2

(
(n−m)π

24(n−m)2−π2 +
mπ

24m2−π2

)
. �

LEMMA 5. If n ≡ 2(mod4) , m, n−m � 2 then the following holds:

E(Cn−m)+E(Cm) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n
π + 2(n−m)π

6(n−m)2−π2 if m ≡ 0(mod4)

2n
π + 2mπ

6m2−π2 if m ≡ 2(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2),

where Cn−m and Cm are vertex-disjoint directed cycles.

Proof. Firstly, consider the case when m ≡ 0(mod4) . It follows from (6), (10)
and (11) that

E(Cn−m)+E(Cm) = 2

(
csc

π
n−m

+ cot
π
m

)

� 2

⎛
⎝ 1(

π
n−m − π3

6(n−m)3

) +
m
π

⎞
⎠

=
2n
π

+
2(n−m)π

6(n−m)2−π2 .

Secondly, if m ≡ 2(mod4) , then one can analogously prove that

E(Cn−m)+E(Cm) = 2

(
cot

π
n−m

+ csc
π
m

)

� 2n
π

+
2mπ

6m2−π2 .

Finally, we take m ≡ 1(mod2) . By (6) and (10), we get

E(Cn−m)+E(Cm) = csc
π

2(n−m)
+ csc

π
2m

� 1(
π

2(n−m)

)(
1− π2

24(n−m)2

) +
1( π

2m

)(
1− π2

24m2

)
=

2n
π

+2

(
(n−m)π

24(n−m)2−π2 +
mπ

24m2−π2

)
. �
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LEMMA 6. If n ≡ 1(mod2) , m, n−m � 2 then the following holds:

E(Cn−m)+E(Cm)�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2n
π + 2(n−m)π

24(n−m)2−π2 if m ≡ 0(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 2(mod4)

2n
π + 2mπ

24m2−π2 if m ≡ 1(mod2) and n−m ≡ 0(mod4)

2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2) and n−m ≡ 2(mod4),

where Cn−m and Cm are vertex-disjoint directed cycles.

Proof. Let m ≡ 0(mod4) . Then by (6), (10) and (11), we get

E(Cn−m)+E(Cm) = csc
π

2(n−m)
+2cot

π
m

�

⎛
⎝ 1

π
2(n−m)

(
1− π2

24(n−m)2

)
⎞
⎠+2

(m
π

)

=
2n
π

+
2(n−m)π

24(n−m)2−π2 .

Next, we consider the case when m ≡ 2(mod4) . By (6) and (10), we get

E(Cn−m)+E(Cm) = csc
π

2(n−m)
+2csc

π
m

�

⎛
⎝ 1

π
2(n−m)

(
1− π2

24(n−m)2

)
⎞
⎠+2

⎛
⎝ 1

π
m

(
1− π2

6m2

)
⎞
⎠

=
2n
π

+
2(n−m)π

24(n−m)2−π2 +
2mπ

6m2−π2 .

Let m ≡ 1(mod2) and n−m≡ 0(mod4) . One can analogously prove that

E(Cn−m)+E(Cm) = 2cot
π

n−m
+ csc

π
2m

� 2n
π

+
2mπ

24m2−π2 .

Finally, we let m ≡ 1(mod2) and n−m≡ 2(mod4) . By (6) and (10), it is obvi-
ous to show that

E(Cn−m)+E(Cm) = 2csc
π

n−m
+ csc

π
2m

� 2(n−m)
π

+
2(n−m)π

6(n−m)2−π2 +
2m
π

+
2mπ

24m2−π2 .
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This completes the proof. �
We see that if m,n−m � 5 then n � 10. Therefore, we prove the following lemma

by using Lemmas 3−6.

LEMMA 7. Let m,n−m � 5 . Then

E(Cn−2)+E(C2) � E(Cn−m)+E(Cm), (12)

where Cn−2 and C2 are vertex-disjoint directed cycles.

Proof. First note that n � 10 since m,n−m � 5. We consider three cases:

Case 1 . When n ≡ 0(mod4) . In this case, n− 2 � 10. This together Lemma 3
gives

E(Cn−2)+E(C2) � 2n
π

− 4
π
− π2

3(n−2)2 +2

� 2n
π

− 4
π

+2− π2

3(10)2 (13)

� 2n
π

+0.69.

On the other hand, if m ≡ 0(mod4) then Lemma 4 gives

E(Cn−m)+E(Cm) � 2n
π

. (14)

The inequality (12) follows from (13) and (14).
If m ≡ 2(mod4) then m,n−m � 6. By Lemma 1 and Lemma 4, we have

E(Cn−m)+E(Cm) � 2n
π

+
2(n−m)π

6(n−m)2−π2 +
2mπ

6m2−π2

� 2n
π

+
12π

63−π2 +
12π

63−π2 (15)

� 2n
π

+0.37.

The inequality (12) follows from (13) and (15).
If m ≡ 1(mod2) then m � 5 and n−m � 7. Lemma 1 and Lemma 4 imply

E(Cn−m)+E(Cm) � 2n
π

+
2(n−m)π

24(n−m)2−π2 +
2mπ

24m2−π2

� 2n
π

+
14π

24(7)2−π2 +
10π

24(5)2−π2 (16)

� 2n
π

+0.10.
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The inequality (12) follows from (13) and (16).

Case 2 . When n ≡ 2(mod4) . In this case, n−2 � 8. It follows from Lemma 3
that

E(Cn−2)+E(C2) � 2n
π

− 4
π

+2− π
(n−2)

� 2n
π

− 4
π
− π

8
+2 (17)

� 2n
π

+0.33.

If m ≡ 0(mod4) then n−m � 6. Lemma 1 and Lemma 5 imply

E(Cn−m)+E(Cm) � 2n
π

+
2(n−m)π

6(n−m)2−π2

� 2n
π

+
12π

63−π2 (18)

� 2n
π

+0.19.

Inequalities (17) and (18) give (12).

If m ≡ 2(mod4) then m � 6. Lemma 5 and Lemma 1 give

E(Cn−m)+E(Cm) � 2n
π

+
2mπ

6m2−π2

� 2n
π

+
12π

63−π2 (19)

� 2n
π

+0.19.

Inequalities (17) and (19) imply (12).

If m ≡ 1(mod2) then m,n−m � 5. Lemma 5 and Lemma 1 give

E(Cn−m)+E(Cm) � 2n
π

+
2(n−m)π

24(n−m)2−π2 +
2mπ

24m2−π2

� 2n
π

+
10π

24(5)2−π2 (20)

� 2n
π

+0.06.

Inequalities (17) and (20) imply (12).
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Case 3 . When n ≡ 1(mod2) . In this case, n− 2 � 9. From Lemma 3, one can
easily see that

E(Cn−2)+E(C2) � 2(n−2)
π

− π2

12(n−2)2 +2

� 2n
π

− 4
π

+2− π2

12(9)2 (21)

� 2n
π

+0.71.

On the other hand, if m ≡ 0(mod4) then n−m � 5. It follows from Lemma 1
and Lemma 6 that

E(Cn−m)+E(Cm) � 2n
π

+
2(n−m)π

24(n−m)2−π2

� 2n
π

+
10π

24(5)2−π2 (22)

� 2n
π

+0.06.

Inequalities (21) and (22) imply (12).

If m ≡ 2(mod4) then m � 6 and n−m � 5. Lemma 1 and Lemma 6 imply

E(Cn−m)+E(Cm) � 2n
π

+
2(n−m)π

24(n−m)2−π2 +
2mπ

6m2−π2

� 2n
π

+
10π

24(5)2−π2 +
12π

63−π2 (23)

� 2n
π

+0.24.

Inequalities (21) and (23) imply (12).

If m ≡ 1(mod2) and n−m ≡ 0(mod4) then m � 5. Lemma 1 and Lemma 6
give

E(Cn−m)+E(Cm) � 2n
π

+
2mπ

24m2−π2

� 2n
π

+
10π

24(5)2−π2 (24)

� 2n
π

+0.06.

Inequalities (21) and (24) imply (12).



ENERGY OF BICYCLIC DIGRAPHS 809

If m ≡ 1(mod2) and n−m ≡ 2(mod4) then m � 5 and n−m � 6. Lemma 1
and Lemma 6 give

E(Cn−m)+E(Cm) � 2n
π

+
2(n−m)π

6(n−m)2−π2 +
2mπ

24m2−π2

� 2n
π

+
12π

63−π2 +
10π

24(5)2−π2 (25)

� 2n
π

+0.24.

Inequalities (21) and (25) imply (12). �
Combining Lemma 2 and Lemma 7, we have the following theorem.

THEOREM 3. Let m,n−m � 2 . Then the following holds:

E(Cn−2)+E(C2) � E(Cn−m)+E(Cm),

where Cn−2,C2,Cn−m and Cm are vertex-disjoint directed cycles.

Proof. The proof follows from Lemma 2 and Lemma 7. �
Pena and Rada [9] found the unicyclic digraphs which have minimal and maximal

energy among all unicyclic digraphs with fixed number of vertices. We address the
same problem for the set Dn . The following theorem gives the graphs in Dn with
minimal and maximal energy.

THEOREM 4. Let G ∈ Dn with directed cycles Cr1 and Cr2 , where 2 � r1,r2 �
n−2 . Then G has minimal energy if 2 � r1,r2 � 4 and maximal energy if r1 = n−2
and r2 = 2 or the vice versa.

Proof. Let G ∈ Dn with directed cycles Cr1 and Cr2 , where 2 � r1,r2 � n−2. It
follows from (1) and Theorem 2 that

E(G) = E(Cr1)+E(Cr2) =
r1−1

∑
k=0

∣∣cos
2kπ
r1

∣∣+ r2−1

∑
k=0

∣∣cos
2kπ
r2

∣∣.
If 2 � r1,r2 � 4 then E(Cr1) = E(Cr2) = 2, that is, E(G) = 4. It follows from (4) that
E(G) = 4 is the minimal energy among all digraphs of Dn .

Next, we let r1 = n−2 and r2 = 2. Take any digraph H ∈Dn with directed cycles
Cs1 and Cs2 , where 2 � s1,s2 � n−2. It follows from Theorem 3 that

E(G) = E(Cn−2)+E(C2) � E(Cn−s1)+E(Cs1).

As n− s1 � s2 , it follows from (5) that

E(Cn−s1)+E(Cs1) � E(Cs2)+E(Cs1) = E(H).

This shows that G has the maximal energy among all digraphs of Dn if r1 = n−2 and
r2 = 2 or the vice versa. �
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Conclusion

In this paper, we introduced the set Dn consisting of n -vertex bicyclic digraphs
such that directed cycles in a digraph are vertex-disjoint, where n � 4. We succeeded
in finding minimal and maximal energy among bicyclic digraphs in the set Dn . It will
be interesting to consider a more general class of bicyclic digraphs and finding the
extremal energy.
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