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GENERALIZATION OF MAJORIZATION THEOREM

M. ADIL KHAN, N. LATIF AND J. PEČARIĆ

(Communicated by A. Aglić Aljinović)

Abstract. We give generalization of majorization theorem for the class of n -convex functions
by using Taylor’s formula and Green function. We use inequalities for the Čebyšev functional
to obtain bounds for the identities related to generalizations of majorization inequalities. We
present mean value theorems and n -exponential convexity for the functional obtained from the
generalized majorization inequalities. At the end we discuss the results for particular families of
function and give means.

1. Introduction and preliminaries

For fixed m � 2 let

x = (x1, . . . ,xm) , y = (y1, . . . ,ym)

denote two real m-tuples. Let

x[1] � x[2] � . . . � x[m], y[1] � y[2] � . . . � y[m],

x(1) � x(2) � . . . � x(m), y(1) � y(2) � . . . � y(m)

be their ordered components.

DEFINITION 1. [15, p. 319] x is said to majorize y (or y is said to be majorized
by x ), in symbol, x � y , if

l

∑
i=1

y[i] �
l

∑
i=1

x[i] (1)

holds for l = 1,2, . . . ,m−1 and
m

∑
i=1

xi =
m

∑
i=1

yi.

Note that (1) is equivalent to

m

∑
i=m−l+1

y(i) �
m

∑
i=m−l+1

x(i)

holds for l = 1,2, . . . ,m−1.

Mathematics subject classification (2010): 26D15, 26D20, 26D99.
Keywords and phrases: Majorization theorem, Taylor’s formula, Cebysev functional, n -exponentially

convex function, Stolarsky type means.
The research of the third author has been fully supported by Croatian Science Foundation under the project 5435.

c© � � , Zagreb
Paper JMI-09-70

847

http://dx.doi.org/10.7153/jmi-09-70


848 M. ADIL KHAN, N. LATIF AND J. PEČARIĆ

The following theorem is well-known as the majorization theorem given by Mar-
shall and Olkin [13, p. 14] (see also [15, p. 320]):

THEOREM 1. Let x = (x1, . . . ,xm) , y = (y1, . . . ,ym) be two m-tuples such that xi ,
yi ∈ [a,b] (i = 1, . . . ,m) . Then

m

∑
i=1

φ (yi) �
m

∑
i=1

φ (xi) (2)

holds for every continuous convex function φ : [a,b] → R if and only if x � y holds.

The following theorem can be regarded as a weighted version of Theorem 1 and is
proved by Fuchs in [8] ([13, p. 580], [15, p. 323]):

THEOREM 2. Let x = (x1, . . . ,xm) , y = (y1, . . . ,ym) be two decreasing real m-
tuples with xi , yi ∈ [a,b] (i = 1, . . . ,m) and w = (w1,w2, . . . ,wm) be a real m-tuple
such that

l

∑
i=1

wi yi �
l

∑
i=1

wi xi for l = 1, . . . ,m−1, (3)

and
m

∑
i=1

wi yi =
m

∑
i=1

wi xi. (4)

Then for every continuous convex function φ : [a,b]→ R , we have

m

∑
i=1

wi φ (yi) �
m

∑
i=1

wi φ (xi) . (5)

The following integral version of Theorem 2 is a simple consequence of Theorem
12.14 in [17] (see also [15, p. 328]):

THEOREM 3. Let x,y : [a,b] → [α,β ] be decreasing and w : [a,b] → R be con-
tinuous functions. If∫ ν

a
w(t)y(t)dt �

∫ ν

a
w(t)x(t)dt for every ν ∈ [a,b], (6)

and ∫ b

a
w(t)y(t)dt =

∫ b

a
w(t)x(t)dt (7)

hold, then for every continuous convex function φ : [α,β ] → R , we have

∫ b

a
w(t)φ (y(t)) dt �

∫ b

a
w(t)φ (x(t)) dt. (8)
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For other integral version and generalization of majorization theorem see [13, p.
583], [1, 2, 3, 4, 5, 11, 12].

Consider the Green function G defined on [α,β ]× [α,β ] by

G(t,s) =

⎧⎨
⎩

(t−β )(s−α)
β−α , α � s � t;

(s−β )(t−α)
β−α , t � s � β .

(9)

The function G is convex in s , it is symmetric, so it is also convex in t . The function
G is continuous in s and continuous in t .

For any function φ : [α,β ] → R , φ ∈C2([α,β ]) , we can easily show by integrat-
ing by parts that the following is valid

φ(x) =
β − x
β −α

φ(α)+
x−α
β −α

φ(β )+
∫ β

α
G(x,s)φ ′′(s)ds, (10)

where the function G is defined as above in (9) ([19]).
The following theorem is well known in the literature as Taylor’s formula or Tay-

lor’s theorem with the integral remainder.

THEOREM 4. Let n be a positive integer and φ : [α,β ] → R be such that φ (n−1)

is absolutely continuous, then for all x ∈ [α,β ] the Taylor’s formula at the point c ∈
[α,β ] is

φ(x) = Tn−1(φ ;c,x)+Rn−1(φ ;c,x) (11)

where Tn−1(φ ;c,x) is Taylor’s polynomial of degree n−1 , i.e.

Tn−1(φ ;c,x) =
n−1

∑
k=0

φ (k)(c)
k!

(x− c)k

and the remainder is given by

Rn−1(φ ;c,x) =
1

(n−1)!

∫ x

c
φ (n)(t)(x− t)n−1dt.

In order to recall the definition and basic result of n -convex function, firs we write
the definition of divided difference.

DEFINITION 2. [15, p. 15] Let φ be a real-valued function defined on [α,β ] .
The divided difference of order n of the function φ at distinct points [α,β ] is defined
recursively by

φ [xi] = φ(xi), (i = 0, . . . ,n)

and

φ [x0, . . . ,xn] =
φ [x1, . . . ,xn]−φ [x0, . . . ,xn−1]

xn− x0
.

The value φ [x0, . . . ,xn] is independent of the order of the points x0, . . . ,xn .
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The definition may be extended to include the case that some (or all) the points
coincide. Assuming that φ ( j−1)(x) exists, we define

φ [x, . . . ,x]︸ ︷︷ ︸
j−times

=
φ ( j−1)(x)
( j−1)!

. (12)

DEFINITION 3. [15, p. 15] A function φ : [α,β ]→R is said to be n -convex, n �
0, on [α,β ] if and only if for all choices of (n+1) distinct points x0, . . . ,xn ∈ [α,β ] ,
the nth order divided difference is non negative that is

φ [x0,x1, . . . ,xn] � 0

THEOREM 5. [15, p. 16] Let φ : [α,β ] → R be a function such that φ (n) exists,
then φ is n-convex if and only if φ (n) � 0 .

In this paper we utilize Taylor’s theorem with the integral remainder and Green
function and establish generalization of majorization theorem for the class of n -convex
functions. We use inequalities for the Čebyšev functional to obtain bounds for the
identities related to generalizations of majorization inequalities. We present mean value
theorems and n -exponential convexity for the functional obtained from the generalized
majorization inequalities which leads to exponential convexity and log-convexity for
these functionals. Finally, we discuss the results for particular families of function and
give classes of Cauchy type means and prove their monotonicity.

2. Main results

We begin this section with the proof of some identities related to generalizations
of Majorization inequality.

THEOREM 6. Let φ : [α,β ] → R be such that φ (n−1) is absolutely continuous
for some n � 3 and let w = (w1, . . . ,wm) , x = (x1, . . . ,xm) and y = (y1, . . . ,ym) be
m-tuples such that xi , yi ∈ [α,β ] , wi ∈R (i = 1, . . . ,m) and G be the Green function
as defined in (9). Then

m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi) =
φ(β )−φ(α)

β −α

m

∑
i=1

wi (xi − yi)

+
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s−α)kds

+
1

(n−3)!

∫ β

α

(∫ β

t

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s− t)n−3ds

)
φ (n)(t)dt.

(13)
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and
m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi) =
φ(β )−φ(α)

β −α

m

∑
i=1

wi (xi − yi)

+
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(β − s)kds

− 1
(n−3)!

∫ β

α

(∫ t

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s− t)n−3ds

)
φ (n)(t)dt.

(14)

Proof. Using (10) in ∑m
i=1 wi φ (xi)−∑m

i=1 wi φ (yi) we have

m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)

=
φ(β )−φ(α)

β −α

m

∑
i=1

wi (xi − yi)+
∫ β

α

[
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

]
φ ′′(s)ds.

(15)

Now applying Taylor’s formula (11) on the function φ ′′ at the point α and replacing n
by n−2 (n � 3) we have

φ ′′(s) =
n−3

∑
k=0

φ (k+2)(α)
k!

(s−α)k +
1

(n−3)!

∫ s

α
φ (n)(t)(s− t)n−3dt (16)

And similarly Taylor’s formula for φ ′′ at the point β and replacing n by n− 2
(n � 3) we have

φ ′′(s) =
n−3

∑
k=0

φ (k+2)(β )
k!

(s−β )k − 1
(n−3)!

∫ β

s
φ (n)(t)(s− t)n−3dt (17)

Using (16) in (15) we get

m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi) =
φ(β )−φ(α)

β −α

m

∑
i=1

wi (xi − yi)

+
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s−α)kds

+
1

(n−3)!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)(∫ s

α
φ (n)(t)(s− t)n−3dt

)
ds.

(18)

By applying Fubini’s theorem in the last term of (18) we obtain (13).
Similarly using (17) in (15) and applying Fubini’s theorem we obtain (14). �
Integral version of the above theorem can be stated as:
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THEOREM 7. Let φ : [α,β ]→R be such that φ (n−1) is absolutely continuous for
some n � 3 and let and x,y : [a,b] → [α,β ] , w : [a,b] → R be continuous functions
and G be the Green function as defined in (9). Then

∫ b

a
w(τ)φ(x(τ))dτ −

∫ b

a
w(τ)φ(y(τ))dτ =

φ(β )−φ(α)
β −α

∫ b

a
w(τ)(x(τ)− y(τ))dτ

+
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s−α)kds

+
1

(n−3)!

∫ β

α

(∫ β

t

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s− t)n−3ds

)
φ (n)(t)dt

(19)

and

∫ b

a
w(τ)φ(x(τ))dτ −

∫ b

a
w(τ)φ(y(τ))dτ =

φ(β )−φ(α)
β −α

∫ b

a
w(τ)(x(τ)− y(τ))dτ

+
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(β − s)kds

− 1
(n−3)!

∫ β

α

(∫ t

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s− t)n−3ds

)
φ (n)(t)dt.

(20)

In the following theorem we obtain generalizations of majorization inequality for
n -convex functions.

THEOREM 8. Let φ : [α,β ] → R be such that φ (n−1) is absolutely continuous
for some n � 3 and let w = (w1, . . . ,wn) , x = (x1, . . . ,xm) and y = (y1, . . . ,ym) be m-
tuples such that xi , yi ∈ [α,β ] , wi ∈R (i = 1, . . . ,m) and G be the Green function as
defined in (9).

(i) If φ is n-convex and

∫ β

t

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s− t)n−3ds � 0, t ∈ [α,β ], (21)

then

m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)− φ(β )−φ(α)
β −α

m

∑
i=1

wi (xi − yi)

�
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s−α)kds. (22)
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(ii) If φ is n-convex and

∫ t

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s− t)n−3ds � 0, t ∈ [α,β ], (23)

then
m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)− φ(β )−φ(α)
β −α

m

∑
i=1

wi (xi − yi)

�
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(β − s)kds. (24)

Proof. Since the function φ is n -convex, therefore without loss of generality we
can assume that φ is n -times differentiable and φ (n) � 0 see [15, p. 16 and p. 293].
Hence, we can apply Theorem 6 to obtain (22) and (24) respectively. �

Integral version of the above theorem can be stated as:

THEOREM 9. Let φ : [α,β ]→R be such that φ (n−1) is absolutely continuous for
some n � 3 and let x,y : [a,b]→ [α,β ] , w : [a,b]→ R be continuous functions and G
be the Green function as defined in (9). Then

(i) If φ is n-convex and∫ β

t

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s− t)n−3ds � 0, t ∈ [α,β ],

(25)
then∫ b

a
w(τ)φ(x(τ))dτ−

∫ b

a
w(τ)φ(y(τ))dτ−φ(β )−φ(α)

β−α

∫ b

a
w(τ)(x(τ)−y(τ))dτ

�
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s−α)kds (26)

(ii) If φ is n-convex and∫ t

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s− t)n−3ds � 0, t ∈ [α,β ], (27)

then∫ b

a
w(τ)φ(x(τ))dτ−

∫ b

a
w(τ)φ(y(τ))dτ− φ(β )−φ(α)

β−α

∫ b

a
w(τ)(x(τ)−y(τ))dτ

�
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(β−s)kds

(28)
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The following generalization of majorization theorem holds.

THEOREM 10. Let φ : [α,β ] → R be such that φ (n−1) is absolutely continuous
for some n � 3 and x = (x1, . . . ,xm) , y = (y1, . . . ,ym) be two m-tuples such that y ≺
x with xi , yi ∈ [α,β ] (i = 1, . . . ,m) and G be the Green function as defined in (9).

(i) If φ is n-convex, then

m

∑
i=1

φ (xi)−
m

∑
i=1

φ (yi)

�
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(
m

∑
i=1

G(xi,s)−
m

∑
i=1

G(yi,s)

)
(s−α)kds. (29)

Moreover if φ ( j)(α) � 0 for j = 2, . . . ,n−1 , then the right hand side of (29) will
be non negative, that is (2) holds.

(ii) If n is even and φ is n-convex, then

m

∑
i=1

φ (xi)−
m

∑
i=1

φ (yi)

�
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(
m

∑
i=1

G(xi,s)−
m

∑
i=1

G(yi,s)

)
(β − s)kds. (30)

Moreover if φ ( j)(β ) � 0 for j = 2,4, . . . ,n−2 and φ ( j)(β ) � 0 for j = 3,5, . . . ,
n−1 , then the right hand side of (30) will be non negative, that is (2) holds.

(iii) If n is odd and φ is n-convex, then

m

∑
i=1

φ (xi)−
m

∑
i=1

φ (yi)

�
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(
m

∑
i=1

G(xi,s)−
m

∑
i=1

G(yi,s)

)
(β − s)kds. (31)

Moreover if φ ( j)(β ) � 0 for j = 2,4, . . . ,n−1 and φ ( j)(β ) � 0 for j = 3,5, . . . ,
n− 2 , then the right hand side of (31) will be non positive, that is reverse in-
equality in (2) holds.

Proof. (i) Since G is convex and y ≺ x therefore by Theorem 8 we have

m

∑
i=1

G(xi,s)−
m

∑
i=1

G(yi,s) � 0.

Also (s− t)n−3 � 0 for s ∈ [t,β ] . Hence (21) holds for wi = 1 (i = 1, . . . ,m) .
Using Theorem 8, the inequality (29) holds.
Similarly we can prove the other parts. �
In the following theorem we give generalization of Fuch’s majorization theorem.
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THEOREM 11. Let φ : [α,β ] → R be such that φ (n−1) is absolutely continuous
for some n � 3 and let x = (x1, . . . ,xm) and y = (y1, . . . ,ym) be decreasing m-tuples
and w = (w1, . . . ,wm) be any m-tuple such that xi , yi ∈ [α,β ] , wi ∈ R (i = 1, . . . ,m)
which satisfies (3), (4) and G be the Green function as defined in (9).

(i) If φ is n-convex, then

m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)

�
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s−α)kds. (32)

Moreover if φ ( j)(α) � 0 for j = 2, . . . ,n−1 , then the right hand side of (32) will
be non negative, that is (5) holds.

(ii) If n is even and φ is n-convex, then

m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)

�
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(β − s)kds. (33)

Moreover if φ ( j)(β ) � 0 for j = 2,4, . . . ,n−2 and φ ( j)(β ) � 0 for j = 3,5, . . . ,
n−1 , then the right hand side of (33) will be non negative, that is (5) holds.

(iii) If n is odd and φ is n-convex, then

m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)

�
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(β − s)kds. (34)

Moreover if φ ( j)(β ) � 0 for j = 2,4, . . . ,n−1 and φ ( j)(β ) � 0 for j = 3,5, . . . ,
n− 2 , then the right hand side of (34) will be non positive, that is reverse in-
equality in (5) holds.

Proof. The proof is similar to the proof of Theorem 10 but use Theorem 2 instead
of Theorem 1. �

The following generalization of integral majorization theorem holds.

THEOREM 12. Let φ : [α,β ] → R be such that φ (n−1) is absolutely continuous
for some n � 3 and let x,y : [a,b] → [α,β ] be decreasing and w : [a,b] → R be any
continuous functions such that (6), (7) hold and G be the Green function as defined in
(9).
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(i) If φ is n-convex, then∫ b

a
w(τ)φ(x(τ))dτ −

∫ b

a
w(τ)φ(y(τ))dτ

�
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s−α)kds. (35)

Moreover if φ ( j)(α) � 0 for j = 2, . . . ,n−1 , then the right hand side of (35) will
be non negative.

(ii) If n is even and φ is n-convex, then∫ b

a
w(τ)φ(x(τ))dτ −

∫ b

a
w(τ)φ(y(τ))dτ

�
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(β − s)kds.

(36)

Moreover if φ ( j)(β ) � 0 for j = 2,4, . . . ,n−2 and φ ( j)(β ) � 0 for j = 3,5, . . . ,
n−1 , then the right hand side of (36) will be non negative.

(iii) If n is odd and φ is n-convex, then∫ b

a
w(τ)φ(x(τ))dτ −

∫ b

a
w(τ)φ(y(τ))dτ

�
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(β − s)kds.

(37)

Moreover if φ ( j)(β ) � 0 for j = 2,4, . . . ,n−1 and φ ( j)(β ) � 0 for j = 3,5, . . . ,
n−2 , then the right hand side of (37) will be non positive.

3. Bounds for identities related to generalizations of majorization inequality

For two Lebesgue integrable functions f ,h : [α,β ]→R we consider the Čebyšev
functional

Λ( f ,h) =
1

β −α

∫ β

α
f (t)h(t)dt− 1

β −α

∫ β

α
f (t)dt · 1

β −α

∫ β

α
h(t)dt.

In [7] the authors proved the following theorems:

THEOREM 13. Let f : [α,β ] → R be a Lebesgue integrable function and h :
[α,β ] → R be an absolutely continuous function with (· − a)(b− ·)[h′]2 ∈ L[α,β ] .
Then we have the inequality

|Λ( f ,h)| � 1√
2
[Λ( f , f )]

1
2

1√
β −α

(∫ β

α
(x−α)(β − x)[h′(x)]2dx

) 1
2

. (38)
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The constant 1√
2

in (38) is the best possible.

THEOREM 14. Assume that h : [α,β ]→R is monotonic nondecreasing on [α,β ]
and f : [α,β ] → R is absolutely continuous with f ′ ∈ L∞[α,β ] . Then we have the
inequality

|Λ( f ,h)| � 1
2(β −α)

‖ f ′‖∞

∫ β

α
(x−α)(β − x)dh(x). (39)

The constant 1
2 in (39) is the best possible.

In the sequel we use the above theorems to obtain generalizations of the results
proved in the previous section.

For m-tuples w = (w1, . . . ,wm) , x = (x1, . . . ,xm) and y = (y1, . . . ,ym) with xi , yi

∈ [α,β ] , wi ∈ R (i = 1, . . . ,m) and the Green function G defined by (9), denote

R(t) =
m

∑
i=1

wi

∫ β

t
(G(xi,s)−G(yi,s)) (s− t)n−3ds, t ∈ [α,β ], (40)

B(t) =
m

∑
i=1

wi

∫ t

α
(G(xi,s)−G(yi,s)) (s− t)n−3ds, t ∈ [α,β ], (41)

similarly for continuous functions x,y : [a,b]→ [α,β ] , w : [a,b]→ R , denote

R̃(t) =
∫ β

t

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s− t)n−3ds, t ∈ [α,β ], (42)

B̃(t) =
∫ t

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s− t)n−3ds, t ∈ [α,β ]. (43)

Consider the Čebyšev functionals Λ(R,R) , Λ(B,B) , Λ(R̃,R̃) and Λ(B̃,B̃) are
given by:

Λ(R,R) =
1

β −α

∫ β

α
R2(t)dt−

(
1

β −α

∫ β

α
R(t)dt

)2

(44)

Λ(B,B) =
1

β −α

∫ β

α
B2(t)dt−

(
1

β −α

∫ β

α
B(t)dt

)2

(45)

Λ(R̃,R̃) =
1

β −α

∫ β

α
R̃2(t)dt−

(
1

β −α

∫ β

α
R̃(t)dt

)2

(46)

Λ(B̃,B̃) =
1

β −α

∫ β

α
B̃2(t)dt−

(
1

β −α

∫ β

α
B̃(t)dt

)2

(47)

THEOREM 15. Let φ : [α,β ] → R be such that φ (n−1) is absolutely continu-
ous for some n � 3 with (·−α)(β − ·)[φ (n+1)]2 ∈ L[α,β ] and let w = (w1, . . . ,wm) ,
x = (x1, . . . ,xm) and y = (y1, . . . ,ym) be m-tuples such that xi , yi ∈ [α,β ] , wi ∈ R

(i = 1, . . . ,m) and let the functions G, R and B be defined by (9), (40) and (41)
respectively. Then
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(i)

m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi) =
φ(β )−φ(α)

β −α

m

∑
i=1

wi (xi− yi)

+
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s−α)kds

+
φ (n−1)(β )−φ (n−1)(α)

(β −α)(n−3)!

∫ β

α
R(t)dt + κ1

n(φ ;α,β ).

(48)

where the remainder κ1
n (φ ;α,β ) satisfies the estimation

∣∣κ1
n (φ ;α,β )

∣∣ � √
β −α√

2(n−3)!
[Λ(R,R)]

1
2

∣∣∣∣∫ β

α
(t −α)(β − t)[φ (n+1)(t)]2dt

∣∣∣∣
1
2

.

(49)

(ii)

m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi) =
φ(β )−φ(α)

β −α

m

∑
i=1

wi (xi − yi)

+
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(β − s)kds

+
φ (n−1)(β )−φ (n−1)(α)

(α −β )(n−3)!

∫ β

α
B(t)dt−κ2

n (φ ;α,β ).

(50)

where the remainder κ2
n (φ ;α,β ) satisfies the estimation

∣∣κ2
n (φ ;α,β )

∣∣ � √
β −α√

2(n−3)!
[Λ(B,B)]

1
2

∣∣∣∣∫ β

α
(t−α)(β − t)[φ (n+1)(t)]2dt

∣∣∣∣
1
2

.

(51)

Proof.

(i) If we apply Theorem 13 for f → R and h → φ (n) we obtain∣∣∣∣ 1
β −α

∫ β

α
R(t)φ (n)(t)dt− 1

β −α

∫ β

α
R(t)dt · 1

β −α

∫ β

α
φ (n)(t)dt

∣∣∣∣
� 1√

2
[Λ(R,R)]

1
2

1√
β −α

∣∣∣∣∫ β

α
(t −α)(β − t)[φ (n+1)(t)]2dt

∣∣∣∣
1
2

.
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Therefore we have

1
(n−3)!

∫ β

α
R(t)φ (n)(t)dt =

φ (n−1)(β )−φ (n−1)(α)
(β −α)(n−3)!

∫ β

α
R(t)dt + κ1

n(φ ;α,β )

where the remainder κ1
n (φ ;α,β ) satisfies the estimation (49). Now from the

identity (13) we obtain (48).

(ii) Similar to the first part. �

Integral case of the above theorem can be given:

THEOREM 16. Let φ : [α,β ] → R be such that φ (n−1) is absolutely continuous
for some n � 3 with (· −α)(β − ·)[φ (n+1)]2 ∈ L[α,β ] and let x,y : [a,b] → [α,β ] ,
w : [a,b] → R be continuous functions and let the functions G, R̃ and B̃ be defined
by (9), (42) and (43) respectively. Then

(i)∫ b

a
w(τ)φ(x(τ))dτ −

∫ b

a
w(τ)φ(y(τ))dτ =

φ(β )−φ(α)
β −α

∫ b

a
w(τ)(x(τ)− y(τ))dτ

+
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s−α)kds

+
φ (n−1)(β )−φ (n−1)(α)

(β −α)(n−3)!

∫ β

α
R̃(t)dt + κ̃1

n (φ ;α,β ).

(52)

where the remainder κ̃1
n (φ ;α,β ) satisfies the estimation

∣∣κ̃1
n (φ ;α,β )

∣∣� √
β −α√

2(n−3)!

[
Λ(R̃,R̃)

] 1
2

∣∣∣∣∫ β

α
(t−α)(β − t)[φ (n+1)(t)]2dt

∣∣∣∣
1
2

.

(53)

(ii)∫ b

a
w(τ)φ(x(τ))dτ −

∫ b

a
w(τ)φ(y(τ))dτ =

φ(β )−φ(α)
β −α

∫ b

a
w(τ)(x(τ)− y(τ))dτ

+
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s−β )kds

+
φ (n−1)(β )−φ (n−1)(α)

(α −β )(n−3)!

∫ β

α
B̃(t)dt − κ̃2

n(φ ;α,β ). (54)

where the remainder κ̃2
n (φ ;α,β ) satisfies the estimation

∣∣κ̃2
n (φ ;α,β )

∣∣ � √
β −α√

2(n−3)!

[
Λ(B̃,B̃)

] 1
2

∣∣∣∣∫ β

α
(t −α)(β − t)[φ (n+1)(t)]2dt

∣∣∣∣
1
2

.

(55)
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Using Theorem 14 we obtain the following Grüss type inequalities.

THEOREM 17. Let φ : [α,β ]→R be such that φ (n) (n � 3) is absolutely contin-
uous function and φ (n+1) � 0 on [α,β ] and let the functions R and B be defined by
(40) and (41) respectively. Then we have

(i) the representation (48) and the remainder κ1
n (φ ;α,β ) satisfies the bound

∣∣κ1
n (φ ;α,β )

∣∣ � 1
(n−3)!

‖R′‖∞

{
φ (n−1)(β )+φ (n−1)(α)

2
−φ (n−2)(β )−φ (n−2)(α)

β−α

}
.

(56)

(ii) the representation (50) and the remainder κ2
n (φ ;α,β ) satisfies the bound

∣∣κ2
n (φ ;α,β )

∣∣ � 1
(n−3)!

‖B′‖∞

{
φ (n−1)(β )+φ (n−1)(α)

2
−φ (n−2)(β )−φ (n−2)(α)

β−α

}
.

Proof.

(i) Applying Theorem 14 for f → R and h → φ (n) we obtain∣∣∣∣ 1
β −α

∫ β

α
R(t)φ (n)(t)dt− 1

β −α

∫ β

α
R(t)dt · 1

β −α

∫ β

α
φ (n)(t)dt

∣∣∣∣
� 1

2(β −α)
‖R′‖∞

∫ β

α
(t −α)(β − t)φ (n+1)(t)dt.

(57)

Since∫ β

α
(t −α)(β − t)φ (n+1)(t)dt =

∫ β

α
[2t− (α + β )]φ (n)(t)dt

= (β −α)
[
φ (n−1)(β )+ φ (n−1)(α)

]
−2
(

φ (n−2)(β )−φ (n−2)(α)
)

,

using the identity (13) and the inequality (57) we deduce (56).

Similarly, we can prove part (ii). �

Integral case of the above theorem can be given:

THEOREM 18. Let φ : [α,β ]→R be such that φ (n) (n � 3) is absolutely contin-
uous function and φ (n+1) � 0 on [α,β ] and let x,y : [a,b] → [α,β ] , w : [a,b] → R be
continuous functions and the functions G, R̃ and B̃ be defined by (9), (42) and (43)
respectively. Then we have
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(i) the representation (52) and the remainder κ̃1
n (φ ;α,β ) satisfies the bound

∣∣κ̃1
n (φ ;α,β )

∣∣ � 1
(n−3)!

‖R̃′‖∞

{
φ (n−1)(β )+φ (n−1)(α)

2
−φ (n−2)(β )−φ (n−2)(α)

β−α

}
.

(58)

(ii) the representation (54) and the remainder κ̃2
n (φ ;α,β ) satisfies the bound

∣∣κ̃2
n (φ ;α,β )

∣∣ � 1
(n−3)!

‖B̃′‖∞

{
φ (n−1)(β )+φ (n−1)(α)

2
−φ (n−2)(β )−φ (n−2)(α)

β−α

}
.

Let φ : [α,β ] → R be a function then the p -norm of φ is defined by

‖φ‖p =

⎧⎨
⎩
(∫ β

α |φ(t)|pdt
) 1

p
, for 1 � p < ∞, if |φ |p is R-integrable function,

essential supremum of φ , for p = ∞, if φ is essentially bounded.

We present the Ostrowski-type inequalities related to generalizations of majoriza-
tion’s inequality.

THEOREM 19. Suppose that all assumptions of Theorem 6 hold. Assume (p,q)

is a pair of conjugate exponents, that is 1 � p,q � ∞ , 1/p + 1/q = 1 . Let
∣∣∣φ (n)

∣∣∣p :

[α,β ] → R be an R-integrable function for some n � 3 . Then we have:

(i) ∣∣∣∣∣
m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)− φ(β )−φ(α)
β −α

m

∑
i=1

wi (xi− yi)

−
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s−α)kds

∣∣∣∣∣
� 1

(n−3)!

∥∥∥φ (n)
∥∥∥

p
‖ f‖q ,

(59)

where

f (t) =
∫ β

t

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s− t)n−3ds.

The constant on the right-hand side of (59) is sharp for 1 < p � ∞ and the best
possible for p = 1 .
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(ii) ∣∣∣∣∣
m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)− φ(β )−φ(α)
β −α

m

∑
i=1

wi (xi − yi)

−
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(β − s)kds

∣∣∣∣∣
� 1

(n−3)!

∥∥∥φ (n)
∥∥∥

p

∥∥∥ f
∥∥∥

q
,

(60)

where

f (t) =
∫ t

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s− t)n−3ds.

The constant on the right-hand side of (60) is sharp for 1 < p � ∞ and the best
possible for p = 1 .

Proof.

(i) Let us denote

ℑ(t) =
1

(n−3)!

∫ β

t

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s− t)n−3ds.

Using the identity (13) and applying Hölder’s inequality we obtain∣∣∣∣∣
m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)− φ(β )−φ(α)
β −α

m

∑
i=1

wi (xi − yi)

−
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s−α)kds

∣∣∣∣∣
=
∣∣∣∣∫ β

α
ℑ(t)φ (n)(t)dt

∣∣∣∣� ∥∥∥φ (n)
∥∥∥

p
‖ℑ‖q .

For the proof of the sharpness of the constant ‖ℑ‖q let us find a function φ for
which the equality in (59) is obtained.

For 1 < p < ∞ take φ to be such that

φ (n)(t) = sgnℑ(t) |ℑ(t)| 1
p−1 .

For p = ∞ take φ (n)(t) = sgnℑ(t) .

For p = 1 we prove that∣∣∣∣∫ β

α
ℑ(t)φ (n)(t)dt

∣∣∣∣� max
t∈[α ,β ]

|ℑ(t)|
(∫ β

α

∣∣∣φ (n)(t)
∣∣∣dt

)
(61)
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is the best possible inequality. As ℑ(t) is continuous on [α,β ] so assume that
|ℑ(t)| attains its maximum at t0 ∈ [α,β ]. First we assume that ℑ(t0) > 0. For ε
small enough we define φε(t) by

φε(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, α � t � t0,
1

ε n!(t − t0)n, t0 � t � t0 + ε,

1
n! (t− t0)n−1, t0 + ε � t � β .

Then for ε small enough∣∣∣∣∫ β

α
ℑ(t)φ (n)(t)dt

∣∣∣∣=
∣∣∣∣∫ t0+ε

t0
ℑ(t)

1
ε
dt

∣∣∣∣= 1
ε

∫ t0+ε

t0
ℑ(t)dt.

Now from the inequality (61) we have

1
ε

∫ t0+ε

t0
ℑ(t)dt � ℑ(t0)

∫ t0+ε

t0

1
ε
dt = ℑ(t0).

Since,

lim
ε→0

1
ε

∫ t0+ε

t0
ℑ(t)dt = ℑ(t0)

the statement follows. In the case ℑ(t0) < 0, we define fε(t) by

φε (t) =

⎧⎪⎪⎨
⎪⎪⎩

1
n!(t− t0− ε)n−1, α � t � t0,

− 1
εn!(t− t0− ε)n, t0 � t � t0 + ε,

0, t0 + ε � t � β ,

and the rest of the proof is the same as above.

(ii) Similar to the first part. �

Integral case can be given as:

THEOREM 20. Suppose that all assumptions of Theorem 7 hold. Assume (p,q)

is a pair of conjugate exponents, that is 1 � p,q � ∞ , 1/p + 1/q = 1 . Let
∣∣∣φ (n)

∣∣∣p :

[α,β ] → R be an R-integrable function for some n � 3 . Then we have:

(i)∣∣∣∣∫ b

a
w(τ)φ(x(τ))dτ−

∫ b

a
w(τ)φ(y(τ))dτ−φ(β )−φ(α)

β−α

∫ b

a
w(τ)(x(τ)−y(τ))dτ

−
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s−α)kds

∣∣∣∣∣
� 1

(n−3)!

∥∥∥φ (n)
∥∥∥

p
‖g‖q ,

(62)
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where

g(t) =
∫ β

t

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s− t)n−3ds.

The constant on the right-hand side of (62) is sharp for 1 < p � ∞ and the best
possible for p = 1 .

(ii) ∣∣∣∣∫ b

a
w(τ)φ(x(τ))dτ−

∫ b

a
w(τ)φ(y(τ))dτ− φ(β )−φ(α)

β−α

∫ b

a
w(τ)(x(τ)−y(τ))dτ

−
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(β − s)kds

∣∣∣∣∣
� 1

(n−3)!

∥∥∥φ (n)
∥∥∥

p
‖g‖q ,

(63)

where

g(t) =
∫ t

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s− t)n−3ds.

The constant on the right-hand side of (63) is sharp for 1 < p � ∞ and the best
possible for p = 1 .

4. n -exponential convexity and exponential convexity

We begin this section by giving some definitions and notions which are used fre-
quently in the results. For more details see e.g. [6], [9] and [16].

DEFINITION 4. A function φ : I → R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξiξ j φ
(

xi + x j

2

)
� 0,

hold for all choices ξ1, . . . ,ξn ∈ R and all choices x1, . . . ,xn ∈ I . A function φ : I →
R is n -exponentially convex if it is n -exponentially convex in the Jensen sense and
continuous on I .

DEFINITION 5. A function φ : I → R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function φ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.
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PROPOSITION 1. If φ : I → R is an n-exponentially convex in the Jensen sense,

then the matrix
[
φ
(

xi+x j
2

)]m
i, j=1

is a positive semi-definite matrix for all m ∈ N , m �
n. Particularly,

det

[
φ
(

xi + x j

2

)]m
i, j=1

� 0

for all m ∈ N , m = 1,2, . . . ,n.

REMARK 1. It is known that φ : I → R is a log-convex in the Jensen sense if and
only if

α2φ(x)+2αβ φ
(

x+ y
2

)
+ β 2φ(y) � 0,

holds for every α,β ∈ R and x,y ∈ I . It follows that a positive function is log-convex
in the Jensen sense if and only if it is 2-exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex.

Motivated by inequalities (22), (24), (26) and (28), under the assumptions of The-
orems 8 and 9 we define the following linear functionals:

�1(φ) =
m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)− φ(β )−φ(α)
β −α

m

∑
i=1

wi (xi − yi)

−
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(s−α)kds (64)

�2(φ) =
m

∑
i=1

wi φ (xi)−
m

∑
i=1

wi φ (yi)− φ(β )−φ(α)
β −α

m

∑
i=1

wi (xi − yi)

−
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(
m

∑
i=1

wiG(xi,s)−
m

∑
i=1

wiG(yi,s)

)
(β − s)kds (65)

�3(φ) =
∫ b

a
w(τ)φ(x(τ))dτ −

∫ b

a
w(τ)φ(y(τ))dτ

−φ(β )−φ(α)
β −α

∫ b

a
w(τ)(x(τ)− y(τ))dτ

−
n−3

∑
k=0

φ (k+2)(α)
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(s−α)kds (66)

�4(φ) =
∫ b

a
w(τ)φ(x(τ))dτ −

∫ b

a
w(τ)φ(y(τ))dτ

−φ(β )−φ(α)
β −α

∫ b

a
w(τ)(x(τ)− y(τ))dτ

−
n−3

∑
k=0

(−1)kφ (k+2)(β )
k!

∫ β

α

(∫ b

a
w(τ)((G(x(τ),s)−G(y(τ),s))dτ

)
(β−s)kds

(67)
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REMARK 2. Under the assumptions of Theorems 8 and 9, it holds �i(φ) � 0,
i = 1, . . . ,4 for all n -convex functions φ .

Lagrange and Cauchy type mean value theorems related to defined functionals are
given in the following theorems.

THEOREM 21. Let φ : [α,β ] → R be such that φ ∈Cn[α,β ] . If the inequalities
in (21) (i = 1) , (23) (i = 2) , (25) (i = 3) and (27) (i = 4) hold, then there exist
ξi ∈ [α,β ] such that

�i(φ) = φ (n)(ξi)�i(ϕ), i = 1, . . . ,4 (68)

where ϕ(x) = xn

n! and �i , i = 1, . . . ,4 are defined by (64)–(67).

Proof. Similar to the proof of Theorem 4.1 in [10]. �

THEOREM 22. Let φ ,ψ : [α,β ] → R be such that φ ,ψ ∈ Cn[α,β ] . If the in-
equalities in (21) (i = 1) , (23) (i = 2) , (25) (i = 3) and (27) (i = 4) hold, then there
exist ξi ∈ [α,β ] such that

�i(φ)
�i(ψ)

=
φ (n)(ξi)
ψ(n)(ξi)

, i = 1, . . . ,4 (69)

provided that the denominators are non-zero and �i , i = 1, . . . ,4 are defined by (64)–
(67).

Proof. Similar to the proof of Corollary 4.2 in [10]. �
Now we will produce n -exponentially and exponentially convex functions apply-

ing defined functionals. We use an idea from [16]. In the sequel I and J will be
intervals in R .

THEOREM 23. Let Ω = {φt : t ∈ J} , where J is an interval in R , be a family of
functions defined on an interval I in R such that the function t 	→ [x0, . . . ,xn;φt ] is
n-exponentially convex in the Jensen sense on J for every (n + 1) mutually different
points x0, . . . ,xn ∈ I . Then for the linear functionals �i(φt) (i = 1,2, ..,4) as defined
by (64)–(67), the following statements hold:

(i) The function t → �i(φt) is n-exponentially convex in the Jensen sense on J and
the matrix [�i(φ t j+tl

2
)]mj,l=1 is a positive semi-definite for all m ∈ N , m � n,

t1, ..,tm ∈ J . Particularly,

det[�i(φ t j+tl
2

)]mj,l=1 � 0 for all m ∈ N , m = 1,2, . . . ,n.

(ii) If the function t → �i(φt ) is continuous on J , then it is n-exponentially convex
on J .
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Proof. (i) For ξ j ∈ R and t j ∈ J , j = 1, . . . ,n , we define the function

h(x) =
n

∑
j,l=1

ξ jξlφ t j+tl
2

(x).

Using the assumption that the function t 	→ [x0, . . . ,xn;φt ] is n -exponentially convex in
the Jensen sense, we have

[x0, . . . ,xn,h] =
n

∑
j,l=1

ξ jξl [x0, . . . ,xn;φ t j+tl
2

] � 0,

which in turn implies that h is a n -convex function on J , so �i(h) � 0, i = 1, . . . ,4.
Hence

n

∑
j,l=1

ξ jξl�i

(
φ t j+tl

2

)
� 0.

We conclude that the function t 	→�i(φt ) is n -exponentially convex on J in the Jensen
sense.

The remaining part follows from Proposition 1.
(ii) If the function t →�i(φt) is continuous on J , then it is n -exponentially convex

on J by definition. �

The following corollary is an immediate consequence of the above theorem

COROLLARY 1. Let Ω = {φt : t ∈ J} , where J is an interval in R , be a family
of functions defined on an interval I in R , such that the function t 	→ [x0, . . . ,xn;φt ]
is exponentially convex in the Jensen sense on J for every (n + 1) mutually different
points x0, . . . ,xn ∈ I . Then for the linear functionals �i(φt) (i = 1, ..,4) as defined by
(64)–(67), the following statements hold:

(i) The function t → �i(φt) is exponentially convex in the Jensen sense on J and
the matrix [�i(φ t j+tl

2
)]mj,l=1 is a positive semi-definite for all m ∈ N , m � n,

t1, ..,tm ∈ J . Particularly,

det[�i(φ t j+tl
2

)]mj,l=1 � 0 for all m ∈ N , m = 1,2, . . . ,n.

(ii) If the function t → �i(φt ) is continuous on J , then it is exponentially convex on
J .

COROLLARY 2. Let Ω = {φt : t ∈ J} , where J is an interval in R , be a family
of functions defined on an interval I in R , such that the function t 	→ [x0, . . . ,xn;φt ] is
2 -exponentially convex in the Jensen sense on J for every (n + 1) mutually different
points x0, . . . ,xn ∈ I . Let �i , i = 1, . . . ,4 be linear functionals defined by (64)–(67).
Then the following statements hold:
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(i) If the function t 	→ �i(φt ) is continuous on J , then it is 2 -exponentially convex
function on J . If t 	→ �i(φt) is additionally strictly positive, then it is also log-
convex on J . Furthermore, the following inequality holds true:

[�i(φs)]t−r � [�i(φr)]
t−s [�i(φt )]

s−r , i = 1, . . . ,4

for every choice r,s,t ∈ J , such that r < s < t .

(ii) If the function t 	→ �i(φt ) is strictly positive and differentiable on J, then for
every p,q,u,v ∈ J , such that p � u and q � v, we have

μp,q(�i,Ω) � μu,v(�i,Ω), (70)

where

μp,q(�i,Ω) =

⎧⎪⎪⎨
⎪⎪⎩
(

�i(φp)
�i(φq)

) 1
p−q

, p 
= q,

exp

(
d
dp �i(φp)
�i(φp)

)
, p = q,

(71)

for φp,φq ∈ Ω .

Proof.

(i) This is an immediate consequence of Theorem 23 and Remark 1.

(ii) Since p 	→ �i(φt) is positive and continuous, by (i) we have that t 	→ �i(φt) is
log-convex on J , that is, the function t 	→ log�i(φt ) is convex on J . Hence we
get

log�i(φp)− log�i(φq)
p−q

� log�i(φu)− log�i(φv)
u− v

, (72)

for p � u,q � v, p 
= q,u 
= v . So, we conclude that

μp,q(�i,Ω) � μu,v(�i,Ω).

Cases p = q and u = v follow from (72) as limit cases. �

5. Examples

In this section, we present some families of functions which fulfil the conditions of
Theorem 23, Corollary 1 and Corollary 2. This enables us to construct a large families
of functions which are exponentially convex. Explicit form of this functions is obtained
after we calculate explicit action of functionals on a given family.

EXAMPLE 1. Let us consider a family of functions

Ω1 = {φt : R → R : t ∈ R}
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defined by

φt(x) =

⎧⎨
⎩

etx

tn , t 
= 0,

xn

n! , t = 0.

Since dnφt
dxn (x) = etx > 0, the function φt is n -convex on R for every t ∈ R and t 	→

dnφt
dxn (x) is exponentially convex by definition. Using analogous arguing as in the proof
of Theorem 23 we also have that t 	→ [x0, . . . ,xn;φt ] is exponentially convex (and so
exponentially convex in the Jensen sense). Now, using Corollary 1 we conclude that
t 	→ �i(φt) , i = 1, . . . ,4, are exponentially convex in the Jensen sense. It is easy to
verify that this mapping is continuous (although the mapping t 	→ φt is not continuous
for t = 0), so it is exponentially convex. For this family of functions, μp,q(�i,Ω1) ,
i = 1, . . . ,4, from (71), becomes

μp,q(�i,Ω1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
�i(φp)
�i(φq)

) 1
p−q

, p 
= q,

exp
(

�i(id·φp)
�i(φp)

− n
p

)
, p = q 
= 0,

exp
(

1
n+1

�i(id·φ0)
�i(φ0)

)
, p = q = 0,

where id is the identity function. By Corollary 2 μp,q(�i,Ω1) is a monotonic function
in parameters p and q .

Since (
dnφp
dxn

dnφq
dxn

) 1
p−q

(logx) = x,

using Theorem 22 it follows that:

Mp,q(�i,Ω1) = logμp,q(�i,Ω1), i = 1, . . . ,4

satisfies
a � Mp,q(�i,Ω1) � b, i = 1, . . . ,4.

So, Mp,q(�i,Ω1) is a monotonic mean.

EXAMPLE 2. Let us consider a family of functions

Ω2 = {gt : (0,∞) → R : t ∈ R}
defined by

gt(x) =

⎧⎨
⎩

xt

t(t−1)···(t−n+1) , t /∈ {0,1, . . . ,n−1},
x j logx

(−1)n−1− j j!(n−1− j)! , t = j ∈ {0,1, . . . ,n−1}.

Since dngt
dxn (x) = xt−n > 0, the function gt is n -convex for x > 0 and t 	→ dngt

dxn (x) is
exponentially convex by definition. Arguing as in Example 1 we get that the mappings



870 M. ADIL KHAN, N. LATIF AND J. PEČARIĆ

t 	→ �i(gt) , i = 1, . . . ,4 are exponentially convex. Hence, for this family of functions
μp,q(�i,Ω2) , i = 1, . . . ,4, from (71), is equal to

μp,q(�i,Ω2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�i(gp)
�i(gq)

) 1
p−q

, p 
= q,

exp

(
(−1)n−1(n−1)!�i(g0gp)

�i(gp)
+

n−1
∑

k=0

1
k−p

)
, p = q /∈ {0,1, . . . ,n−1},

exp

⎛
⎝(−1)n−1(n−1)!�i(g0gp)

2�i(gp)
+

n−1
∑

k=0
k 
=p

1
k−p

⎞
⎠ , p = q ∈ {0,1, . . . ,n−1}.

Again, using Theorem 22 we conclude that

a �
(

�i(gp)
�i(gq)

) 1
p−q

� b, i = 1, . . . ,4. (73)

So, μp,q(�i,Ω2) , i = 1, . . . ,4 is a mean and by (70) it is monotonic.

EXAMPLE 3. Let

Ω3 = {ζt : (0,∞) → (0,∞) : t ∈ (0,∞)}
be a family of functions defined by

ζt(x) =

⎧⎨
⎩

t−x

(lnt)n , t 
= 1;

xn

n! , t = 1.

Since dnζt
dxn (x) = t−x is the Laplace transform of a non-negative function (see [18]) it is

exponentially convex. Obviously ζt are n -convex functions for every t > 0.
For this family of functions, μt,q (�i,Ω3) , i = 1, . . . ,4, in this case for [a,b]∈R+ ,

from (71) becomes

μt,q (�i,Ω3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
�i(ζt)
�i(ζq)

) 1
t−q

, t 
= q;

exp
(
−�i(id.ζt)

t�i(ζt)
− n

t lnt

)
, t = q 
= 1;

exp
(
− 1

n+1
�i(id.ζ1)
�i(ζ1)

)
, t = q = 1.

This is monotonous function in parameters t and q by (70).
Using Theorem 22 it follows that

Mt,q (�i,Ω3) = −L(t,q)lnμt,q (�i,Ω3) , i = 1, ..,4.

satisfy

a � Mt,q (�i,Ω3) � b, i = 1, ..,4.



GENERALIZATION OF MAJORIZATION THEOREM 871

This shows that Mt,q (�i,Ω3) is mean for i = 1, . . . ,4. Because of the above inequality
(70), this mean is also monotonic. L(t,q) is logarithmic mean defined by

L(t,q) =

{ t−q
log t−logq , t 
= q;

t, t = q.

EXAMPLE 4. Let

Ω4 = {γt : (0,∞) → (0,∞) : t ∈ (0,∞)}
be a family of functions defined by

γt(x) =
e−x

√
t

tn
.

Since dnγt
dxn (x) = e−x

√
t is the Laplace transform of a non-negative function (see [18]) it

is exponentially convex. Obviously γt are n -convex function for every t > 0.
For this family of functions, μt,q (�i,Ω4) , i = 1, . . . ,4, in this case for [a,b]∈R+ ,

from (71) becomes

μt,q (�i,Ω4) =

⎧⎪⎨
⎪⎩
(

�i(γt )
�i(γq)

) 1
t−q

, t 
= q;

exp
(
− �i(id.γt)

2
√

t�i(γt)
− n

t

)
, t = q.

This is monotonous function in parameters t and q by (70).
Using Theorem 22 it follows that

Mt,q (�i,Ω4) = −(√t +
√

q
)
lnμt,q (�i,Ω4) , i = 1, ..,4

satisfy

a � Mt,q (�i,Ω4) � b, i = 1, ..,4.

This shows that Mt,q (�i,Ω4) is mean for i = 1, . . . ,4. Because of the above inequality
(70), this mean is also monotonic.
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[9] J. JAKŠETIĆ, J. PEČARIĆ, Exponential convexity method, J. Convex Anal. (2013), no. 1, 181–197.
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[12] L. MALIGRANDA, J. PEČARIĆ, L. E. PERSSON, Weighted Favard’s and Berwald’s Inequalities, J.
Math. Anal. Appl. 190 (1995), 248–262.

[13] A. W. MARSHALL, I. OLKIN AND BARRY C. ARNOLD, Inequalities: Theory of Majorization and
Its Applications (Second Edition), Springer Series in Statistics, New York 2011.

[14] M. NIEZGODA, Remarks on convex functions and separable sequences, Discrete Math. 308 (2008),
1765–1773.
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