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A NOTE ON SOME INEQUALITIES FOR UNITARILY INVARIANT NORMS
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(Communicated by M. Krnić)

Abstract. In this paper, we obtain an improved inequality for unitarily invariant norms, which
was established by Fu and He [J. Math. Inequal. 7 (4), (2013), 727–737].

1. Introduction

Let Mm,n be the space of m× n complex matrices and Mn = Mn,n . A norm ‖·‖
is called unitarily invariant norm if ‖UAV‖ = ‖A‖ for all A ∈ Mn and for all unitary
matrices U,V ∈ Mn . The Ky Fan k-norm‖·‖(k) is defined as

‖A‖(k) =
k

∑
j=1

s j (A), k = 1, · · · ,n,

where si (A)(i = 1, · · · ,n) are the singular values of A with s1 (A)� · · · � sn (A) , which

are the eigenvalues of the positive semidefinite matrix |A| = (AA∗)
1
2 , arranged in de-

creasing order and repeated according to multiplicity. The Schatten p-norm ‖·‖p is
defined as

‖A‖p =

(
n

∑
j=1

sp
j (A)

)1/p

= (tr |A|p)1/p , 1 � p < ∞.

It is known that these norms are unitarily invariant, and it is evident that each
unitarily invariant norm is symmetric gauge function of singular values [1].

Let A,B,X ∈ Mn such that A and B are positive semidefinite. Then, the function

ϕ (v) =
∥∥AvXB2−v +A2−vXBv

∥∥
is convex on [0,2] , attains its minimum at v = 1, consequently ϕ (1) � ϕ (v) , which
implies that

2‖AXB‖ �
∥∥AvXB2−v +A2−vXBv

∥∥ , 0 � v � 2. (1)

Zhan proved in [2] that if A,B,X ∈Mn such that A and B are positive semidefinite,
then ∥∥AvXB2−v +A2−vXBv

∥∥� 2
t +2

∥∥A2X + tAXB+XB2
∥∥ , (2)
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for
1
2

� v � 3
2

and −2 < t � 2. So it follows from (1) and (2) that

2‖AXB‖ �
∥∥AvXB2−v +A2−vXBv

∥∥� 2
t +2

∥∥A2X + tAXB+XB2
∥∥ . (3)

Recently, Fu and He [3] obtained an improvement of inequality (3) which can be
stated as follows:

2‖AXB‖+2

(∫ 3
2

1
2

∥∥AvXB2−v +A2−vXBv
∥∥dv−2‖AXB‖

)
� 2

t +2

∥∥A2X + tAXB+XB2
∥∥

(4)

for
1
2

� v � 3
2

and −2 < t � 2.

For more information on inequalities for unitarily invariant norms the reader is
referred to [2-8].

In this paper, we will give a refinement of inequality (4).

2. Main results

We begin this section with two lemmas.

LEMMA 1. [4, 5] Let f be a real valued convex function on the interval [a,b]
which contains (x1,x2) . Then for x1 � x � x2 , we have

f (x) � f (x2)− f (x1)
x2− x1

x− x1 f (x2)− x2 f (x1)
x2− x1

.

LEMMA 2. (Hermite-Hadamard Integral Inequality) [7] Let f be a real valued
convex function on the interval [a,b] . Then

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
.

THEOREM 1. Let A,B,X ∈Mn such that A and B are positive semidefinite. Then

2‖AXB‖+4

(∫ 3
2

1
2

∥∥AvXB2−v +A2−vXBv
∥∥dv−‖AXB‖− 1

2

∥∥∥A 3
4 XB

5
4 +A

5
4 XB

3
4

∥∥∥
)

� 2
t +2

∥∥A2X + tAXB+XB2
∥∥ ,

where
1
2

� v � 3
2

, −2 < t � 2 .

Proof. It is known that if A,B,X ∈Mn such that A and B are positive semidefinite,
then the function

ϕ (v) =
∥∥AvXB2−v +A2−vXBv

∥∥ , 0 � v � 2
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is convex on [0,2] , attains its minimum at v = 1. It follows that if
1
2

� v � 3
4

, then by

Lemma 1 and the convexity of function ϕ , we have

ϕ (v) �
ϕ
(

3
4

)−ϕ
(

1
2

)
3
4 − 1

2

v−
1
2 ϕ
(

3
4

)− 3
4 ϕ
(

1
2

)
3
4 − 1

2

,

that is,

ϕ (v) � (3−4v)ϕ
(

1
2

)
+2(2v−1)ϕ

(
3
4

)
.

Thus ∫ 3
4

1
2

ϕ (v)dv � ϕ
(

1
2

)∫ 3
4

1
2

(3−4v)dv+2ϕ
(

3
4

)∫ 3
4

1
2

(2v−1)dv,

which implies ∫ 3
4

1
2

ϕ (v)dv � 1
8

[
ϕ
(

1
2

)
+ ϕ

(
3
4

)]
. (5)

If
3
4

� v � 1, then by Lemma 1 and the convexity of function ϕ , we have

ϕ (v) �
ϕ (1)−ϕ

( 3
4

)
1− 3

4

v−
3
4ϕ (1)−ϕ

( 3
4

)
1− 3

4

,

that is,

ϕ (v) � 4(1− v)ϕ
(

3
4

)
+(4v−3)ϕ (1) .

Thus ∫ 1

3
4

ϕ (v)dv � 4ϕ
(

3
4

)∫ 1

3
4

(1− v)dv+ ϕ (1)
∫ 1

3
4

(4v−3)dv,

which implies ∫ 1

3
4

ϕ (v)dv � 1
8

[
ϕ
(

3
4

)
+ ϕ (1)

]
. (6)

If 1 � v � 5
4

, similarly, we have

ϕ (v) �
ϕ
( 5

4

)−ϕ (1)
5
4 −1

v− ϕ
( 5

4

)− 5
4 ϕ (1)

5
4 −1

,

that is,

ϕ (v) � (5−4v)ϕ (1)+4(v−1)ϕ
(

5
4

)
.

Thus ∫ 5
4

1
ϕ (v)dv � ϕ (1)

∫ 5
4

1
(5−4v)dv+4ϕ

(
5
4

)∫ 5
4

1
(v−1)dv,
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which implies ∫ 5
4

1
ϕ (v)dv � 1

8

[
ϕ (1)+ ϕ

(
5
4

)]
. (7)

If
5
4

� v � 3
2

, similarly, we have

ϕ (v) �
ϕ
( 3

2

)−ϕ
( 5

4

)
3
2 − 5

4

v−
5
4 ϕ
( 3

2

)− 3
2 ϕ
( 5

4

)
3
2 − 5

4

,

that is,

ϕ (v) � (6−4v)ϕ
(

5
4

)
+(4v−5)ϕ

(
3
2

)
.

Thus ∫ 3
2

5
4

ϕ (v)dv � ϕ
(

5
4

)∫ 3
2

5
4

(6−4v)dv+ ϕ
(

3
2

)∫ 3
2

5
4

(4v−5)dv,

which implies ∫ 3
2

5
4

ϕ (v)dv � 1
8

[
ϕ
(

5
4

)
+ ϕ

(
3
2

)]
. (8)

It follows from (5), (6), (7), (8) and ϕ
(

1
2

)
= ϕ

(
3
2

)
, ϕ
(

3
4

)
= ϕ

(
5
4

)
that

4
∫ 3

2

1
2

ϕ (v)dv � ϕ
(

1
2

)
+ ϕ (1)+2ϕ

(
3
4

)
,

which is equivalent to

ϕ (1)+4

[∫ 3
2

1
2

ϕ (v)dv− 1
2

ϕ (1)− 1
2

ϕ
(

3
4

)]
� ϕ

(
1
2

)
.

The last inequality is

2‖AXB‖+4

(∫ 3
2

1
2

∥∥AvXB2−v +A2−vXBv
∥∥dv−‖AXB‖− 1

2

∥∥∥A 3
4 XB

5
4 +A

5
4 XB

3
4

∥∥∥
)

�
∥∥∥A 1

2 XB
3
2 +A

3
2 XB

1
2

∥∥∥ .

By (2), we get

2‖AXB‖+4

(∫ 3
2

1
2

∥∥AvXB2−v +A2−vXBv
∥∥dv−‖AXB‖− 1

2

∥∥∥A 3
4 XB

5
4 +A

5
4 XB

3
4

∥∥∥
)

� 2
t +2

∥∥A2X + tAXB+XB2
∥∥ .

This completes the proof. �
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REMARK 1. Theorem 1 is better than inequality (4). In fact, by Lemma 2 , we
have

ϕ
(

3
4

)
� 2

∫ 1

1
2

ϕ (v)dv, (9)

ϕ
(

5
4

)
� 2

∫ 3
2

1
ϕ (v)dv, (10)

It follows from (9), (10) and ϕ
(

3
4

)
= ϕ

(
5
4

)
that

2ϕ
(

3
4

)
� 2

∫ 3
2

1
2

ϕ (v)dv,

that is ∫ 3
2

1
2

ϕ (v)dv �ϕ
(

3
4

)
,

where ϕ (v) =
∥∥AvXB2−v +A2−vXBv

∥∥ . Thus

∫ 3
2

1
2

∥∥AvXB2−v +A2−vXBv
∥∥dv �

∥∥∥A 3
4 XB

5
4 +A

5
4 XB

3
4

∥∥∥.
So

4

(∫ 3
2

1
2

∥∥AvXB2−v +A2−vXBv
∥∥dv−‖AXB‖− 1

2

∥∥∥A 3
4 XB

5
4 +A

5
4 XB

3
4

∥∥∥
)

−2

(∫ 3
2

1
2

∥∥AvXB2−v +A2−vXBv
∥∥dv−2‖AXB‖

)

= 2

(∫ 3
2

1
2

∥∥AvXB2−v +A2−vXBv
∥∥dv−

∥∥∥A 3
4 XB

5
4 +A

5
4 XB

3
4

∥∥∥
)

� 0.
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