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THE HORNICH–HLAWKA INEQUALITY AND BERNSTEIN FUNCTIONS

PAUL RESSEL

(Communicated by J. Pečarić)

Abstract. The Hornich-Hlawka inequality for three real numbers is extended from the identity
function to all Bernstein functions on the half-line. For vectors in a Euclidean space it is shown
to hold for the square-root function.

The inequality

|x+ y|+ |y+ z|+ |z+ x|� |x|+ |y|+ |z|+ |x+ y+ z| (1)

goes back to Hornich and Hlawka, see [2], [3] and [5], p. 171 ff. It is also called the
quadrilateral inequality, and is valid for real numbers x,y,z but also for vectors in a
Euclidean space (so in particular for complex numbers as well). We will first consider
the case of real numbers where we show the following extension of (1): for every
Bernstein function f on R+ = [0,∞[ we have

f (|x+ y|)+ f (|y+ z|)+ f (|z+ x|) � f (|x|)+ f (|y|)+ f (|z|)+ f (|x+ y+ z|)
for x,y,z ∈R, where f being a Bernstein function means f : R+ −→R+ is continuous,
C∞ on ]0,∞[, with a completely monotone derivative f ′, i.e.

(−1) j+1 f ( j)(x) � 0 ∀ j ∈ N, ∀ x ∈ ]0,∞[.

Famous examples of such functions are log(1 + x),x/(1 + x) and xα for 0 < α � 1.
One might think that at least the inequality corresponding to α = 1/2, i.e.
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|y+ z|+
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|z+ x|�
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|y|+
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|z|+
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|x+ y+ z|

should allow for a short, direct proof, but this does not seem to be the case. A few basic
facts on Bernstein functions can be found in [1]. A far more thorough treatment is of
course the recent monograph [8], at the end of which a list of 138 (classes of) Bernstein
functions is given.

For any function f : R+ −→ R we introduce the shift (Ea f )(s) := f (a + s) ,
a ∈ R+, and ∇a := E0 −Ea, i.e. (∇a f )(s) := f (s)− f (a+ s). (These notions clearly
make sense on any abelian semigroup.) Since the operators {Ea | a ∈ R+} commute,
so do also {∇a | a ∈ R+}. A function f on R+ is by definition n-alternating iff
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∇a1∇a2 . . .∇ak f � 0 for all a1, . . . ,ak ∈ R+ and for all k = 1, . . . ,n. And f is com-
pletely alternating if this holds for every n∈N. For a continuous non-negative function
f on R+ this property is equivalent with being a Bernstein function; cf. [1], Corollary
4.6.8 and the Remark on page 114.

If f is n times differentiable on ]0,∞[, and fulfills f ′ � 0, f ′′ � 0, f ′′′ � 0, . . . ,
(−1)n+1 f (n) � 0, then f is n -alternating, by the mean value theorem.

Let f : R+ −→ R+ be 2-alternating; then for 0 � a � b

0 �
(

∇2
(b−a)/2 f

)
(a) = f (a)−2 f

(
a+b

2

)
+ f (b)

and
0 � (∇a∇b f ) (0) = f (0)− f (a)− f (b)+ f (a+b)

implying f to be concave and subadditive.

THEOREM 1. Let f : R+ −→R+ be 3-alternating. Then we have for all x,y,z∈R

f (|x+ y|)+ f (|y+ z|)+ f (|z+ x|) � f (|x|)+ f (|y|)+ f (|z|)+ f (|x+ y+ z|). (2)

This holds in particular for every Bernstein function f .

Proof. We may and do assume f (0) = 0. Five cases will be considered.
1. x,y,z � 0 : we have

0 � (∇x∇y∇z f )(0) = − f (x)− f (y)− f (z)+ f (x+ y)

+ f (y+ z)+ f (z+ x)− f (x+ y+ z).

In all the remaining cases it is obviously sufficient to have just one of the three numbers
x,y,z negative, which we choose to be z; so x,y � 0 in what follows.

2. x+ y � |z| : Put c := |z|− x− y = |x+ y+ z|, then

0 � (∇x∇y∇c f ) (0) = − f (x)− f (y)− f (|x+ y+ z|)+ f (x+ y)

+ f (|z|− y)+ f (|z|− x)− f (|z|)

where |z|− y = |y+ z| and |z|− x = |z+ x|.
3. x,y � |z| � x+ y : Since f is 2-alternating, we get

0 �
(
∇y∇x+y−|z| f

)
(|z|− y) = f (|z|− y)− f (|z|)− f (x)+ f (x+ y)

The function f is also 1-alternating, i.e. increasing, so f (|z|− x) � f (y), and thus

f (|x+ y|)+ f (|x+ z|)+ f (|z+ y|)
= f (x+ y)+ f (|z|− x)+ f (|z|− y)

� f (x)+ f (y)+ f (|z|)
� f (x)+ f (y)+ f (|z|)+ f (|x+ y+ z|).
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4. x � |z| � y : We have f (x+ y) � f (x)+ f (y), hence

f (x+ y)+ f (|z|− x)+ f (y−|z|) � f (x)+ f (y)+ f (|z|)+ f (x+ y−|z|).

5. |z| � x,y : Again by subadditivity

f (x+ y) � f (x+ y−|z|)+ f (|z|)

and then the desired inequality is immediate. �

A function g : R+ −→ R is called n-monotone iff −g is n -alternating, in which
case f := g(0)− g is a non-negative n -alternating function. If g is n -monotone for
each n ∈ N, and non-negative, it is called completely monotone.

COROLLARY 1. For every 3-monotone function g on R+ and x,y,z ∈ R we have

g(|x|)+g(|y|)+g(|z|)+g(|x+y+ z|) � g(0)+g(|x+y|)+g(|y+ z|)+g(|z+x|). (3)

This holds in particular if g is completely monotone.

So for example the following inequality holds for x,y,z ∈ R :

e−|x| + e−|y|+ e−|z| + e−|x+y+z| � 1+ e−|x+y|+ e−|y+z|+ e−|z+x|.

REMARK 1. The sufficient condition in the above theorem is of course not nec-
essary: for f (x) := x2 we even have equality in (2) – called Hlawka’s identity. For
f (x) := x2+ε with ε > 0, however, the inequality (2) does no longer hold: take x = y =
−z = 1.

As already mentioned, the Hornich-Hlawka inequality is also true in Euclidean
spaces, i.e. replacing in (1) x,y,z by vectors in R

n, and the absolute value by the
Euclidean norm. See [2] for a nice direct proof, by simple computation. If an analogue
of Theorem 1 holds likewise in this generality, perhaps “only” for Bernstein functions,
remains open for the time being. However, the interesting special case where f (t) =

√
t

can be answered positively. We consider a slightly more general “frame” first.

THEOREM 2. Let X be an abelian group, x �−→ |x| a non-negative symmetric and
subadditive function on X (i.e. |− x| = |x| and |x+ y| � |x|+ |y| ∀ x,y ∈ X), and let
f : R+ −→ R+ be concave. Then, if f 2 fulfills (2), i.e. if

f 2(|x+ y|)+ f 2(|y+ z|)+ f 2(|z+ x|) � f 2(|x|)+ f 2(|y|)+ f 2(|z|)+ f 2(|x+ y+ z|)

for all x,y,z ∈ X , so does also f .

Proof. We develop an idea from the paper [9], used there for a prove of the original
inequality (1).
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Let x,y,z ∈ X be a given. We then put

p(x,y) := f (|x|)+ f (|y|)+ f (|x+ y|)
q(x,y) := f (|x|)+ f (|y|)− f (|x+ y|)
U := p(x,y)q(x,y)+ p(x,z)q(x,z)+ p(y,z)q(y,z)

= 2[ f 2(|x|)+ f 2(|y|)+ f 2(|z|)+ f (|x|) f (|y|)+ f (|x|) f (|z|)
+ f (|y|) f (|z|)]− f 2(|x+ y|)− f 2(|x+ z|)− f 2(|y+ z|)

P := p(x,y)∨ p(x,z)∨ p(y,z)

Q := q(x,y)+q(x,z)+q(y,z)

S1 := f (|x|)+ f (|y|)+ f (|z|)
S2 := f (|x+ y|)+ f (|x+ z|)+ f (|y+ z|)
S3 := f (|x+ y+ z|)

Then Q = 2S1−S2 , U � P ·Q, and S3 � S1 because f is subadditive. Since f is
furthermore increasing, we get

S1 +S3 = f (|x|)+ f (|y|)+ f (|z|)+ f (|x+ y+ z|) � p(x,y)

and then of course
S1 +S3 � P.

We obtain, using now our assumption on f 2,

S2
1−S2

3 = f 2(|x|)+ f 2(|y|)+ f 2(|z|)
+2 · [ f (|x|) f (|y|)+ f (|x|) f (|z|)+ f (|y|) f (|z|)]− f 2(|x+ y+ z|)

� 2 · [ f 2(|x|)+ f 2(|y|)+ f 2(|z|)+ f (|x|) f (|y|)
+ f (|x|) f (|z|)+ f (|y|) f (|z|)]
− f 2(|x+ y|)− f 2(|x+ z|)− f 2(|y+ z|)

= U � P ·Q,

and since S1 +S3 � P, it follows

S1−S3 � Q = 2S1−S2

or equivalently
S2 � S1 +S3

which had to be shown. �
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COROLLARY 2. Let ‖.‖ denote the Euclidean norm on R
n, or the 1-norm ‖x‖ =

|x1|+ . . .+ |xn|. Then for arbitrary x,y,z ∈ R
n

√
‖x+ y‖+

√
‖x+ z‖+

√
‖y+ z‖ �

√
‖x‖+

√
‖y‖+

√
‖z‖+

√
‖x+ y+ z‖, (4)

and also the corresponding result for the 4th root, the 8th root, etc.

Proof. Since the square of the Euclidean norm fulfills even Hlawka’s identity

‖x+ y‖2 +‖x+ z‖2 +‖y+ z‖2 = ‖x‖2 +‖y‖2 +‖z‖2 +‖x+ y+ z‖2,

Theorem 2 implies first the original Hornich-Hlawka inequality, and by reapplication
what is claimed.

Since inequality (1) (for real numbers) extends trivially to the 1-norm, we get also
in this case the square-root inequality (4) from Theorem 2. �

REMARK 2. It is certainly of interest for which norms on R
n (n � 3 suffices) the

inequality (4) still holds. It remains true if the norm is a negative definite function on
the group R

n, since in this case there exists an isometric (linear) embedding into some
L1 -space, see for ex. [10], Theorem 5.10 (with p = 1). It is well known (and easy
to see) that Lp -norms for p ∈ [1,2] are negative definite. Since every norm on R

2 is
negative definite, inequality (4) holds for every norm in the plane. However, this result
can also be shown in a very elementary way, cf. [4].

REMARK 3. A “natural” analogue of inequality (1) for more than 3 numbers does
not hold: take n = 4 and consider

4

∑
i=1

|xi|−∑
i< j

|xi + x j|+ ∑
i< j<k

|xi + x j + xk|−
∣∣∣∣∣

4

∑
i=1

xi

∣∣∣∣∣ .

This expression has for x1 = x2 = x3 = −x4 = 1 the value 2, and changing x4 to
−2 gives −2 as a result.

However, on R
n
+ we see immediately (as in step 1. of the proof of Theorem 1) that

any n -alternating function f fulfills

0 � (∇x1 . . .∇xn f ) (0)
(5)

= f (0)−∑
i

f (xi)+ ∑
i< j

f (xi + x j)− ∑
i< j<k

f (xi + x j + xk)± . . .

With σ(x) := ∑n
i=1 xi, assuming f (0) = 0, this inequality is of some importance in

probability theory: it means (essentially) that exp(− f ◦σ) is a multivariate survival
function. This remains true if σ is replaced by a so-called n-max-decreasing function
ϕ : R

n
+ −→ R+, defined by

0 � ϕ(0)−∑
i

ϕ(xiei)+ ∑
i< j

ϕ(xiei + x je j)

(6)− ∑
i< j<k

ϕ(xiei + x je j + xkek)± . . .
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(where e1, . . . ,en are the usual unit vectors) and the same inequality for every translate
x �−→ ϕ(a+ x),a ∈ R

n
+. Note that for ϕ = σ we have equality in (6). Details can be

found in [7]. The following interesting sufficient condition for (5) to hold is given in
[6], Theorem 6.5: the function − f (x)/x should be convex of order n−1 on ]0,∞[.
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