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INEQUALITIES ON THE RICCI CURVATURE

ADELA MIHAI

(Communicated by J. Pečarić)

Abstract. We improve Chen-Ricci inequalities for a Lagrangian submanifold Mn of dimension
n (n � 2) in a 2n -dimensional complex space form M̃2n(4c) of constant holomorphic sectional
curvature 4c with a semi-symmetric metric connection and a Legendrian submanifold Mn in
a Sasakian space form M̃2n+1(c) of constant ϕ -sectional curvature c with a semi-symmetric
metric connection, respectively.

1. Introduction

The Riemannian invariants are the intrinsic characteristics of a Riemannian mani-
fold. The main intrinsic invariants include the sectional curvature, the Ricci curvature
and the scalar curvature. The main extrinsic invariant is the squared mean curvature
‖H‖2 .

In [6] B. Y. Chen proved a geometrical inequality for Lagrangian submanifolds in
complex space forms involving the Ricci curvature Ric and the squared mean curva-
ture ‖H‖2 . This inequality is known as Chen-Ricci inequality. Afterwards Chen-Ricci
inequalities for special classes of submanifolds in different space forms were obtained
(see, for instance, F. Malek and M. B. K. Balgeshir [12]).

Recently, in [9], Chen-Ricci inequality was improved and the author completely
characterized Lagrangian submanifolds in complex space forms satisfying the equality.
In [10] an improved Chen-Ricci inequality for Lagrangian submanifolds in quaternion
space forms was obtained. In [17] the present author and I. N. Radulescu improved
Chen-Ricci inequality for Kaehlerian slant submanifolds in complex space forms. In
[19] an improvedChen-Ricci inequality for Legendrian submanifolds in Sasakian space
forms was obtained by I. Mihai and I. N. Radulescu. In [29] M. M. Tripathi improved
Chen-Ricci inequality for curvature-like tensors.

On the other hand, in [11], H. A. Hayden introduced the notion of a semi-symmetric
metric connection on a Riemannian manifold. In [30] K. Yano studied some properties
of a Riemannian manifold endowed with a semi-symmetric metric connection. In [20]
Z. Nakao studied submanifolds of a Riemannian manifold with semi-symmetric con-
nections. In [15] and [16] the present author and C. Ozgur studied B. Y. Chen inequal-
ities for submanifolds of real space forms, complex space forms and Sasakian space
forms with semi-symmetric metric connections, respectively.
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Motivated by the above studies, in the present paper we improve Chen-Ricci
inequalities for a Lagrangian submanifold Mn of dimension n (n � 2) in a com-
plex space form M̃2n(4c) of constant holomorphic sectional curvature c with a semi-
symmetric metric connection and a Legendrian submanifold Mn in a Sasakian space
form M̃2n+1(c) of constant ϕ -sectional curvature c with a semi-symmetric metric con-
nection, respectively, by using similar methods as in [9].

2. Preliminaries

Let M̃ be a Riemannian manifold and ∇̃ a linear connection on M̃ . If the torsion
tensor T̃ of ∇̃ satisfies

T̃
(
X̃ ,Ỹ

)
= ω(Ỹ )X̃ −ω(X̃)Ỹ

for a 1-form ω , then the connection ∇̃ is called a semi-symmetric connection. Let g
be a Riemannian metric on M̃ . If ∇̃g = 0, then ∇̃ is called a semi-symmetric metric
connection on M̃ .

A semi-symmetric metric connection ∇̃ on M̃ is given by

∇̃X̃ Ỹ =
◦
∇̃X̃Ỹ + ω(Ỹ )X̃ −g(X̃,Ỹ )P,

for any vector fields X̃ and Ỹ on M̃ , where
◦
∇̃ denotes the Levi-Civita connection with

respect to the Riemannian metric g and P is a vector field defined by g(P, X̃) = ω(X̃) ,
for any vector field X̃ [30]. Now let M̃ be a Riemannian manifold endowed with a

semi-symmetric metric connection ∇̃ and the Levi-Civita connection denoted by
◦
∇̃ .

Then the curvature tensor R̃ , given by R̃(x,y,z,w) = g(R̃(x,y)z,w) , with respect to the
semi-symmetric metric connection ∇̃ on M̃ can be written as (see [30])

R̃(X ,Y,Z,W ) =
◦
R̃(X ,Y,Z,W )−α(Y,Z)g(X ,W )+ α(X ,Z)g(Y,W) (1)

−α(X ,W )g(Y,Z)+ α(Y,W )g(X ,Z),

for any vector fields X ,Y,Z,W ∈ χ(M) , where α is a (0,2)-tensor field defined by

α(X ,Y ) =

( ◦
∇̃Xω

)
Y −ω(X)ω(Y)+

1
2

ω(P)g(X ,Y ), ∀X ,Y ∈ χ(M).

Let Mn be an n -dimensional submanifold of an (n+ p)-dimensional Riemannian
manifold M̃n+p . On the submanifold Mn we consider the induced semi-symmetric
metric connection denoted by ∇ and the induced Levi-Civita connection denoted by
◦
∇ .

Let R̃ be the curvature tensor of M̃n+p with respect to ∇̃ and
◦
R̃ the curvature

tensor of M̃n+p with respect to
◦
∇̃ . We also denote by R and

◦
R the curvature tensors of

∇ and
◦
∇ , respectively, on Mn .
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The Gauss formulas with respect to ∇ , respectively
◦
∇ , can be written as:

∇̃XY = ∇XY +h(X ,Y), X ,Y ∈ χ(Mn),
◦
∇̃XY =

◦
∇XY +

◦
h(X ,Y ), X ,Y ∈ χ(Mn),

where
◦
h is the second fundamental form of Mn in M̃n+p and h is a (0,2)-tensor on

Mn . According to the formula (7) from [20], h is also symmetric and h =
◦
h if and only

if P is tangent to Mn . The Gauss equation for the submanifold Mn into an (n+ p)-
dimensional Riemannian manifold M̃n+p is

◦
R̃(X ,Y,Z,W ) =

◦
R(X ,Y,Z,W )+g(

◦
h(X ,Z),

◦
h(Y,W ))−g(

◦
h(X ,W ),

◦
h(Y,Z)). (2)

From [20], the Gauss equation with respect to the semi-symmetric metric connec-
tion is

R̃(X ,Y,Z,W ) = R(X ,Y,Z,W )+g(h(X ,Z),h(Y,W))−g(h(Y,Z),h(X ,W)). (3)

One denotes by
◦
H the mean curvature vector of Mn in M̃n+p .

On the other hand, we recall the following results from [9]:

LEMMA 2.1. Let f1(x1,x2, . . . ,xn) be a function on R
n defined by:

f1(x1,x2, . . . ,xn) = x1

n

∑
j=2

x j −
n

∑
j=2

x2
j .

If x1 + x2 + . . .+ xn = 2na, then we have

f1(x1,x2, . . . ,xn) � n−1
4n

(x1 + x2 + . . .+ xn)
2 ,

with the equality sign holding if and only if 1
n+1x1 = x2 = . . . = xn = a.

LEMMA 2.2. Let f2(x1,x2, . . . ,xn) be a function on R
n defined by:

f2(x1,x2, . . . ,xn) = x1

n

∑
j=2

x j − x2
1.

If x1 + x2 + . . .+ xn = 4a, then we have

f2(x1,x2, . . . ,xn) � 1
8

(x1 + x2 + . . .+ xn)2 ,

with the equality sign holding if and only if x1 = a and x2 + . . .+ xn = 3a.
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3. An improved Chen-Ricci inequality for submanifolds of complex space forms
with a semi-symmetric metric connection

Let M̃2m be a Kaehler manifold and J the canonical almost complex structure.
The sectional curvature of M̃2m in the direction of an invariant 2-plane section by J is
called the holomorphic sectional curvature. If the holomorphic sectional curvature is
constant 4c for all plane sections π of TxM̃2m invariant by J for any x ∈ M̃2m , then
M̃2m is called a complex space form and is denoted by M̃2m(4c) . The curvature tensor
◦
R̃ with respect to the Levi-Civita connection

◦
∇̃ on M̃2m(4c) is given by (see [8])

◦
R̃(X ,Y,Z,W ) = c[g(X ,W)g(Y,Z)−g(X ,Z)g(Y,W ) (4)

−g(JX ,Z)g(JY,W)+g(JX ,W)g(JY,Z)−2g(X ,JY)g(Z,JW )].

If M̃2m(4c) is a complex space form of constant holomorphic sectional curvature
4c with a semi-symmetric metric connection ∇̃ , then from (1) and (4), the curvature
tensor R̃ of M̃2m(4c) can be expressed as

R̃(X ,Y,Z,W ) = c[g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W)−g(JX ,Z)g(JY,W) (5)

+g(JX ,W)g(JY,Z)−2g(X ,JY)g(Z,JW )]−α(Y,Z)g(X ,W)
+α(X ,Z)g(Y,W )−α(X ,W)g(Y,Z)+ α(Y,W )g(X ,Z).

Let Mn,n � 2, be an n -dimensional submanifold of a 2m-dimensional complex
space form M̃2m(4c) of constant holomorphic sectional curvature 4c. If J(TpMn) ⊂
T⊥

p Mn , then Mn is called an a totally real submanifold of M̃2m . For a totally real
submanifold of a Kaehlerian manifold it is known that (see [31])

◦
AJX Y =

◦
AJY X , X ,Y ∈ TpM,

or equivalently,
◦
h

k

i j=
◦
h

j

ik=
◦
h

i

jk, ∀i, j,k = 1, . . . ,n, (6)

where
◦
A is the shape operator with respect to

◦
∇̃ and

◦
h

k

i j = g(
◦
h(ei,e j),Jek), i, j,k = 1, . . . ,n.

A Lagrangian submanifold is a totally real submanifold of maximum dimension
[8].

THEOREM 3.1. Let Mn be a Lagrangian submanifold of dimension n (n � 2)
in a 2n-dimensional complex space form M̃2n(4c) of constant holomorphic sectional
curvature 4c with a semi-symmetric metric connection such that the vector field P is
tangent to Mn . Then for any unit tangent vector X to Mn we have

Ric(X)+ (n−2)α(X ,X)+ trα � (n−1)
(
c+

n
4
‖H‖2

)
. (7)
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The equality sign of (7) holds identically if and only if either
(i) Mn is totally geodesic, or
(ii) n = 2 , and M2 is a H -umbilical Lagrangian surface with λ = 3μ .

Proof. Since P is tangent to Mn , we have h =
◦
h and

◦
H = H . For a given

point p ∈ Mn and a given unit vector X ∈ TpMn , we choose an orthonormal basis
{e1 = X ,e2, . . . ,en} ⊂ TpMn and

{en+1 = Je1, . . . ,e2n = Jen} ⊂ T⊥
p M.

Now we put in (3) X = W = e j and Y = Z = e1 , for j = 2, ..,n , and by (5) it
follows that

R(e j,e1,e1,e j) = c[g(e1,e1)g(e j,e j)−g2(e j,e1)]+g(h(e1,e1),h(e j,e j))
−g(h(e1,e j),h(e1,e j))−α(e1,e1)g(e j,e j)+ α(e j,e1)g(e1,e j)
−α(e j,e j)g(e1,e1)+ α(e1,e j)g(e j,e1).

By summing after j = 2,n , we get

Ric(X) = (n−1)c+
n

∑
r=1

n

∑
j=2

[
hr

11h
r
j j − (hr

1 j)
2]− (n−2)α(X ,X)− trα.

It follows that

Ric(X)− (n−1)c+(n−2)α(X ,X)+ trα (8)

=
n

∑
r=1

n

∑
j=2

[
hr

11h
r
j j − (hr

1 j)
2]

�
n

∑
r=1

n

∑
j=2

hr
11h

r
j j −

n

∑
j=2

(h1
1 j)

2 −
n

∑
j=2

(h j
1 j)

2.

Since Mn is a Lagrangian submanifold, we have the relation (6) and

Ric(X)− (n−1)c+(n−2)α(X ,X)+ trα (9)

�
n

∑
r=1

n

∑
j=2

hr
11h

r
j j −

n

∑
j=2

(h j
11)

2 −
n

∑
j=2

(h1
j j)

2.

Now we put

f1(h1
11,h

1
22, . . . ,h

1
nn) = h1

11

n

∑
j=2

h1
j j −

n

∑
j=2

(h1
j j)

2

and

fr(hr
11,h

r
22, . . . ,h

r
nn) = hr

11

n

∑
j=2

hr
j j − (hr

11)
2, ∀r = 2,n.
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Since nH1 = h1
11 +h1

22 + . . .+h1
nn, we obtain by using Lemma 2.1 that

f1(h1
11,h

1
22, . . . ,h

1
nn) � n−1

4n
(nH1)2 =

n(n−1)
4

(H1)2. (10)

By applying Lemma 2.2 for 2 � r � n , we get

fr(hr
11,h

r
22, . . . ,h

r
nn) � 1

8
(nHr)2 =

n2

8
(Hr)2 � n(n−1)

4
(Hr)2. (11)

From (9), (10) and (11), we obtain

Ric(X)− (n−1)c+(n−2)α(X ,X)+ trα � n(n−1)
4

n

∑
r=1

(Hr)2 =
n(n−1)

4
‖H‖2 .

Thus we have

Ric(X) � (n−1)c− (n−2)α(X ,X)− trα +
n(n−1)

4
‖H‖2 , (12)

which implies (7).
Next, we shall study the equality case.

Case 1. For n � 3, we choose Je1 parallel to H . Then we have Hr = 0, for r � 2.
Thus, by Lemma 2.2, we get

h1
1 j = h j

11 =
nH j

4
= 0, ∀ j � 2,

and
h1

jk = 0, ∀ j,k � 2, j �= k.

From Lemma 2.1, we have h1
11 = (n+1)a and h1

j j = a, ∀ j � 2, with a = H1

2 .
In (8) we computed Ric(X) = Ric(e1) . Similarly, by computing Ric(e2) and using

the equality, we get
hr

2 j = h2
jr = 0, ∀r �= 2, j �= 2, r �= j.

Then we obtain

h2
11

n+1
= h2

22 = . . . = h2
nn =

H2

2
= 0.

The argument is also true for matrices
(
hr

jk

)
because the equality holds for all unit

tangent vectors; so, h2
2 j = h j

22 = H j

2 = 0, ∀ j � 3.

The matrix
(
h2

jk

)
(respectively the matrix

(
hr

jk

)
) has only two possible nonzero

entries h2
12 = h2

21 = h1
22 = H1

2 (respectively hr
1r = hr

r1 = h1
rr = H1

2 , ∀r � 3).
Now, after putting X = Z = e2 and Y = W = e j , j = 2, . . . ,n in (3) we obtain

R̃(e2,e j,e2,e j) = R(e2,e j,e2,e j)−
(

H1

2

)2

, ∀ j � 3.



INEQUALITIES ON THE RICCI CURVATURE 817

If we put X = Z = e2 and Y = W = e1 in (3), we get

R̃(e2,e1,e2,e1) = R(e2,e1,e2,e1)− (n+1)
(

H1

2

)2

+
(

H1

2

)2

.

After combining the last two relations, we find

Ric(e2)− (n−1)c+(n−2)α(e2,e2)+ trα = 2(n−1)
(

H1

2

)2

.

On the other hand, the equality case of (7) implies that

Ric(e2)− (n−1)c+(n−2)α(X ,X)+ trα =
n(n−1)

4
‖H‖2 = n(n−1)

(
H1

2

)2

.

Since n �= 1,2, by the last 2 equations we find H1 = 0. Thus,
(
hr

jk

)
are all zero,

i.e. M is a totally geodesic submanifold in M̃(4c) .

Case 2. n = 2.
If M2 is not totally geodesic, then h(e1,e1) = λe3 , h(e2,e2) = μe3 , h(e1,e2) =

μe4 , with λ = 3μ . Such a surface is said to be a H -umbilical surface. �

4. An improved Chen-Ricci inequality for submanifolds of Sasakian space forms
with a semi-symmetric metric connection

A (2m+1)-dimensional Riemannian manifold (M̃2m+1,g) has an almost contact
metric structure if it admits a (1,1)-tensor field ϕ , a vector field ξ and a 1-form η
satisfying:

ϕ2X = −X + η(X)ξ , η(ξ ) = 1

g(ϕX ,ϕY ) = g(X ,Y )−η(X)η(Y ),
g (X ,ξ ) = η(X),

for any vector fields X ,Y on TM̃2m+1 . Let Φ denote the fundamental 2-form in
M̃2m+1 , given by Φ(X ,Y ) = g(X ,φY ), for all X ,Y on TM̃n . If Φ = dη , then M̃2m+1

is called a contact metric manifold. The structure of M̃2m+1 is called normal if

[φ ,φ ]+2dη ⊗ ξ = 0,

where [φ ,φ ] is the Nijenhuis torsion of φ . A Sasakian manifold is a normal contact
metric manifold.

A plane section π in TpM̃2m+1 is called a ϕ -section if it is spanned by X and
ϕX , where X is a unit tangent vector field orthogonal to ξ . The sectional curvature of
a ϕ -section is called a ϕ -sectional curvature. A Sasakian manifold with constant ϕ -
sectional curvature c is said to be a Sasakian space form and is denoted by M̃2m+1(c) .
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The curvature tensor
◦
R̃ with respect to the Levi-Civita connection

◦
∇̃ on M̃2m+1(c)

is expressed by
◦
R̃(X ,Y,Z,W ) =

c+3
4

[g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W)]

+
c−1

4
[η(X)η(Z)g(Y,W )−η(Y )η(Z)g(X ,W )

+η(Y )η(W )g(X ,Z)−η(X)η(W )g(Y,Z)+g(X ,ϕZ)g(ϕY,W)
−g(Y,ϕZ)g(ϕX ,W)+2g(X ,ϕY)g(ϕZ,W )],

for vector fields X ,Y,Z,W on M̃2m+1(c) .
If M̃2m+1(c) is a (2m+1)-dimensional Sasakian space form of constant ϕ -sectional

curvature c endowed with a semi-symmetric metric connection ∇̃ , from (1) it follows
that the curvature tensor R̃ of M̃2m+1 can be expressed as

R̃(X ,Y,Z,W ) =
c+3

4
[g(X ,W )g(Y,Z)−g(X ,Z)g(Y,W)] (13)

+
c−1

4
[η(X)η(Z)g(Y,W )−η(Y )η(Z)g(X ,W )

+η(Y )η(W )g(X ,Z)−η(X)η(W )g(Y,Z)+g(X ,ϕZ)g(ϕY,W)
−g(Y,ϕZ)g(ϕX ,W)+2g(X ,ϕY)g(ϕZ,W )]−α(Y,Z)g(X ,W )
+α(X ,Z)g(Y,W )−α(X ,W )g(Y,Z)+ α(Y,W )g(X ,Z).

A submanifold Mn of a Sasakian manifold M̃2m+1 normal to ξ is called a C -

totally real submanifold. On such a submanifold, ϕ maps any tangent vector to Mn at
p ∈ Mn into the normal space T⊥

p Mn . In particular, if n = m , i. e. Mn has maximum
dimension, then it is a Legendrian submanifold. For a Legendrian submanifold Mn , if
{e1, . . . .en} is an orthonormal basis of TpM , we may choose an orthonormal basis of
T⊥

p Mn of the form {en+1 = ϕe1, . . . ,e2n = ϕen,
e2n+1 = ξ} . One has (see [31])

◦
AϕX Y =

◦
AϕY X , X ,Y ∈ TpM

n,

or equivalently,
◦
h

k

i j=
◦
h

j

ik=
◦
h

i

jk, ∀i, j,k = 1, . . . ,n, (14)

where
◦
A is the corresponding shape operator and

◦
h

k

i j= g(
◦
h (ei,e j),ϕek), i, j,k = 1, . . . ,n.

THEOREM 4.1. Let Mn be an n-dimensional Legendrian submanifold (n � 2)
in a Sasakian space form M̃2n+1(c) of constant ϕ -sectional curvature c with a semi-
symmetric metric connection such that the vector field P is tangent to Mn . Then for
any unit tangent vector X to Mn we have

Ric(X)+ (n−2)α(X ,X)+ trα � n−1
4

(
c+3+n‖H‖2

)
. (15)
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The equality sign of (15) holds identically if and only if either
(i) Mn is totally geodesic, or
(ii) n = 2 , and M2 is a H -umbilical Legendrian surface with λ = 3μ .

Proof. Since P is tangent to Mn , we have h =
◦
h and H =

◦
H . For a given point

p ∈ Mn and a given unit vector X ∈ TpMn , we choose an orthonormal basis {e1 = X ,
e2, . . . ,en} ⊂ TpMn and

{en+1 = ϕe1, . . . ,e2n = ϕen,e2n+1 = ξ} ⊂ T⊥
p Mn.

Now we put in (3) and (13) X =W = e j and Y = Z = e1 , for j = 2, ..,n ; it follows
that

R(e j,e1,e1,e j) =
c+3

4
[g(e1,e1)g(e j,e j)−g2(e j,e1)]+g(h(e1,e1),h(e j,e j))

−g(h(e1,e j),h(e1,e j))−α(e1,e1)g(e j,e j)+ α(e j,e1)g(e1,e j)
−α(e j,e j)g(e1,e1)+ α(e1,e j)g(e j,e1).

By summing after j = 2,n , we get

Ric(X) = (n−1)
c+3

4
+

n

∑
r=1

n

∑
j=2

[
hr

11h
r
j j − (hr

1 j)
2]− (n−2)α(X ,X)− trα.

It follows that

Ric(X)− (n−1)
c+3

4
+(n−2)α(X ,X)+ trα (16)

=
n

∑
r=1

n

∑
j=2

[
hr

11h
r
j j − (hr

1 j)
2]

�
n

∑
r=1

n

∑
j=2

hr
11h

r
j j −

n

∑
j=2

(h1
1 j)

2−
n

∑
j=2

(h j
1 j)

2.

Since Mn is a Legendrian submanifold, we have the relation (14) and

Ric(X)− (n−1)
c+3

4
+(n−2)α(X ,X)+ trα (17)

�
n

∑
r=1

n

∑
j=2

hr
11h

r
j j −

n

∑
j=2

(h j
11)

2−
n

∑
j=2

(h1
j j)

2.

Now we put

f1(h1
11,h

1
22, . . . ,h

1
nn) = h1

11

n

∑
j=2

h1
j j −

n

∑
j=2

(h1
j j)

2

and

fr(hr
11,h

r
22, . . . ,h

r
nn) = hr

11

n

∑
j=2

hr
j j − (hr

11)
2, ∀r = 2,n.
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Since nH1 = h1
11 +h1

22 + . . .+h1
nn, we obtain by using Lemma 2.1 that

f1(h1
11,h

1
22, . . . ,h

1
nn) � n−1

4n
(nH1)2 =

n(n−1)
4

(H1)2. (18)

By applying Lemma 2.2 for 2 � r � n , we get

fr(hr
11,h

r
22, . . . ,h

r
nn) � 1

8
(nHr)2 =

n2

8
(Hr)2 � n(n−1)

4
(Hr)2. (19)

From (17), (18) and (19) we obtain

Ric(X)− (n−1)
c+3

4
+(n−2)α(X ,X)+ trα � n(n−1)

4

n

∑
r=1

(Hr)2 =
n(n−1)

4
‖H‖2 .

Thus we have

Ric(X) � (n−1)
c+3

4
− (n−2)α(X ,X)− trα +

n(n−1)
4

‖H‖2 ,

which implies (15).
Next, we shall study the equality case. For n � 3, we choose φe1 parallel to H .

Then we have Hr = 0, for r � 2. Thus, by Lemma 2.2, we get

h1
1 j = h j

11 =
nH j

4
= 0, ∀ j � 2

and
h1

jk = 0, ∀ j,k � 2, j �= k.

From Lemma 2.1 we have h1
11 = (n+1)a and h1

j j = a, ∀ j � 2, with a = H1

2 .
In (16) we computed Ric(X) = Ric(e1) . Similarly, by computing Ric(e2) and

using the equality, we get

hr
2 j = h2

jr = 0, ∀r �= 2, j �= 2, r �= j.

Then we obtain

h2
11

n+1
= h2

22 = . . . = h2
nn =

H2

2
= 0.

The argument is also true for matrices
(
hr

jk

)
because the equality holds for all unit

tangent vectors; so, h2
2 j = h j

22 = H j

2 = 0, ∀ j � 3.

The matrix
(
h2

jk

)
(respectively the matrix

(
hr

jk

)
) has only two possible nonzero

entries h2
12 = h2

21 = h1
22 = H1

2 (respectively hr
1r = hr

r1 = h1
rr = H1

2 , ∀r � 3).
Now, after putting X = Z = e2 and Y = W = e j , j = 2, . . . ,n in (3) we obtain

R̃(e2,e j,e2,e j) = R(e2,e j,e2,e j)−
(

H1

2

)2

, ∀ j � 3.
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If we put X = Z = e2 and Y = W = e1 in (3), we get

R̃(e2,e1,e2,e1) = R(e2,e1,e2,e1)− (n+1)
(

H1

2

)2

+
(

H1

2

)2

.

After combining the last two relations, we find

Ric(e2)− (n−1)
c+3

4
+(n−2)α(e2,e2)+ trα = 2(n−1)

(
H1

2

)2

.

On the other hand, the equality case of (15) implies that

Ric(e2)− (n−1)
c+3

4
+(n−2)α(e2,e2)+ trα =

n(n−1)
4

‖H‖2 = n(n−1)
(

H1

2

)2

.

Since n �= 1,2, by the last 2 equations we find H1 = 0. Thus,
(
hr

jk

)
are all zero,

i.e., Mn is a totally geodesic submanifold in M̃2n+1(c) .
Now assume that n = 2. If M2 is not totally geodesic, one has

h(e1,e1) = λe3, h(e2,e2) = μe3, h(e1,e2) = μe4,

with λ = 3μ = 3H1

2 , i.e., M2 is H -umbilical. This gives case (ii) of the theorem. �
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