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REFINEMENTS OF BOUNDS FOR NEUMAN MEANS IN

TERMS OF ARITHMETIC AND CONTRAHARMONIC MEANS

WEI-MAO QIAN AND YU-MING CHU

Abstract. In this paper, we present the sharp upper and lower bounds for the Neuman means SAC
and SCA in terms of the the arithmetic mean A and contraharmonic mean C . The given results
are the improvements of some known results.
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