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SOME NEW DISCRETE FRACTIONAL INEQUALITIES AND THEIR

APPLICATIONS IN FRACTIONAL DIFFERENCE EQUATIONS

BIN ZHENG

(Communicated by J. Pečarić)

Abstract. In this paper, some new Gronwall-Bellman type discrete fractional difference inequal-
ities and fractional sum inequalities are established. Based on the theory of discrete fractional
calculus, explicit bounds for unknown functions concerned are presented. These inequalities can
be used as a handy tool in the qualitative analysis of solutions of discrete fractional difference
equations. As for applications, we apply the presented results to research boundedness, unique-
ness, and continuous dependence on the initial value for the solutions of certain initial value
problems of fractional difference equations.

1. Introduction

It is well known that Gronwall-Bellman type inequalities play important roles in
the research of qualitative as well as quantitative properties of solutions of differen-
tial equations, difference equations, dynamic equations and so on. The main merit
of Gronwall-Bellman type inequalities lies in that such inequalities can provide ex-
plicit bounds for unknown functions concerned. In the last few decades, many authors
have paid much attention to research Gronwall-Bellman type inequalities, and many
Gronwall-Bellman type differential inequalities, difference inequalities, and dynamic
inequalities on time scales have been established so far in the literature. For example,
in [1–3], some Gronwall-Bellman type differential inequalities have been presented,
which have been widely used in the qualitative and quantitative analysis of solutions
of various differential equations. In [4–9], a series of retarded Gronwall-Bellman type
differential inequalities have been presented, which are generalizations of the earlier in-
equalities, and can be used in the research of retarded differential equations. In [10–12],
some discrete Gronwall-Bellman type inequalities have been established, which can be
used as a handy tool in the research of solutions of difference equations. In [13–16],
the authors have investigated some Gronwall-Bellman type inequalities on time scales,
which unify the Gronwall-Bellman type differential inequalities and the corresponding
discrete inequalities, and can be used in the research of dynamic equations on time
scales. Then in [17–20], the authors presented some new more generalized Gronwall-
Bellman type inequalities on time scales than those in [13–16]. Recently, with the
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development of the theory of fractional differential equations, some new Gronwall-
Bellman type inequalities suitable for the qualitative analysis of solutions of fractional
differential equations have been presented (for example, see [21–25]).

In these inequalities, we notice that few inequalities have been oriented to the
qualitative analysis of solutions of discrete fractional difference equations arising in the
theory of discrete fractional calculus. For recent results on this direction, we refer the
reader to [26–27].

Motivated by the above analysis, in this paper, we establish some new Gronwall-
Bellman type discrete fractional difference inequalities and fractional sum inequalities,
which can be used as a handy tool in the qualitative analysis of solutions of discrete frac-
tional difference equations. Based on these inequalities, explicit bounds for unknown
functions are presented.

Some important definitions and conclusions in discrete fractional calculus are
listed as follows [28]. For the convenience, we denote Nt = {t,t + 1, t + 2, . . .} , and

in the next of this paper,
m1

∑
s=m0

f (s) = 0 provided m0 > m1 .

DEFINITION 1. Let υ > 0, σ(s) = s+1, and the function f is defined for s = a
mod 1. Then the υ− th fractional sum of f is defined by

Δ−υ f (t) =
1

Γ(α)

t−υ

∑
s=a

(t−σ(s))(υ−1) f (s),

where t(υ) = Γ(t +1)
Γ(t +1−υ) , Δ−υ f is defined for t = a + υ mod 1, and Δ−υ maps

functions defined on Na to functions defined on Na+υ .

DEFINITION 2. Let μ > 0, and m− 1 < μ < m , where m is a positive integer.
Then the μ− th fractional difference of f is defined by

Δμ f (t) = Δm−υ f (t) = Δm(Δ−υ f (t)),

where −υ = μ −m .

THEOREM 3. [28, Theorem 1.1] Let f be a real-valued function defined on Na ,
and μ , υ > 0 . Then the following equalities hold:

Δ−υ [Δ−μ f (t)] = Δ−(υ+μ) f (t) = Δ−μ [Δ−υ f (t)].

THEOREM 4. [28, Theorem 2.1] Let f be a real-valued function defined on Na ,
and υ > 0 . Then the following equalities hold:

Δ−υΔ f (t) = ΔΔ−υ f (t)− (t −a)(υ−1)

Γ(υ)
f (a).

For other important properties on the discrete fractional calculus, we refer the
reader to [28–30].
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The next of this paper is organized as follows. In Section 2, we present the main
results, in which new Gronwall-Bellman type discrete fractional difference inequalities
and fractional sum inequalities are established. In Section 3, we present some examples,
and apply the inequalities established to research boundedness, uniqueness, and contin-
uous dependence on the initial value for the solutions of certain initial value problems
of fractional difference equations. In Section 4, some conclusions are presented.

2. Main results

THEOREM 5. Assume 0 < α � 1 , u(n) is a nonnegative function defined on
Nα−1 , and a, b are nonnegative functions defined on N0 . If the following inequal-
ity holds:

Δαu(k) � a(k)u(k+ α −1)+b(k), k ∈ N0, (1)

then for n ∈ Nα , one has

u(n) � n(α−1)

Γ(α)
A+

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)b(s)

+A

{
d(n−α,n)

(n−1)(α−1)

Γ(α)
+

n−α−1

∑
s=0

|d(s,n)−d(s,n−1)| (s+ α−1)(α−1)

Γ(α)

}

+A
n−1

∑
p=α

{[
d(p−α, p)

(p−1)(α−1)

Γ(α)
+

p−α−1

∑
s=0

|d(s, p)−d(s, p−1)| (s+α−1)(α−1)

Γ(α)

]

×
n

∏
ξ=p+1

[1+d(ξ −α,ξ )+
ξ−α−1

∑
s=0

|d(s,ξ )−d(s,ξ −1)|]
}

. (2)

where A = Δα−1u(k)|k=0, d(s,n) = 1
Γ(α)a(s)(n− s−1)(α−1).

Proof. Denote

Δαu(k) = f (k+ α −1,u(k+ α −1)), k ∈ N0. (3)

Then calculating discrete α− th fractional sum Δ−α on both sides of (3) yields that for
n ∈ Nα ,

Δ−αΔαu(n) = Δ−α f (n+ α −1,u(n+ α −1))

=
1

Γ(α)

n−α

∑
s=0

(n− s−1)(α−1) f (s+ α −1,u(s+ α −1)).

By setting A = Δα−1u(k)|k=0, d(s,n) = 1
Γ(α)a(s)(n− s− 1)(α−1) , using Theo-
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rems 3 and 4 one can obtain that

Δ−αΔαu(n) = Δ−αΔΔ−(1−α)u(n) = ΔΔ−αΔ−(1−α)u(n)− n(α−1)

Γ(α)
A

= ΔΔ−1u(n)− n(α−1)

Γ(α)
A = u(n)− n(α−1)

Γ(α)
A,

and furthermore,

u(n) =
n(α−1)

Γ(α)
A+

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1) f (s+ α −1,u(s+ α −1))

=
n(α−1)

Γ(α)
A+

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)Δαu(s)

� n(α−1)

Γ(α)
A+

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)[a(s)u(s+ α −1)+b(s)]

=
n(α−1)

Γ(α)
A+

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)b(s)+
n−α

∑
s=0

d(s,n)u(s+ α −1)

= e(n)+
n−α

∑
s=0

d(s,n)u(s+ α −1), (4)

where e(n) = n(α−1)

Γ(α) A+ 1
Γ(α)

n−α
∑

s=0
(n− s−1)(α−1)b(s) .

By denoting v(n) =
n−α
∑

s=0
d(s,n)u(s+ α −1) , one has

u(n) � e(n)+ v(n), n ∈ Nα , (5)

and furthermore, for n ∈ Nα ,

v(n)− v(n−1) = d(n−α,n)u(n−1)+
n−α−1

∑
s=0

[d(s,n)−d(s,n−1)]u(s+ α−1)

� d(n−α,n)[e(n−1)+v(n−1)]+
n−α−1

∑
s=0

|d(s,n)−d(s,n−1)|e(s+α−1)

+
n−α−1

∑
s=0

|d(s,n)−d(s,n−1)|v(n−1),

which is rewritten by

v(n)−{1+d(n−α,n)+
n−α−1

∑
s=0

|d(s,n)−d(s,n−1)|}v(n−1)

�d(n−α,n)e(n−1)+
n−α−1

∑
s=0

|d(s,n)−d(s,n−1)|e(s+ α−1). (6)
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For n > α , substituting n with p in (6), multiplying on both sides by
n
∏

ξ=p+1
{1+d(ξ −

α,ξ )+
ξ−α−1

∑
s=0

|d(s,ξ )−d(s,ξ −1)|} , a summation with respect to p from α to n−1

together with (6), and using v(α −1) = 0, yields that

v(n) � d(n−α,n)e(n−1)+
n−α−1

∑
s=0

|d(s,n)−d(s,n−1)|e(s+ α−1)

+
n−1

∑
p=α

{[d(p−α, p)e(p−1)+
p−α−1

∑
s=0

|d(s, p)−d(s, p−1)|e(s+ α−1)]

×
n

∏
ξ=p+1

[1+d(ξ −α,ξ )+
ξ−α−1

∑
s=0

|d(s,ξ )−d(s,ξ −1)|]}. (7)

Note that (7) also holds for n = α . So (7) holds in fact for n ∈ Nα . Combining (5) and
(7) we can get the desired result. �

THEOREM 6. Assume 0 < α � 1 , u(n) is a nonnegative function defined on
Nα−1 , and a, b are nonnegative functions defined on N0 . If the following inequal-
ity holds:

Δαu(k) � a(k)[u(k+α−1)+
1

Γ(α)

k−1

∑
s=0

(k+α−s−2)(α−1)u(s+α−1)]+b(k), k ∈ N0,

(8)

then for n ∈ Nα , one has

u(n) � n(α−1)

Γ(α)
A+

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1){a(s)[
(s+ α −1)(α−1)

Γ(α)
Ã

+
1

Γ(α)

s−1

∑
ξ=0

(s+ α − ξ −2)(α−1)b(ξ )+ Ãq(s+ α −1)]+b(s)}. (9)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = Δα−1u(k)|k=0,

Ã = Δα−1u(k)|k=0 + Δ−1u(k+ α −1)|k=0,

q(n) = d̃(n−α,n) (n−1)(α−1)

Γ(α) +
n−α−1

∑
s=0

|d̃(s,n)− d̃(s,n−1)| (s+ α −1)(α−1)

Γ(α)

+
n−1
∑

p=α

{[
d̃(p−α, p) (p−1)(α−1)

Γ(α) +
p−α−1

∑
s=0

|d̃(s, p)−d̃(s, p−1)| (s+α−1)(α−1)

Γ(α)

]
×

n
∏

ξ=p+1
[1+ d̃(ξ −α,ξ )+

ξ−α−1

∑
s=0

|d̃(s,ξ )− d̃(s,ξ −1)|]
}
,

d̃(s,n) = 1
Γ(α) [a(s)+1](n− s−1)(α−1).

(10)
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Proof. Denote

z(n) = u(n)+
1

Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)u(s+ α −1), n ∈ Nα .

Then for k ∈ N0 , one has

Δαu(k) � a(k)z(k+ α −1)+b(k), (11)

and
u(k+ α −1) � z(k+ α −1).

Furthermore, it holds that

Δαz(k) = Δαu(k)+u(k+ α −1) � [a(k)+1]z(k+ α −1)+b(k), (12)

and
Δα−1z(k) = Δ−1ΔΔ−(1−α)z(k) = Δα−1u(k)+ Δ−1u(k+ α −1).

Applying Theorem 5 to (12) yields that for n ∈ Nα ,

z(n) � n(α−1)

Γ(α)
Ã+

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)b(s)+ Ãq(n). (13)

where q(n), Ã, d̃(s,n) are defined as in (10). So by a combination of (11) and (13) we
obtain that

Δαu(k) � a(k)

[
(k+α−1)(α−1)

Γ(α)
Ã+

1
Γ(α)

k−1

∑
s=0

(k+α−s−2)(α−1)b(s)+Ãq(k+α−1)

]
+b(k) � b̃(k), k ∈ N0. (14)

Applying Theorem 5 again to (14) yields that for n ∈ Nα ,

u(n) � n(α−1)

Γ(α)
A+

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)b̃(s), (15)

where A = Δα−1u(k)|k=0 is defined as in (10). The desired inequality (9) can be ob-
tained after substituting the expression of b̃(s) into (15). �

Next we consider two discrete fractional sum inequalities based on Theorems 5
and 6.

LEMMA 7. [31] Assume that a � 0 , p � q � 0 , and p �= 0 , then for any K > 0 ,

a
q
p � q

p
K

q−p
p a+

p−q
p

K
q
p .
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THEOREM 8. Assume 0 < α � 1 , u(n), a(n) are nonnegative functions defined
on Nα−1 , and b, c are nonnegative functions defined on N0 , m1, m2, m3 are constants
with m1 � m2 � m3 > 0 . If for n ∈ Nα , the following inequality holds:

um1(n) � a(n)+
1

Γ(α)

n−α

∑
s=0

(n−s−1)(α−1)[b(s)um2(s+α−1)+c(s)um3(s+α−1)], (16)

then for n ∈ Nα , one has

u(n) � {a(n)+ ê(n)+ d̂(n−α,n)ê(n−1)+
n−α−1

∑
s=0

|d̂(s,n)− d̂(s,n−1)|ê(s+ α −1)

+
n−1

∑
p=α

{[d̂(p−α, p)ê(p−1)+
p−α−1

∑
s=0

|d̂(s, p)− d̂(s, p−1)|ê(s+ α −1)]

×
n

∏
ξ=p+1

[1+ d̂(ξ −α,ξ )+
ξ−α−1

∑
s=0

|d̂(s,ξ )− d̂(s,ξ −1)|]}} 1
m1 , (17)

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d̂(s,n) = 1

Γ(α) (n− s−1)(α−1)
[
m2
m1

K
m2−m1

m1 b(s)+ m3
m1

K
m3−m1

m1 c(s)
]
,

ê(n) = 1
Γ(α)

n−α
∑

s=0
(n− s−1)(α−1)

{
b(s)

[
m2
m1

K
m2−m1

m1 a(s+ α −1)+ m1−m2
m1

K
m2
m1

]
+c(s)

[
m3
m1

K
m3−m1

m1 a(s+ α −1)+ m1−m3
m1

K
m3
m1

]}
,

(18)

and K > 0 is an arbitrary constant.

Proof. Denote

v(n) =
1

Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)[b(s)um2(s+ α −1)+ c(s)um3(s+ α −1)].

Then

um1(n) � a(n)+ v(n), n ∈ Nα . (19)

and it holds that

v(n) � 1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1){b(s)[a(s+ α −1)+ v(s+ α−1)]
m2
m1

+ c(s)[a(s+ α −1)+ v(s+ α−1)]
m3
m1 }

� 1
Γ(α)

n−α

∑
s=0

(n−s−1)(α−1)
{

b(s)
[m2

m1
K

m2−m1
m1 (a(s+α−1)+v(s+α−1))

+
m1−m2

m1
K

m2
m1

]
+c(s)

[m3

m1
K

m3−m1
m1 (a(s+α−1)+v(s+α−1))+

m1−m3

m1
K

m3
m1

]}
= ê(n)+

n−α

∑
s=0

d̂(s,n)v(s+ α −1), (20)
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where ê(n) , d̂(s,n) are defined as in (18), and K > 0 is an arbitrary constant.
Since the structure of (20) is similar to that of (4), following a similar manner to

the process of (4) to (7) one can deduce that

v(n) � ê(n)+ d̂(n−α,n)ê(n−1)+
n−α−1

∑
s=0

|d̂(s,n)− d̂(s,n−1)|ê(s+ α −1)

+
n−1

∑
p=α

{[d̂(p−α, p)ê(p−1)+
p−α−1

∑
s=0

|d̂(s, p)− d̂(s, p−1)|ê(s+ α −1)]

×
n

∏
ξ=p+1

[1+ d̂(ξ −α,ξ )+
ξ−α−1

∑
s=0

|d̂(s,ξ )− d̂(s,ξ −1)|]}, n ∈ Nα . (21)

Combining (19) and (21) we can obtain the desired inequality (17). �

THEOREM 9. Under the conditions of Theorem 6, furthermore, assume 0 < l1 �
1 . If the following inequality holds:

Δαu(k) � a(k)[ul1(k+α−1)+
1

Γ(α)

k−1

∑
s=0

(k+α−s−2)(α−1)ul1(s+α−1)]+b(k), k ∈ N0,

(22)

then for n ∈ Nα , one has

u(n) � n(α−1)

Γ(α)
A+

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)

{
a(s)

[ (s+ α −1)(α−1)

Γ(α)
A

+
1

Γ(α)

s−1

∑
ξ=0

(s+ α − ξ −2)(α−1)b(ξ )+Aq(s+ α −1)
]
+b(s)

}
. (23)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = Δα−1u(k)|k=0,

A = Δα−1u(k)|k=0 + Δ−1u(k+ α −1)|k=0,

q(n) = d(n−α,n) (n−1)(α−1)

Γ(α) +
n−α−1

∑
s=0

|d(s,n)−d(s,n−1)| (s+ α −1)(α−1)

Γ(α)

+
n−1
∑

p=α

{[
d(p−α, p) (p−1)(α−1)

Γ(α) +
p−α−1

∑
s=0

|d(s, p)−d(s, p−1)| (s+α−1)(α−1)

Γ(α)

]
×

n
∏

ξ=p+1

[
1+d(ξ −α,ξ )+

ξ−α−1

∑
s=0

|d(s,ξ )−d(s,ξ −1)|
]}

,

d(s,n) = 1
Γ(α) [a(s)+1](n− s−1)(α−1),

a(k) = l1Kl1−1a(k),

b(k) = b(k)+a(k)Kl1(1− l1)[1+ 1
Γ(α)

k−1
∑

s=0
(k+ α − s−2)(α−1)],

(24)
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and K > 0 is an arbitrary constant.

Proof. By (22) and Lemma 7 one has

Δαu(k) � a(k)[ul1(k+ α −1)+
1

Γ(α)

k−1

∑
s=0

(k+ α − s−2)(α−1)ul1(s+ α −1)]+b(k)

� a(k){[l1Kl1−1u(k+ α −1)+ (1− l1)Kl1 ]

+
1

Γ(α)

k−1

∑
s=0

(k+ α − s−2)(α−1)[l1Kl1−1u(s+ α −1)+ (1− l1)Kl1 ]}+b(k)

= a(k){u(k+ α −1)+
1

Γ(α)

k−1

∑
s=0

(k+ α − s−2)(α−1)u(s+ α −1)}+b(k),

(25)

where a(k) , b(k) are defined as in (24), and K > 0 is an arbitrary constant.
Applying Theorem 6 to (25) yields the desired result. �

REMARK 1. If m1 = m2 = 1 , m3 < 1 , then Theorem 8 becomes the discrete ver-
sion of the fractional differential inequality (17) in [22, Theorem 4]. If m1 = m2 = 1,
m3 = 0, then Theorem 8 becomes the discrete version of the fractional differential in-
equalities in [21, Theorem 1] and [24, Theorem 3] with g(t), b(t)≡ 1 there. Moreover,
we note that the main inequalities in Theorems 5, 6 and 9 are essentially different from
the main results in [25], and are discrete Gronwall-Bellman type inequalities of new
forms so far in the literature.

3. Applications

In this section, we apply the inequalities established above to research bounded-
ness, uniqueness, and continuous dependence on the initial value for the solution to a
fractional difference equation.

EXAMPLE 1. Consider the following IVP of fractional difference equation [28,
Eqs. (3.1)–(3.2)]:{

Δαu(k) = L(k+ α −1,u(k+ α −1)), k ∈ N0,

Δα−1u(k)|k=0 = a0,
(26)

where 0 < α < 1, u(n) is an unknown function defined on Nα−1 , L : Nα−1×R → R .

THEOREM 10. For the IVP (26), if |L(k+α −1,u(k+α −1))|� g(k)|u(k+α −
1)| , where g is a nonnegative function defined on N0 , then we have the following
estimate for u(n):
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|u(n)| � n(α−1)

Γ(α)
|a0|+ê(n)+d̂(n−α,n)ê(n−1)+

n−α−1

∑
s=0

|d̂(s,n)−d̂(s,n−1)|ê(s+α−1)

+
n−1

∑
p=α

{[d̂(p−α, p)ê(p−1)+
p−α−1

∑
s=0

|d̂(s, p)− d̂(s, p−1)|ê(s+ α −1)]

×
n

∏
ξ=p+1

[1+d̂(ξ−α,ξ )+
ξ−α−1

∑
s=0

|d̂(s,ξ )−d̂(s,ξ−1)|]} � I(n), n ∈ Nα , (27)

where ⎧⎪⎨⎪⎩
d̂(s,n) = 1

Γ(α) (n− s−1)(α−1)g(s),

ê(n) = |a0|
[Γ(α)]2

n−α
∑

s=0
(n− s−1)(α−1)g(s)(s+ α −1)(α−1),

Proof. By [28, Eq. (3.4)], the equivalent discrete fractional sum equation of the
IVP (26) can be denoted as follows:

u(n) =
n(α−1)

Γ(α)
a0 +

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)L(s+ α −1,u(s+ α −1)).

So

|u(n)| � n(α−1)

Γ(α)
|a0|+ 1

Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)|L(s+ α −1,u(s+ α −1))|

� n(α−1)

Γ(α)
|a0|+ 1

Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)g(s)|u(s+ α −1)|. (28)

Figure 1: The solution u(n) and its bound I(n) in (26) with α = 0.5 , g(k) = 1 , a0 = 1 .
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Then a suitable application of Theorem 8 (with m1 = m2 = 1, c(s) ≡ 1) to (28)
yields the desired result.

In Figure 1, the bound I(n) for the function u(n) is demonstrated with α = 1
2 ,

g(k) ≡ 1, a0 = 1. �

THEOREM 11. For the IVP (26), if |L(k+α −1,u)−L(k+α −1,v)| � g(k)|u−
v| , where g is a nonnegative function defined on N0 , then the IVP (26) has at most one
solution.

Proof. Suppose the IVP (26) has two solutions u1(n), u2(n) . Then we have

u1(n) =
n(α−1)

Γ(α)
a0 +

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)L(s+ α −1,u(s+ α −1)), (29)

and

u2(n) =
n(α−1)

Γ(α)
a0 +

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)L(s+ α −1,u(s+ α −1)). (30)

Furthermore,

u1(n)−u2(n) =
1

Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)[L(s+ α −1,u1(s+ α −1))

−L(s+ α −1,u2(s+ α −1))], (31)

which implies

|u1(n)−u2(n)| � 1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)|L(s+ α −1,u1(s+ α −1))

−L(s+ α −1,u2(s+ α −1))|

� 1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)g(s)|u1(s+ α −1)−u2(s+ α −1)|, (32)

Treating |u1(n)− u2(n)| as one unity, by applying Theorem 8 to (32) one can deduce
that |u1(n)−u2(n)| � 0. So u1(n) ≡ u2(n) , and the proof is complete. �

Now we research the continuous dependence on the initial value for the solution
of the IVP (26).

THEOREM 12. Let u(n) be the solution of the IVP (26), and u(n) be the solution
of the following IVP:{

Δαu(k) = L(k+ α −1,u(k+ α −1)), k = 0,1,2...,

Δα−1u(k)|k=0 = a0,
(33)
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If |a(0)− a(0)| < ε , where ε is an arbitrarily small constant, and |L(k + α − 1,u)−
L(k + α − 1,v)| � g(k)|u− v| , where g is a nonnegative function defined on N0 , then
we have

|u(n)−u(n)| � εQ(n), (34)

where

Q(n) =

{
n(α−1)

Γ(α)
+˜̂e(n)+˜̂

d(n−α,n)̃ê(n−1)+
n−α−1

∑
s=0

|˜̂d(s,n)−˜̂
d(s,n−1)|̃ê(s+α−1)

+
n−1

∑
p=α

{[˜̂d(p−α, p)̃ê(p−1)+
p−α−1

∑
s=0

|˜̂d(s, p)− ˜̂d(s, p−1)|̃ê(s+ α −1)]

×
n

∏
ξ=p+1

[1+ ˜̂
d(ξ −α,ξ )+

ξ−α−1

∑
s=0

|˜̂d(s,ξ )− ˜̂
d(s,ξ −1)|]}

}
,

and ⎧⎪⎨⎪⎩
˜̂
d(s,n) = 1

Γ(α) (n− s−1)(α−1)g(s),

˜̂e(n) = 1
[Γ(α)]2

n−α
∑

s=0
(n− s−1)(α−1)g(s)(s+ α −1)(α−1),

Proof. Similar to Theorem 10, we can obtain the equivalent discrete fractional
sum equation of the IVP (33) as follows:

u(n) =
n(α−1)

Γ(α)
a0 +

1
Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)L(s+ α −1,u(s+ α −1)). (35)

So we have

u(n)−u(n) =
n(α−1)

Γ(α)
|a0−a0|+ 1

Γ(α)

n−α

∑
s=0

(n− s−1)(α−1)

× [L(s+ α −1,u(s+ α −1))−L(s+ α −1,u(s+ α −1))]. (36)

Furthermore,

|u(n)−u(n)| � n(α−1)

Γ(α)
ε+

1
Γ(α)

n−α

∑
s=0

(n−s−1)(α−1)g(s)|u1(s+α−1)−u2(s+α−1)|.
(37)

Applying Theorem 8 to (37), after some basic computation we can deduce the desired
result (34). �

EXAMPLE 2. Consider the following IVP of fractional difference equation:⎧⎨⎩ Δ 1
2 u3(k) = g1(k)u3(k+ α −1)+g2(k)u(k+ α −1), k ∈ N0,

Δ− 1
2 u3(k)|k=0 = u0,

(38)

where u(n) is an unknown function defined on N− 1
2
.
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THEOREM 13. For the IVP (26), if g1, g2 are nonnegative functions defined on
N0 , then we have the following estimate for u(n):

|u(n)| �
{

n(− 1
2 )

Γ
(1

2

) |u0|+ê(n)+d̂
(
n−1

2
,n

)
ê(n−1)+

n− 3
2

∑
s=0

|d̂(s,n)−d̂(s,n−1)|ê
(
s−1

2

)

+
n−1

∑
p= 1

2

{[
d̂
(

p− 1
2
, p

)
ê(p−1)+

p− 3
2

∑
s=0

|d̂(s, p)− d̂(s, p−1)|ê
(
s− 1

2

)]

×
n

∏
ξ=p+1

[
1+ d̂

(
ξ − 1

2
,ξ

)
+

ξ− 3
2

∑
s=0

|d̂(s,ξ )− d̂(s,ξ −1)|
]}} 1

3

� θ (n), n ∈ N 1
2
,

(39)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̂(s,n) = 1

Γ
(1

2

) (n− s−1)(−
1
2 )[g1(s)+ 1

3K− 2
3 g2(s)],

ê(n) = 1

Γ
(1

2

) n− 1
2

∑
s=0

(n− s−1)(−
1
2 )

{
g1(s)

(
s− 1

2

)(− 1
2 )

Γ
(1

2

) |u0|

+g2(s)

[
1
3K− 2

3

(
s− 1

2

)(− 1
2 )

Γ
(1

2

) |u0|+ 2
3K

1
3

]}
,

(40)

and K > 0 is an arbitrary constant.

Proof. Similar to Theorem 10, the equivalent discrete fractional sum equation of
the IVP (38) can be denoted as follows:

u3(n) =
n(− 1

2 )

Γ
(1

2

)u0 +
1

Γ
(1

2

) n− 1
2

∑
s=0

(n− s−1)(−
1
2 )

[
g1(s)u3

(
s− 1

2

)
+g2(s)u

(
s− 1

2

)]
.

So

|u(n)|3 � n(− 1
2 )

Γ
(1

2

) |u0|+ 1

Γ
(1

2

) n− 1
2

∑
s=0

(n− s−1)(−
1
2 )

∣∣∣∣∣g1(s)u3
(
s− 1

2

)
+g2(s)u

(
s− 1

2

)∣∣∣∣∣
� n(− 1

2 )

Γ
(1

2

) |u0|+ 1

Γ
(1

2

) n− 1
2

∑
s=0

(n−s−1)(−
1
2 )

[
g1(s)

∣∣∣u(
s−1

2

)∣∣∣3+g2(s)
∣∣∣u(

s−1
2

)∣∣∣].

(41)
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Figure 2: The solution u(n) and its bound θ (n) in (39) with u0 = 1 , g1(k) = g2(k) = 1 ,

K = Γ(s+0.5)
Γ(s+1)Γ(0.5) .

Applying Theorem 8 (with m1 = m2 = 3, m3 = 1) to (41) yields the desired result.

In Figure 2, the bound θ (n) for the function u(n) is demonstrated with g1(k)
= g2(k) ≡ 1, u0 = 1, K = 1. �

EXAMPLE 3. Consider the following fractional sum-difference equation:

Δ
1
3 |u(k)| = u

(
k− 2

3

)
+

1

Γ
(1

3

) k−1

∑
s=0

(
k− s− 5

3

)(− 2
3 )

u
(
s− 2

3

)
, k ∈ N0. (42)

where u(n) is an unknown function defined on N− 2
3
.

THEOREM 14. For (42), we have the following estimate for u(n):

u(n) � n(− 2
3 )

Γ
(1

3

)A+
1

Γ
(1

3

) n− 1
3

∑
s=0

(n− s−1)(−
2
3 )

{[(
s− 2

3

)(− 2
3 )

Γ
(1

3

) Ã+ Ãq
(
s− 2

3

)]}
,

(43)

where



DISCRETE FRACTIONAL INEQUALITIES AND THEIR APPLICATIONS 837

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = Δ− 2
3 u(k)|k=0,

Ã = Δ− 2
3 u(k)|k=0 + Δ−1u(k− 2

3 )|k=0,

q(n) = d̃(n− 1
3 ,n) (n−1)(−

2
3 )

Γ
(1

3

) +
n− 4

3

∑
s=0

|d̃(s,n)− d̃(s,n−1)|
(
s− 2

3

)(− 2
3 )

Γ
(1

3

)
+

n−1
∑

p= 1
3

{[
d̃(p− 1

3 , p) (p−1)(−
2
3 )

Γ
(1

3

) +
p− 4

3

∑
s=0

|d̃(s, p)− d̃(s, p−1)|
(
s− 2

3

)(− 2
3 )

Γ
(1

3

) ]

×
n
∏

ξ=p+1
[1+ d̃(ξ − 1

3 ,ξ )+
ξ− 4

3

∑
s=0

|d̃(s,ξ )− d̃(s,ξ −1)|]
}

,

d̃(s,n) = 2

Γ
(1

3

)(n− s−1)(−
2
3 ).

(44)

Proof. By (42) one has:

Δ
1
3 |u(k)| �

∣∣∣u(
k− 2

3

)
+

1

Γ
(1

3

) k−1

∑
s=0

(
k− s− 5

3

)(− 2
3 )

u
(
s− 2

3

)∣∣∣
�

∣∣∣u(
k− 2

3

)∣∣∣+ 1

Γ
(1

3

) k−1

∑
s=0

(
k− s− 5

3

)(− 2
3 )∣∣∣u(

s− 2
3

)∣∣∣. (45)

Applying Theorem 6 (with a(k) ≡ 1, a(k) ≡ 0) to (45) yields the desired result. �

4. Conclusions

In this paper, based on the theory of discrete fractional calculus, we have pre-
sented some new Gronwall-Bellman type discrete fractional difference inequalities and
fractional sum inequalities, which can be seen as the discrete version of Gronwall-
Bellman type fractional differential inequalities. These inequalities can be used to pro-
vide explicit estimates for solutions of unknown functions of discrete fractional dif-
ference equations, and can also be used in the analysis of uniqueness and continuous
dependence on the initial value for the solutions. For demonstrating the validity of the
presented results, we apply them to research several initial value problems of fractional
difference equations.
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