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REFINEMENTS OF BOUNDS FOR NEUMAN MEANS IN

TERMS OF ARITHMETIC AND CONTRAHARMONIC MEANS

WEI-MAO QIAN AND YU-MING CHU

(Communicated by E. Neuman)

Abstract. In this paper, we present the sharp upper and lower bounds for the Neuman means SAC
and SCA in terms of the the arithmetic mean A and contraharmonic mean C . The given results
are the improvements of some known results.

1. Introduction

Let a,b > 0 with a �= b . Then the Schwab-Borchardt mean SB(a,b) [1, 2] of a
and b is given by

SB(a,b) =

⎧⎪⎨
⎪⎩

√
b2−a2

cos−1 (a/b) , a < b,

√
a2−b2

cosh−1 (a/b)
, a > b,

where cos−1(x) and cosh−1(x) = log(x+
√

x2−1) are the inverse cosine and inverse
hyperbolic cosine functions, respectively.

It is well known that the Schwab-Borchardt mean SB(a,b) is strictly increasing in
both a and b , nonsymmetric and homogeneous of degree 1 with respect to a and b .
Many symmetric bivariate means are special cases of the Schwab-Borchardt mean. For
example, P(a,b) = (a−b)/[2arcsin((a−b)/(a+b))] = SB[G(a,b),A(a,b)] is the first
Seiffert mean, T (a,b) = (a− b)/[2arctan((a− b)/(a+ b))] = SB[A(a,b),Q(a,b)] is
the second Seiffert mean, M(a,b) = (a−b)/[2sinh−1((a−b)/(a+b))] = SB[Q(a,b),
A(a,b)] is the Neuman-Sándor mean, L(a,b) = (a−b)/[2tanh−1((a−b)/(a+b))] =
SB[A(a,b),G(a,b)] is the logarithmic mean, where G(a,b)=

√
ab , A(a,b)= (a+b)/2

and Q(a,b) =
√

(a2 +b2)/2 are the geometric, arithmetic and quadratic means of a
and b , respectively. Recently, the Schwab-Borchardt mean and the means derived from
the Schwab-Borchardt mean have attracted the attention of numerous mathematicians.
In particular, many remarkable inequalities for these means can be found in the litera-
ture [3-20].

Let
C(a,b) = (a2 +b2)/(a+b) (1.1)
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be the contraharmonic means of a and b . Then it is well known that the inequalities

G(a,b) < L(a,b) < P(a,b) < A(a,b) < M(a,b) < T (a,b) < Q(a,b) < C(a,b)

hold for all a,b > 0 with a �= b .
Let X(a,b) and Y (a,b) be the symmetric bivariate means of a and b . Then the

Neuman mean SXY (a,b) [21, 22] derived from the Schwab-Borchardt mean are given
by

SXY (a,b) = SB[X(a,b),Y(a,b)].

Let a > b > 0, v = (a−b)/(a+b)∈ (0,1) , r ∈ (0, log(2+
√

3)) and s ∈ (0,π/3)
be the parameters such that cosh(r) = 1/cos(s) = 1+ v2 . Then the following explicit
formulas for the Neuman means SAC and SCA can be found in the literature [21].

SCA(a,b) = A(a,b)
sinh(r)

r
, SAC(a,b) = A(a,b)

tan(s)
s

. (1.2)

Neuman [21, 22] proved that the double inequalities

C1/3(a,b)A2/3(a,b) < SCA(a,b) <
1
3
C(a,b)+

2
3
A(a,b), (1.3)

A1/3(a,b)C2/3(a,b) < SAC(a,b) <
1
3
A(a,b)+

2
3
C(a,b) (1.4)

hold for all a,b > 0 with a �= b .
He et al. [23] found the best possible parameters α , β , λ and μ in the interval

[1/2,1] such that the double inequalities

C[αa+(1−α)b,αb+(1−α)a]< SAC(a,b) < C[βa+(1−β )b,βb+(1−β )a],
C[λa+(1−λ )b,λb+(1−λ )a]< SCA(a,b) < C[μa+(1− μ)b,μb+(1−μ)a]

hold for all a,b > 0 with a �= b .
In [24], the authors proved that the double inequalities

αQ(a,b)+ (1−α)T(a,b) < SCA(a,b) < βQ(a,b)+ (1−β )T(a,b)

hold for all a,b > 0 with a �= b if and only if α � 0 and β � [
√

3π − 4log(2 +√
3)]/[(

√
2π −4) log(2+

√
3)] = 0.2975 · · ·.

Motivated by inequalities (1.3) and (1.4), it is natural to ask what are best possible
parameters α1 , β1 , α2 and β2 such that the double inequalities[

1
3
C(a,b)+

2
3
A(a,b)

]α1

[C1/3(a,b)A2/3(a,b)]1−α1 < SCA(a,b)

<

[
1
3
C(a,b)+

2
3
A(a,b)

]β1

[C1/3(a,b)A2/3(a,b)]1−β1 ,[
1
3
A(a,b)+

2
3
C(a,b)

]α2

[A1/3(a,b)C2/3(a,b)]1−α2 < SAC(a,b)

<

[
1
3
A(a,b)+

2
3
C(a,b)

]β2

[A1/3(a,b)C2/3(a,b)]1−β2
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hold for all a,b > 0 with a �= b? The main purpose of this paper is to answer this
question.

2. Lemmas

In order to prove our main results we need two lemmas, which we present in this
section.

LEMMA 2.1. Let p ∈ R , σ0 = [3log3−6log(log(2+
√

3))−2log2]/[10log2−
6log3] = 0.7580 · · · and

φ(x) = 2(1− p)2x3+(−2p2−17p+10)x2+2(−p2−7p+8)x+2(p2−5p+4). (2.1)

Then the following statements are true:
(1) If p = 4/5 , then φ(x) < 0 for all x ∈ (1,2);
(2) If p = σ0 , then there exists λ1(= 1.3857 · · ·) ∈ (1,2) such that φ(x) > 0 for

x ∈ (1,λ1) and φ(x) < 0 for x ∈ (λ1,2) .

Proof. (1) If p = 4/5, then (2.1) becomes

φ(x) =
2
25

(x−1)(x2−60x−16). (2.2)

Therefore, Lemma 2.1(1) follows easily from (2.2).
(2) If p = σ0 , then numerical computations lead to

−2p2−17p+10 = −4.0368 · · ·< 0, (2.3)

6(3p2−16p+10)= −2.4316 · · ·< 0, (2.4)

φ(1) = −45p+36 = 1.8861 · · ·> 0, (2.5)

φ(2) = 6p2−138p+96= −5.1675 · · ·< 0, (2.6)

It follows from (2.1), (2.3) and (2.4) that

φ ′(x) = 6(1− p)2x2 +2(−2p2−17p+10)x+2(−p2−7p+8) (2.7)

< 24(1− p)2 +2(−2p2−17p+10)+2(−p2−7p+8)
= 6(3p2−16p+10)= −2.4316 · · ·< 0

for x ∈ (1,2) .
Therefore, Lemma 2.1(2) follows from (2.5)–(2.7) and the numerical computa-

tions result φ(1.3856 · · ·) > 0 and φ(1.3858 · · ·) < 0. �

LEMMA 2.2. Let q∈R , τ0 = (9log3−6logπ−4log2)/(6log5−6log3−4log2)
= 0.8432 · · · and

ϕ(x) = 2(q2−5q+4)x3+2(−q2−7q+8)x2+(−2q2−17q+10)x+2(1−q)2. (2.8)

Then the following statements are true:
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(1) If q = 4/5 , then ϕ(x) > 0 for all x ∈ (1,2);
(2) If q = τ0 , then there exists λ2(= 1.3822 · · ·) ∈ (1,2) such that ϕ(x) < 0 for

x ∈ (1,λ2) and ϕ(x) > 0 for x ∈ (λ2,2) .

Proof. (1) If q = 4/5, then (2.8) becomes

ϕ(x) =
2
25

(x−1)(16x2 +60x−1). (2.9)

Therefore, Lemma 2.2(1) follows easily from (2.9).
(2) If q = τ0 , then numerical computations lead to

q2−5q+4 = 0.4947 · · ·> 0, (2.10)

−q2−7q+8 = 1.3860 · · ·> 0, (2.11)

−25q+22 = 0.9182 · · ·> 0, (2.12)

ϕ(1) = −45q+36 = −1.9471 · · ·< 0, (2.13)

ϕ(2) = 6q2−174q+150= 7.5379 · · ·> 0. (2.14)

It follows from (2.8) and (2.10)–(2.12) that

ϕ ′(x) = 6(q2−5q+4)x2 +4(−q2−7q+8)x+(−2q2−17q+10) (2.15)

> 6(q2−5q+4)+4(−q2−7q+8)+ (−2q2−17q+10)
= 3(−25q+22)> 0

for x ∈ (1,2) .
Therefore, Lemma 2.2(2) follows from (2.13)–(2.15) and the numerical computa-

tions result ϕ(1.3821 · · ·) < 0 and ϕ(1.3823 · · ·) > 0. �

3. Main results

THEOREM 3.1. The double inequalities[
1
3
C(a,b)+

2
3
A(a,b)

]α1

[C1/3(a,b)A2/3(a,b)]1−α1 < SCA(a,b)

<

[
1
3
C(a,b)+

2
3
A(a,b)

]β1

[C1/3(a,b)A2/3(a,b)]1−β1

holds for all a,b > 0 with a �= b if and only if α1 � σ0 = [3log3−6log(log(2+
√

3))−
2log2]/[10log2−6log3] = 0.7580 · · · and β1 � 4/5 .

Proof. Without loss of generality, we assume that a > b > 0. Let v = (a−b)/(a+
b) , u = v

√
2+ v2 , x =

√
1+u2 and p∈ (0,1) . Then v∈ (0,1) , u∈ (0,

√
3) , x∈ (1,2) ,

and (1.1) and (1.2) lead to

C(a,b) = A(a,b)
√

1+u2, SCA(a,b) = A(a,b)
u

sinh−1(u)
. (3.1)
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It follows from (3.1) that

log[SCA(a,b)]− log
[
C1/3(a,b)A2/3(a,b)

]
log
[

1
3C(a,b)+ 2

3A(a,b)
]− log

[
C1/3(a,b)A2/3(a,b)

] (3.2)

=
log u

sinh−1(u)
− 1

3 log
√

1+u2

log
[

1
3

√
1+u2 + 2

3

]
− 1

3 log
√

1+u2
,

log[SCA(a,b)]−p log

[
1
3
C(a,b)+

2
3
A(a,b)

]
−(1−p) log

[
C1/3(a,b)A2/3(a,b)

]
(3.3)

= log
u

sinh−1(u)
− p log

(√
1+u2 +2

3

)
− (1− p)

6
log(1+u2)

= log

√
x2−1

sinh−1(
√

x2 −1)
− p log

x+2
3

− 1− p
3

logx.

Let

F(x) = log

√
x2 −1

sinh−1(
√

x2−1)
− p log

x+2
3

− 1− p
3

logx. (3.4)

Then simple computations lead to

F(1) = 0, F(2) = log

√
3

log(2+
√

3)
− p log

4
3
− 1− p

3
log2, (3.5)

F ′(x) =
2(1− p)x3 +2(2+ p)x2 +(1+2p)x+2(1− p)

3x(x+2)(x2−1)sinh−1(
√

x2 −1)
f (x), (3.6)

where

f (x) = sinh−1(
√

x2−1)− 3x(x+2)
√

x2 −1
2(1− p)x3 +2(2+ p)x2 +(1+2p)x+2(1− p)

, (3.7)

f (1) = 0, f (2) = log(2+
√

3)− 4
√

3
6− p

, (3.8)

f ′(x) =
2(x+1)(x−1)2

√
x2−1[2(1− p)x3 +2(2+ p)x2 +(1+2p)x+2(1− p)]2

φ(x), (3.9)

where φ(x) is defined as in Lemma 2.1.
We divide the proof into two cases.
Case 1: p = 4/5. Then it follows easily from Lemma 2.1(1), (3.3)–(3.6), (3.8)

and (3.9) that

SCA(a,b) <

[
1
3
C(a,b)+

2
3
A(a,b)

]4/5

[C1/3(a,b)A2/3(a,b)]1/5. (3.10)
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Case 2: p = σ0 = [3log3−6log(log(2+
√

3))−2log2]/[10log2−6log3] . Then
from (3.5) and (3.8) together with numerical computations we get

F(2) = 0, f (2) = −0.004735 · · ·< 0. (3.11)

Let λ1 = 1.3857 · · · be the number given in Lemma 2.1(2). We divide the discus-
sion into two subcases.

Subcase 1: x ∈ (1,λ1] . Then Lemma 2.1(2), (3.8) and (3.9) imply that

f (x) > 0.

Subcase 2: x ∈ (λ1,2) . Then Lemma 2.1(2) and (3.9) lead to the conclusion that
f (x) is strictly decreasing on the interval [λ1,2) . Then from (3.11) and Subcase 1 we
know that there exists λ0 ∈ (λ1,2) such that f (x) > 0 for x∈ [λ1,λ0) and f (x) < 0 for
x ∈ (λ0,2) .

It follows from Subcases 1 and 2 together with (3.6) that F(x) is strictly increasing
on (1,λ0] and strictly decreasing on [λ0,2) . Therefore,

SCA(a,b) >

[
1
3
C(a,b)+

2
3
A(a,b)

]σ0

[C1/3(a,b)A2/3(a,b)]1−σ0 (3.12)

follows from (3.3)–(3.5) and (3.11) together with the piecewise monotonicity of F(x) .
Note that

lim
u→0+

log u
sinh−1(u)

− 1
3 log

√
1+u2

log
[

1
3

√
1+u2 + 2

3

]
− 1

3 log
√

1+u2
=

4
5
, (3.13)

lim
u→√

3

log u
sinh−1(u)

− 1
3 log

√
1+u2

log
[

1
3

√
1+u2 + 2

3

]
− 1

3 log
√

1+u2
= σ0. (3.14)

Therefore, Theorem 3.1 follows from (3.2) and (3.10) together with (3.12)–(3.14).
�

THEOREM 3.2. The double inequalities[
1
3
A(a,b)+

2
3
C(a,b)

]α2

[A1/3(a,b)C2/3(a,b)]1−α2 < SAC(a,b)

<

[
1
3
A(a,b)+

2
3
C(a,b)

]β2

[A1/3(a,b)C2/3(a,b)]1−β2

holds for all a,b > 0 with a �= b if and only if α2 � 4/5 and β2 � (9log3−6logπ −
4log2)/(6log5−6log3−4log2) = 0.8432 · · ·.

Proof. Without loss of generality, we assume that a > b > 0. Let v = (a−b)/(a+
b) , u = v

√
2+ v2 , x =

√
1+u2 and q∈ (0,1) . Then v∈ (0,1) , u∈ (0,

√
3) , x∈ (1,2) ,

and (1.2) leads to
SAC(a,b) = A(a,b)

u
tan−1(u)

. (3.15)
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It follows from (3.1) and (3.15) that

log[SAC(a,b)]− log
[
A1/3(a,b)C2/3(a,b)

]
log
[

1
3A(a,b)+ 2

3C(a,b)
]− log

[
A1/3(a,b)C2/3(a,b)

] (3.16)

=
log u

tan−1(u) − 2
3 log

√
1+u2

log
[

2
3

√
1+u2 + 1

3

]
− 2

3 log
√

1+u2
,

log[SAC(a,b)]−q log

[
1
3
A(a,b)+

2
3
C(a,b)

]
−(1−q) log

[
A1/3(a,b)C2/3(a,b)

]
(3.17)

= log
u

tan−1(u)
−q log

(
2
√

1+u2 +1
3

)
− (1−q)

3
log(1+u2)

= log

√
x2 −1

tan−1(
√

x2 −1)
−q log

2x+1
3

− 2(1−q)
3

logx.

Let

G(x) = log

√
x2 −1

tan−1(
√

x2 −1)
−q log

2x+1
3

− 2(1−q)
3

logx. (3.18)

Then simple computations lead to

G(1) = 0, G(2) = log
3
√

3
π

−q log
5
3
− 2(1−q)

3
log2, (3.19)

G′(x) =
2(1−q)x3 +(2q+1)x2 +2(q+2)x+2(1−q)

3x(2x+1)(x2−1) tan−1(
√

x2−1)
g(x), (3.20)

where

g(x) = tan−1(
√

x2−1)− 3(2x+1)
√

x2 −1
2(1−q)x3 +(2q+1)x2 +2(q+2)x+2(1−q)

, (3.21)

g(1) = 0, g(2) =
10π −2πq−15

√
3

6(5−q)
, (3.22)

g′(x) =
2(x+1)(x−1)2

x
√

x2−1[2(1−q)x3 +(2q+1)x2 +2(q+2)x+2(1−q)]2
ϕ(x), (3.23)

where ϕ(x) is defined as in Lemma 2.2.
We divide the proof into two cases.
Case 1: q = 4/5. Then it follows easily from Lemma 2.2(1), (3.18)–(3.20), (3.22)

and (3.23) that

SAC(a,b) >

[
1
3
A(a,b)+

2
3
C(a,b)

]4/5

[A1/3(a,b)C2/3(a,b)]1/5. (3.24)
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Case 2: q = τ0 = (9log3− 6logπ − 4log2)/(6log5− 6log3− 4log2) . Then
from (3.19) and (3.22) together with numerical computations we get

G(2) = 0, g(2) = 0.0054 · · ·> 0. (3.25)

Let λ2 = 1.3822 · · · be the number given in Lemma 2.2(2). We divide the discus-
sion into two subcases.

Subcase 1: x ∈ (1,λ2] . Then Lemma 2.2(2), (3.22) and (3.23) imply that

g(x) < 0.

Subcase 2: x ∈ (λ2,2) . Then Lemma 2.2(2) and (3.23) lead to the conclusion that
g(x) is strictly increasing on the interval (λ2,2] . Then from (3.25) and Subcase 1 we
know that there exists μ0 ∈ (λ2,2) such that g(x) < 0 for x ∈ (λ2,μ0) and g(x) > 0
for x ∈ (μ0,2) .

It follows from Subcases 1 and 2 together with (3.20) that G(x) is strictly decreas-
ing on (1,μ0] and strictly increasing on [μ0,2) . Therefore,

SAC(a,b) <

[
1
3
A(a,b)+

2
3
C(a,b)

]τ0

[A1/3(a,b)C2/3(a,b)]1−τ0 (3.26)

follows from (3.17)–(3.19) and (3.25) together with the piecewise monotonicity of
G(x) .

Note that

lim
u→0+

log u
tan−1(u) − 2

3 log
√

1+u2

log
[

2
3

√
1+u2 + 1

3

]
− 2

3 log
√

1+u2
=

4
5
, (3.27)

lim
u→√

3

log u
tan−1(u) − 2

3 log
√

1+u2

log
[

2
3

√
1+u2 + 1

3

]
− 2

3 log
√

1+u2
= τ0. (3.28)

Therefore, Theorem3.2 follows from (3.16) and (3.24) together with (3.26)–(3.28).
�
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