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INEQUALITIES ON THE RICCI CURVATURE

ADELA MIHAI

(Communicated by J. Pecari¢)

Abstract. We improve Chen-Ricci inequalities for a Lagrangian submanifold M" of dimension
n (n>2) ina 2n-dimensional complex space form M>(4c) of constant holomorphic sectional
curvature 4c¢ with a semi-symmetric metric connection and a Legendrian submanifold M" in
a Sasakian space form M2'*! (c) of constant @-sectional curvature ¢ with a semi-symmetric
metric connection, respectively.

1. Introduction

The Riemannian invariants are the intrinsic characteristics of a Riemannian mani-
fold. The main intrinsic invariants include the sectional curvature, the Ricci curvature
and tzhe scalar curvature. The main extrinsic invariant is the squared mean curvature
1"

In [6] B. Y. Chen proved a geometrical inequality for Lagrangian submanifolds in
complex space forms involving the Ricci curvature Ric and the squared mean curva-
ture ||H||*. This inequality is known as Chen-Ricci inequality. Afterwards Chen-Ricci
inequalities for special classes of submanifolds in different space forms were obtained
(see, for instance, F. Malek and M. B. K. Balgeshir [12]).

Recently, in [9], Chen-Ricci inequality was improved and the author completely
characterized Lagrangian submanifolds in complex space forms satisfying the equality.
In [10] an improved Chen-Ricci inequality for Lagrangian submanifolds in quaternion
space forms was obtained. In [17] the present author and I. N. Radulescu improved
Chen-Ricci inequality for Kaehlerian slant submanifolds in complex space forms. In
[19] an improved Chen-Ricci inequality for Legendrian submanifolds in Sasakian space
forms was obtained by I. Mihai and I. N. Radulescu. In [29] M. M. Tripathi improved
Chen-Ricci inequality for curvature-like tensors.

On the other hand, in [1 1], H. A. Hayden introduced the notion of a semi-symmetric
metric connection on a Riemannian manifold. In [30] K. Yano studied some properties
of a Riemannian manifold endowed with a semi-symmetric metric connection. In [20]
Z. Nakao studied submanifolds of a Riemannian manifold with semi-symmetric con-
nections. In [15] and [16] the present author and C. Ozgur studied B. Y. Chen inequal-
ities for submanifolds of real space forms, complex space forms and Sasakian space
forms with semi-symmetric metric connections, respectively.
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Motivated by the above studies, in the present paper we improve Chen-Ricci
inequalities for a Lagrangian submanifold M" of dimension n (n > 2) in a com-
plex space form M?"(4¢) of constant holomorphic sectional curvature ¢ with a semi-
symmetric metric connection and a Legendrian submanifold M" in a Sasakian space
form M?"+1(c) of constant ¢-sectional curvature ¢ with a semi-symmetric metric con-
nection, respectively, by using similar methods as in [9].

2. Preliminaries

Let M be a Riemannian manifold and V a linear connection on M. If the torsion
tensor T of V satisfies . o s
T <XY> — o(V)X — 0(X)Y

for a 1-form @, then the connection V is called a semi- symmetric connection. Let g

be a Riemannian metric on M. If Vg 0, then V is called a semi- symmetric metric

connectionon M. ~
A semi-symmetric metric connection V on M is given by

o(Y)X —g(X.Y)P,

<1
<
ol
~!
_|_

for any vector fields X and Y on M , where V denotes the Levi-Civita conn~ecti0n w~ith
respect to the Riemannian metric g and P is a vector field defined by g(P,X) = o(X),
for any vector field X [30]. Now let M be a Riemannian manifold endowed with a

semi-symmetric metric connection % and the Levi-Civita connection denoted by V.
Then the curvature tensor R, given by R(x,y,z,w) = g(R(x,y)z,w), with respect to the
semi-symmetric metric connection V on M can be written as (see [30])
RX.Y.ZW) = R(X.Y,Z,W) - a(Y,Z)g(X. W) + (X, Z)g(Y. W) (D)
(X, W)g(Y,Z) + a(Y,W)g(X,Z),

for any vector fields X,Y,Z,W € (M), where « is a (0,2)-tensor field defined by
S 1
o(X,Y)= (cho) Y—oX)o(Y)+ Ew(P)g(X,Y), VX,Y € x(M).

Let M" be an n-dimensional submanifold of an (n+ p)-dimensional Riemannian
manifold M""?. On the submanifold M" we consider the induced semi-symmetric
metric connection denoted by V and the induced Levi-Civita connection denoted by

o

V. .

Let R be the curvature tensor of M"+? with respect to V and R the curvature

o

~ ~ o
tensor of M" 17 with respect to V. We also denote by R and R the curvature tensors of

V and V, respectively, on M".
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o]
The Gauss formulas with respect to V, respectively V, can be written as:

Vx¥ = VxY+h(X,Y), XY € x(M"),

VxY = Vx¥ +h(X,Y), X.Y € y(M"),

where £ is the second fundamental form of M" in M"*7 and h is a (0,2)-tensor on

M". According to the formula (7) from [20], A is also symmetric and # = h if and only
if P is tangent to M". The Gauss equation for the submanifold M" into an (n+ p)-
dimensional Riemannian manifold M"*7 is

o]
~ o]

RX.Y,Z,W)=R(X,Y,Z,W)+g(h(X,Z),h(Y,W)) — g(h(X,W),h(Y,Z)). (2)
From [20], the Gauss equation with respect to the semi-symmetric metric connec-
tion is

R(X,Y,Z,W)=R(X,Y,ZW)+g(h(X,Z),h(Y,W)) —g(h(Y,Z),h(X,W)). (3)

One denotes by H the mean curvature vector of M" in M.
On the other hand, we recall the following results from [9]:

LEMMA 2.1. Let fi(x1,x2,...,Xs) be a function on R" defined by:
n n 2
fl(x17x2a---7xn) = X1 2,2)61'— 2,2)6,-~
Jj= Jj=

If x1+x2+...+x, =2na, then we have

n—1
4n

(1 +x2+...+xn)2,

N

fl (-xla-xza e 7-x71)
with the equality sign holding if and only if Fllxl =X =...=Xx,=a.
LEMMA 2.2. Let f>(x1,X2,...,Xn) be a function on R" defined by:
n
Fxr,xa, o x) =x1 Y, xj— 1.
j=2
If xi1+x2+...4+x, =4a, then we have

1
H(x1,x2,..0,x0) < 3 (x1 +x2+...+xn)27

with the equality sign holding if and only if x; = a and xo + ...+ x, = 3a.
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3. An improved Chen-Ricci inequality for submanifolds of complex space forms
with a semi-symmetric metric connection

Let M*" be a Kaehler manifold and J the canonical almost complex structure.

The sectional curvature of M>" in the direction of an invariant 2-plane section by J is

called the holomorphic sectional curvature. If the holomorphic sectional curvature is

constant 4¢ for all plane sections 7 of T,M?" invariant by J for any x € M?" | then

M?" is called a complex space form and is denoted by M?"(4c). The curvature tensor
]

]

R with respect to the Levi-Civita connection V on 1\712’”(4c) is given by (see [8])

o

R(X.Y,.ZW) = c[g(X.W)g(Y,Z) — g(X,Z)g(Y,W) )
—g(JX,Z)g(JY, W)+ g(JX,W)g(JY,Z) — 2g(X,JY)g(Z,JW)].

If M2 (4c) is a complex space form of constant holomorphic sectional curvature
4c¢ with a semi-symmetric metric connection V, then from (1) and (4), the curvature
tensor R of M (4c) can be expressed as

R(X7YvaW) = C[g(X7W)g(Y7Z) —g(X7Z)g(Y,W) —g(]X7Z)g(JY7W) (5)
+g(JX,W)g(JY,Z) —2g(X,JY)g(Z,JW)] — au(Y,Z)g(X,W)
+o(X,2)g(Y,W)—o(X,W)g(Y,Z)+ a(Y,W)g(X,Z).

Let M",n > 2, be an n-dimensional submanifold of a 2m-dimensional complex
space form M>"(4c) of constant holomorphic sectional curvature 4c. If J(T,M") C
TPLM", then M" is called an a totally real submanifold of M*". For a totally real
submanifold of a Kaehlerian manifold it is known that (see [31])

AxY=Arx X, X, Y €T,M,

or equivalently,
ok oj ol

hij:hik:hjk7 Vi,j,k =1,...,n, (6)

] ~
where A is the shape operator with respect to V and

Ok o]

hl/ :g(h(ei7e,f)a‘]ek)a iaj7k = 1,...,1’1.

A Lagrangian submanifold is a totally real submanifold of maximum dimension

[8].

THEOREM 3.1. Let M" be a Lagrangian submanifold of dimension n (n > 2)
in a 2n-dimensional complex space form M* (4¢) of constant holomorphic sectional
curvature 4c with a semi-symmetric metric connection such that the vector field P is
tangent to M". Then for any unit tangent vector X to M"* we have

Ric(X)+(n—2)o(X,X) +tra < (n—1) (c+ ’z: HH||2> . )
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The equality sign of (7) holds identically if and only if either
(i) M" is totally geodesic, or

(ii) n=2, and M? is a H -umbilical Lagrangian surface with A =3

Proof. Since P is tangent to M", we have h = h and H = H. For a given

point p € M" and a given unit vector X € T,M", we choose an orthonormal basis
{e1=X,es,...,e,} CT,M" and

{eny1=Jel,...,exn=Jey} C Tle.

Now we putin (3) X =W =e¢; and Y =Z = ¢y, for j=2,..,n, and by (5) it
follows that

R(ej,e1,e1,¢5) = clgler,er)glej,e;) — g (ej.e1)] +g(h(er,e1),h(eje;))

—g(h(er,ej),h(er,ej)) —oler,er)glej,ej) +olejer)g(ere;)
—a(ej,ej)gler,er) +aler,e;)glej,er)

By summing after j =2,n, we get

n n
Ric(X)=(n—1) c—|—22[ — (1)) ] (n—2)o(X,X)—tra.
r=1j=2
It follows that
Ric(X)—(n—1)c+(n—2)a(X,X)+1tro 8
2 2 (11— (R)°]
Zzh Zhlj) _E(h{,) .
r=1j= Jj=2 Jj=2
Since M" is a Lagrangian submanifold, we have the relation (6) and
Ric(X)—(n—l)c+(n—2)a(X X)+tro 9
n n n
< 2 2k, Y )
r=1j=2 j=2 Jj=2
Now we put
fl(hihhéb" h112h 2
j=2

and

n.

r r r r c r r\2
fr(Wyys g, Byy) = nzhjj_( o Vr=2,
Jj=2
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Since nH' = hi, +hl,+...+h},, we obtain by using Lemma 2.1 that

nn—1)

n—1
Filhig iy, hy,) < ——(nH')? = =————=(H')*. (10)
4n 4
By applying Lemma 2.2 for 2 < r < n, we get
r r r 1 r 1’12 r n(n—1 r
Flli B ) < b =" < D

From (9), (10) and (11), we obtain

Ric(X) — (n— e+ (n—2)a(X,X) +1ra < ”(”4_ D 2 (H')? = ”(”4_ Dympe.
Thus we have

I1H|, (12)

Ric(X)<(n—1)c—(n—2)a (X,X)—trOH—@

which implies (7).
Next, we shall study the equality case.

Case 1. For n > 3, we choose Je; parallel to H. Then we have H" =0, for r > 2.
Thus, by Lemma 2.2, we get

— =0, Vj>2

and
hjk =0, Vj,k>2, j#k.

From Lemma 2.1, we have hj, = (n+1)a and h}; =a, Vj >2, with a = o
In (8) we computed Ric(X) = Ric(ey). Similarly, by computing ch(ez) and using
the equality, we get
hyj=h5, =0, Vr#2, j#2, r#j.

Then we obtain

2
hll —

The argument is also true for matrices (h;k) because the equality holds for all unit
tangent vectors; so, h%j = h£2 = HTJ =0, Vj=>3

The matrix (h3,) (respectively the matrix (/7)) has only two possible nonzero
entries h2, = h3, = hi, = 2 (respectively h} =h"; =h}, = HTI, Vr > 3).

Now, after putting X =Z =e¢ and ¥ = W =ej, j=2,...,n in (3) we obtain

~ Hl 2
R(€2,€j,€2,€j) :R(ez,ej,€2,€j) - <7) y v.] >3
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Ifweput X =Z=e; and Y =W =¢ in (3), we get

_ Hl 2 Hl 2
R(ez,e1,ez,e1) = R(ez,eq,ez,e1) — (n+1) <7> + <7> .

After combining the last two relations, we find
H'\?
Ric(ez) — (n—1)c+ (n—2)a(er,er) +traa=2(n—1) (7) .

On the other hand, the equality case of (7) implies that

n<n4_ D IR = n(n—1) (HTI )2.

Since n # 1,2, by the last 2 equations we find H' = 0. Thus, (h;k) are all zero,
i.e. M is a totally geodesic submanifold in M (4c).

Ric(ez) — (n—1)c+ (n—2)o(X,X) +tra=

Case 2. n=2.
If M? is not totally geodesic, then &(ej,e;) = Aes, h(ea,ez) = Ues, hiey,er) =
Ueq, with A = 3. Such a surface is said to be a H -umbilical surface. [J

4. An improved Chen-Ricci inequality for submanifolds of Sasakian space forms
with a semi-symmetric metric connection

A (2m+ 1)-dimensional Riemannian manifold (M>"*! g has an almost contact
metric structure if it admits a (1,1)-tensor field ¢, a vector field £ and a 1-form n
satisfying:

P’X = —X+n(X)&,n(§) =1
g(oX,0Y) = g(X,Y) —n(X)n(Y),
g (X,8) = n(X),

for any vector fields X,Y on TM?" ! Let @ denote _the fundamental 2-form in
M?"+1 given by @(X,Y) = g(X,¢Y), forall X,Y on TM". If ® = dn, then M
is called a contact metric manifold. The structure of M>"*1 is called normal if

(¢, 0] +2dn®E =0,

where [¢,¢] is the Nijenhuis torsion of ¢. A Sasakian manifold is a normal contact
metric manifold.

A plane section 7 in T,M>"*! is called a @-section if it is spanned by X and
¢@X , where X is a unit tangent vector field orthogonal to & . The sectional curvature of
a @-section is called a @-sectional curvature. A Sasakian manifold with constant ¢-
sectional curvature ¢ is said to be a Sasakian space form and is denoted by M*"*+1(c).
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o o]
The curvature tensor R with respect to the Levi-Civita connection V on M>"+1(c)
is expressed by

o

ROCY.ZW) = S22 X W)g(4,2) — (X, )¢V, W)
+ S OO @)1, W) = (¥ 0 (2)g(X W)

m(
n¥)nW)gX,2) —n(X)n(W)g(¥,Z2) +g(X, 9Z)g (@Y, W)
—8(Y,9Z)g(9X, W) +2¢(X, 0Y)2(9Z,W)],
for vector fields X,Y,Z,W on M>"+1(c).

If M?"+1(c) isa (2m+ 1)-dimensional Sasakian space form of constant ¢ -sectional
curvature ¢ endowed with a semi-symmetric metric connection V from (1) it follows
that the curvature tensor R of M>"+! can be expressed as
c+3

4

FESMEN(2)0 W)~ 1N ()X, W)
FNTW)SX,2) - )WY, Z) + 5(X, 02)g(gV, W)
~4(Y,0Z)8(0X. W)+ 25(X, ¥ )g(0Z,W)] — (Y, Z)g(X, W)
+o(X,2)g(Y,W)—o(X,W)g(Y,Z)+ a(Y,W)g(X,Z).

A submanifold M" of a Sasakian manifold M?"*! normal to & is called a C-

totally real submanifold. On such a submanifold, ¢ maps any tangent vector to M" at
p € M" into the normal space Tle". In particular, if n =m, i. e. M" has maximum
dimension, then it is a Legendrian submanifold. For a Legendrian submanifold M", if
{e1,....e,} is an orthonormal basis of 7,M, we may choose an orthonormal basis of
TPLM" of the form {ens1 = Qer,...,e2, = Qey,
exr1 = E}. One has (see [31])

ﬁ(X7Y7Z7W) = [g(X7W)g(Y7Z)—g(X7Z)g(Y,W)] (13)

A(pXY:A(pr, X,YETPMH,

or equivalently,
ok oj ol
hij=hag=hjr, Vi, j,k=1,....n, (14)

]
where A is the corresponding shape operator and

Ok o]

hij:g(h(ely ) (P€k> i?jakzlr")n

THEOREM 4.1. Let M" be an n-dimensional Legendrian submanifold (n > 2)
in a Sasakian space form M*"1(c) of constant @ -sectional curvature ¢ with a semi-
symmetric metric connection such that the vector field P is tangent to M". Then for
any unit tangent vector X to M" we have

n—1
4

Ric(X) + (n—2)a(X,X) +tra < (c+3+n HHH2> : (15)
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The equality sign of (15) holds identically if and only if either
(i) M" is totally geodesic, or
(ii) n =2, and M?* is a H -umbilical Legendrian surface with A = 31.

Proof. Since P is tangent to M", we have h :;1 and H :Ifl . For a given point
p € M" and a given unit vector X € T,M", we choose an orthonormal basis {e1 =X,
e,...,en} C T,M" and
{ent1=Qe1,... 000 = Qen,en1 =&} CT,"M".
Now we putin (3)and (13) X =W =¢; and Y =Z =¢, for j=2,..,n; it follows
that
C+3 2
R(ej,e1,e1,e)) = T[g(elyel)g(ejaej) — g (ej,e1)] +g(h(er,e1).h(ej,e;))
—g(h(er,ej),h(er,e;)) — aler,er)glej,e;) + aulej,er)g(er,e;)
—ofej,ej)g(er,er) +oler,ej)glej,er).
By summing after j =2,n, we get

Ric(X) = (n—1) C+3+ i 2 (W k= (B )] — (n—=2)a(X X)) —trax.
r=1j=2

It follows that

(X)—(n—1)CI3+(n—2)a(X7X)+zra (16)

[y — (k)]

v 3
M=

‘
I

—_
~.
I

S}

n

Tk = X (i) = E(hm :

Jj=2 Jj=2

N
M=
M=

‘
I

—_
~.
I

S}

Since M" is a Legendrian submanifold, we have the relation (14) and

c+3

Rie(X) = (n— 1) ==+ (n—2)a(X.X) +-1r0 (17)
SDIDWIEDACAEDACHE
r=1j=2 Jj=2 Jj=2

Now we put
1 g1 1 R < )2
fl(hll7h227---ahnn):hllZhjj_z,(h )
j=2 j=

and

n
Jr(Bys by, hyy,) = hZh;j—( ') Yr=2n.
Jj=2
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Since nH' = hi, +hl,+...+h},, we obtain by using Lemma 2.1 that

hitshygs. . hhy) < ——(nH')? = H')? 18
f( 11,7922 ) nn) 4n (n ) 4 ( ) ( )
By applying Lemma 2.2 for 2 < r < n, we get
r r r 1 r 1’12 r n(n—1 r
Flli B ) < b =" < D g

From (17), (18) and (19) we obtain

Ric(X) — (n— 1)013 +(n—2)a(X,X) +tro < ”(”4_ D i(H’)z = @ 1H|?.

‘
Il
—_

Thus we have

Ric(X) < (n—1) I1H|?,

T3 2)aX,X)—tra+ ”7(”4_ )

which implies (15).
Next, we shall study the equality case. For n > 3, we choose ¢e; parallel to H.
Then we have H" =0, for r > 2. Thus, by Lemma 2.2, we get

; H/
h{j:h{IZ”Tzo, V=2

and
hjk =0, Vj,k>=2, j#k.

From Lemma 2.1 we have h}; = (n+1)a and h} =a, Vj>=2, witha= HTI
In (16) we computed Ric(X) = Ric(ey). Similarly, by computing Ric(e;) and
using the equality, we get

Wy =h3, =0, Vr#2, j#2, réj.

Then we obtain

The argument is also true for matrices (h;k) because the equality holds for all unit
tangent vectors; so, hgj = héz = HT’ =0, Vj>3.
The matrix (h7,) (respectively the matrix (A7,)) has only two possible nonzero

entries i3, = h3, = hl, = £L (respectively A, = h7, = hl, = 2L vr > 3).
Now, after putting X =Z=e¢y and Y =W =¢;, j=2,...,n in (3) we obtain

~ Hl 2
R(€2,€j,€2,€j) :R(ez,ej,€2,€j) - <7) y v.] >3
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Ifweput X =Z=e; and Y =W =¢ in (3), we get

_ Hl 2 Hl 2
R(ez,e1,e2,e1) =R(ez,e1,e2,e¢1)— (n+1) <7> + <7> .

After combining the last two relations, we find

c+3

2
Ric(ez) — (n—1) + (n—2)a(ez, e2) +troe=2(n—1) (H?l> ,

On the other hand, the equality case of (15) implies that

¢ n(n— 1\ 2
+3+("_2)a(62762)+”’0€= % ||HH2 =n(n—1) (H?) .

Since n # 1,2, by the last 2 equations we find H' = 0. Thus, (h;k) are all zero,

i.e., M" is a totally geodesic submanifold in M2*1(c).

Now assume that n = 2. If M is not totally geodesic, one has

h(ei,e1) = Aes, h(ez,e2) = Ues, h(er,e2) = ey,

with A =3u = %, i.e., M? is H -umbilical. This gives case (ii) of the theorem. [J
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