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THE HORNICH-HLAWKA INEQUALITY AND BERNSTEIN FUNCTIONS

PAUL RESSEL

(Communicated by J. Pecari¢)

Abstract. The Hornich-Hlawka inequality for three real numbers is extended from the identity
function to all Bernstein functions on the half-line. For vectors in a Euclidean space it is shown
to hold for the square-root function.

The inequality
P+ |+ [y +z] + [z +x] < ]+ |y[+ 2] + [x +y + 2] (1)

goes back to Hornich and Hlawka, see [2], [3] and [5], p. 171 ff. It is also called the
quadrilateral inequality, and is valid for real numbers x,y,z but also for vectors in a
Euclidean space (so in particular for complex numbers as well). We will first consider
the case of real numbers where we show the following extension of (1): for every
Bernstein function f on R} = [0,c0[ we have

Fx+yD) + £y +z) +f(lz+x) < FO) + (D + () + f (x4 +2))

for x,y,z € R, where f being a Bernstein function means f: R, — R is continuous,
C* on ]0,[, with a completely monotone derivative f’, i.e.

(1)) =0 VjeN, Vxelo,«|.

Famous examples of such functions are log(1 +x),x/(1+x) and x* for 0 < o < 1.
One might think that at least the inequality corresponding to o = 1/2, i.e.

VIrHyI+ VI + 2+ Vg < VI VT VI + VI v+

should allow for a short, direct proof, but this does not seem to be the case. A few basic
facts on Bernstein functions can be found in [1]. A far more thorough treatment is of
course the recent monograph [8], at the end of which a list of 138 (classes of) Bernstein
functions is given.

For any function f:R; — R we introduce the shift (E,f)(s) := f(a+s),
a€eRy, and V,:=Ey—E,, i.e. (Vof)(s):=f(s)— f(a+s). (These notions clearly
make sense on any abelian semigroup.) Since the operators {E, | « € Ry} commute,
so do also {V,|a € Ri}. A function f on R, is by definition n-alternating iff
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VaVay ...V f <0 forall ap,...,ar € Ry and for all k=1,...,n. And f is com-
pletely alternating if this holds for every n € N. For a continuous non-negative function
f on R this property is equivalent with being a Bernstein function; cf. [1], Corollary
4.6.8 and the Remark on page 114.

If f is n times differentiable on |0,o[, and fulfills /' >0, /" <0, f” >0,...,
(—l)’“rl f (") >0, then f is n-alternating, by the mean value theorem.

Let f: R, — R, be 2-alternating; then for 0 <a < b

0> (W, gaf) (@ = sl@)-27 (37) 0

and
0= (VaVif) (0) = £(0) = fa) = f(b) + fa+D)
implying f to be concave and subadditive.

THEOREM 1. Let f:Ry — R, be 3-alternating. Then we have for all x,y,z € R

FUx+yD) +f(y+z) + fz+x) < F(x) +fUD) + £z + f(Ix+y+2). (2)

This holds in particular for every Bernstein function f.

Proof. We may and do assume f(0) = 0. Five cases will be considered.
1. x,y,z>0: we have

0= (ViVyVof)(0) = —f(x) = f(y) = f(2) + f(x+)
+fy+2)+ flz+x)— fx+y+2).

In all the remaining cases it is obviously sufficient to have just one of the three numbers
X,¥,z negative, which we choose to be z; so x,y > 0 in what follows.
2. x+y<|z| : Put c:= |z —x—y=|x+y+z|, then
0= (ViVyVef)(0) = —f(x) = f() = flx+y+2) + f(x+)
+£(lel =y) + f(lzl =x) = £(z])

where |z| —y=|y+z| and |z| —x = |z+x].
3. x,y<|z] <x+y: Since f is 2-alternating, we get

0> (VyVayiof) (2l =¥) = £zl =) = f(lz]) = Fx) + F(x+ )

The function f is also 1-alternating, i.e. increasing, so f(|z| —x) < f(y), and thus

fe+yD) + f(x+2) + f(|lz+ )
= flx+y)+ f(lzl —=x) + f(lz] =)
<Sf)+f)+ f(2)

<)+ fO)+f(2) + f(e+y+az]).
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4. x<|z] <y: Wehave f(x+y) < f(x)+ f(y), hence
e+ + (el =x) + f—l2)) < fF) + ) + f(12) + flx+y—2]).
5. |z| € x,y: Again by subadditivity

flx+y) < flx+y—lz]) + f(lz])

and then the desired inequality is immediate. [

A function g: Ry — R is called n-monotone iff —g is n-alternating, in which
case f:=g(0) — g is a non-negative n-alternating function. If g is n-monotone for
each n € N, and non-negative, it is called completely monotone.

COROLLARY 1. For every 3-monotone function g on Ry and x,y,z € R we have

g(Ix) +g(y) +8(lz]) + g (e +y+2l) < g(0) +g(lx+y[) +g(ly+zl) +8(lz+x]). (3)
This holds in particular if g is completely monotone.

So for example the following inequality holds for x,y,z € R :
e M ol olel gty <y gl g o lyel o lex],

REMARK 1. The sufficient condition in the above theorem is of course not nec-
essary: for f(x) := x> we even have equality in (2) — called Hlawka’s identity. For
f(x) :=x>*¢ with & > 0, however, the inequality (2) does no longer hold: take x =y =
—z=1.

As already mentioned, the Hornich-Hlawka inequality is also true in Euclidean
spaces, i.e. replacing in (1) x,y,z by vectors in R", and the absolute value by the
Euclidean norm. See [2] for a nice direct proof, by simple computation. If an analogue
of Theorem 1 holds likewise in this generality, perhaps “only” for Bernstein functions,
remains open for the time being. However, the interesting special case where f(t) = v/
can be answered positively. We consider a slightly more general “frame” first.

THEOREM 2. Let X be an abelian group, x — |x| a non-negative symmetric and

subadditive function on X (i.e. | —x| = |x| and |x+y| < |x|+|y] Vx,y € X), and let
f R, — R, be concave. Then, if f2 fulfills (2), i.e. if

Pty + 2y +2) + 21z +x) < 20D+ ) + 72 (12l) + (e +y +2)
forall x,y,z € X, so does also f.

Proof. We develop an idea from the paper [9], used there for a prove of the original
inequality (1).
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Let x,y,z € X be a given. We then put

p(xy) = f(x) + £ () + f(]x+y])
q(x,y) = f(Ix) + £ () — f(]x+¥])
U :=p(x,y)q(x,y) + p(x,2) q(x,2) + p(y.2)q(y,2)
=2[2 () + L2y D) + 2 (2l) + FARD £ (YD + £ (xS (12])
+F(DF(D] = (x4 3D) = (P +2]) = (v +2)
P:=p(x,y)Vp(x,2) Vp(y,2)
Q:=q(x,y) +4q(x,2) +q(y,2)
St = f(|x) + £y + £(I2])
Sa = flx+y]) + f(Ix+z)) + f(ly+2])
S3:=f(lx+y+z])

(
(

Then Q =281 — 82, U < P-Q, and §3 < S; because f is subadditive. Since f is
furthermore increasing, we get

S1+83 = f(Ixl) + £(Iv)) + £(leD) + f(Ix+y+2]) = p(x,y)

and then of course
S1+S83 =P

We obtain, using now our assumption on f2,

§1—83 = (1) + £2(1y) + £2(1z)
2 [N LUYD) + £ D £ D) + £ (D] = £+ y+2])
< 2-[F2(x) + £2(yD) + 22 + D)

+F (DS (2D + £y f (12D
= (bey0) = £ +2l) = 2y +zl)

and since S; + S3 > P, it follows
S1=8<0=285-5

or equivalently
$H<81+83

which had to be shown. [
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COROLLARY 2. Let ||.|| denote the Euclidean norm on R", or the 1-norm ||x|| =
|x1| 4+ ...+ |xu|. Then for arbitrary x,y,z € R"

VIx+yl+ Vi zll+ iy + 2l < Vil + VT Vil + i+ y+all, @

and also the corresponding result for the 4th root, the Sth root, etc.

Proof. Since the square of the Euclidean norm fulfills even Hlawka’s identity
b+ 112+ llx 2l lly + 2l = [l 4 11+ ll2ll + flx+ v + 2],

Theorem 2 implies first the original Hornich-Hlawka inequality, and by reapplication
what is claimed.

Since inequality (1) (for real numbers) extends trivially to the 1-norm, we get also
in this case the square-root inequality (4) from Theorem 2. [

REMARK 2. Itis certainly of interest for which norms on R” (n < 3 suffices) the
inequality (4) still holds. It remains true if the norm is a negative definite function on
the group R”, since in this case there exists an isometric (linear) embedding into some
L -space, see for ex. [10], Theorem 5.10 (with p = 1). It is well known (and easy
to see) that L” -norms for p € [1,2] are negative definite. Since every norm on R? is
negative definite, inequality (4) holds for every norm in the plane. However, this result
can also be shown in a very elementary way, cf. [4].

REMARK 3. A “natural” analogue of inequality (1) for more than 3 numbers does
not hold: take n =4 and consider

4 4
N lxil = D b xjl Y x4 — | D x| -
i=1 i<j i<j<k i=1
This expression has for x; = x, = x3 = —x4 = 1 the value 2, and changing x4 to

—2 gives —2 as a result.
However, on R’} we see immediately (as in step 1. of the proof of Theorem 1) that
any n-alternating function f fulfills

(Vi .- Vi, ) (0)
f(O)—Zf(xi)‘f'Zf(xi‘ij)— > flridxjtx) ...

i<j i<j<k

0>
~ 5)

With o(x) := X} ,x;, assuming f(0) = 0, this inequality is of some importance in
probability theory: it means (essentially) that exp(—f o o) is a multivariate survival
function. This remains true if ¢ is replaced by a so-called n-max-decreasing function
¢ : R} — R, defined by

0> @(0) = X @(xier) + X, @(xiei +xje;)
i i<j

(6)

— Z (p(x,-e,-—l—xjej—i—xkek):t...

i<j<k
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(where ey,...,e, are the usual unit vectors) and the same inequality for every translate
x— @(a+x),a € R". Note that for ¢ = 0 we have equality in (6). Details can be
found in [7]. The following interesting sufficient condition for (5) to hold is given in
[6], Theorem 6.5: the function — f(x)/x should be convex of order n— 1 on ]0,eo|.
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