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(Communicated by G. Leng)

Abstract. In this paper, we deals with the isoperimetric-type inequalities for the closed convex
curve in the Euclidean plane R

2 . In fact we establish a family of parametric inequalities in-
volving the following geometric functionals associated to the given closed convex curve with
a simple Fourier series proof: length of the curve, areas of the region included by the curve
and the locus of curvature centers, and integral of the curvature radii of the curve and the locus
of curvature centers. Using our isoperimetric-type inequalities, we also derive some new geo-
metric Bonnesen-type inequalities. Furthermore, we investigate the stability property of such
inequalities (near equality implies curve nearly circular).

1. Introduction and main results

Recall that the classical isoperimetric inequality in the Euclidean plane R
2 states

that:

THEOREM 1.1. (Isoperimetric inequality) If γ is a simple closed curve of length
L, enclosing a region of area A, then

L2 −4πA � 0, (1)

and the equality holds if and only if γ is a circle.

This famous fact was known to the ancient Greeks, but the first mathematical proof
was only given in the 19th century by Steiner [1]. Since then, there have been many new
proofs, sharpened forms, generalizations, and applications of this famous inequality.

Recently, three interesting reverse isoperimetric inequalities were respectively pro-
ved by S. L. Pan and H. Zhang in [2], by X. Gao in [3] and by S. L. Pan and J. N. Yang
in [4] as follows:

THEOREM 1.2. (Pan-Zhang) If γ is a simple closed curve of length L, enclosing
a region of area A, then

L2 � 4π
(
A+ |Ã|) , (2)

where Ã is the area of the domain enclosed by the locus of curvature centers, and the
equality in (2) holds if and only if γ is a circle.
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THEOREM 1.3. (Gao) If γ is a simple closed curve of length L, enclosing a region
of area A, then

L2 � 4πA+ π |Ã|, (3)

where Ã is the area of the domain enclosed by the locus of curvature centers, and the
equality in (3) holds if and only if γ is a circle.

THEOREM 1.4. (Pan-Yang) Let γ be a C 2
+ closed and strictly convex curve in the

Euclidean plane R
2 with length L and enclosing an area A, then∫ 2π

0
ρ (θ )2dθ � L2 −2πA

π
, (4)

where ρ is the radius of curvature and θ is the angle between x-axis and the outward
normal vector at the corresponding point p , and the equality in (4) holds if and only if
γ is a circle.

REMARK 1. It is obvious that if γ is a circle, then the locus of its curvature centers
is only a point, and thus its area Ã = 0. Conversely, if Ã = 0, then from the classical
isoperimetric inequality (1) and the reverse isoperimetric inequality (2), it follows that
the area A and the length L of γ satisfy L2 = 4πA , which implies that γ is a circle, and
therefore the locus of curvature centers of γ is a point.

In this paper, we firstly prove the following interesting Gage-type isoperimetric
inequality:

THEOREM 1.5. (Gage-Type) Let γ be a C 2
+ closed and strictly convex curve in

the Euclidean plane R
2 with length L and enclosing an area A, then∫

γ
k2ds � 4πL

4A+ |Ã| , (5)

where k is the curvature of γ , Ã is the area of the domain enclosed by the locus of
curvature centers and the equality in (5) holds if and only if γ is a circle.

Then we consider a family of parametric isoperimetric-type inequalities for closed
convex plane curves, which is actually an improved version of the reverse isoperimetric
inequalities (2), (3) and (4), and one of our main results is as follows:

THEOREM 1.6. (Main Theorem) Let γ be a C 2
+ closed and strictly convex curve

in the Euclidean plane R
2 with length L and enclosing an area A, let Ã denote the area

of the domain enclosed by the locus of curvature centers. Then for arbitrary constants
α , β , λ , δ , σ , ω satisfying⎧⎪⎪⎨⎪⎪⎩

α,λ � 0
2β +4πδ + σ −α � 0
8β −8λ +4ω −α � 0

6β +24λ +4ω −σ � 0,

(6)
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we have

α
∫

γ
k2ds+ β

∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã| � 0, (7)

where k is the curvature of γ , ρ and ρβ respectively denote curvature radii of the
curve γ and the locus of curvature centers. The equality in (7) holds if γ is a circle and
the parameters α , β , λ , δ , σ , ω satisfy{

α = 0
2β +4πδ + σ = 0.

Moreover if the equality in (7) holds and the parameters α , β , λ , δ , σ , ω satisfy (6),
then γ is a circle.

REMARK 2. When α = β = λ = 0, δ = −1, σ = ω = 4π and α = β = λ = 0,
δ = −1, σ = 4π , ω = π , (6) satisfies clearly and the isoperimetric inequality (7)
respectively turns into (2) and (3). If we select α = 0, β = 1, λ = 0, δ =− 1

π , σ = 2,
ω = 0, then (6) also satisfies and we obtain (4). Hence (7) can also be regarded as
a reverse isoperimetric-type inequality. Furthermore, if we select other values of the
parameters α , β , λ , δ , σ , ω satisfying (6), then we can obtain some new geometric
Bonnesen-type inequalities [5]:

THEOREM 1.7. Let γ be a C 2
+ closed and strictly convex curve in the Euclidean

plane R
2 with length L and enclosing an area A, let Ã denote the area of the domain

enclosed by the locus of curvature centers. Then we have∫ 2π

0
ρ (θ )2dθ � L2

π
−2A+ |Ã|, (8)

max
θ∈[0,2π]

ρ (θ )2 � 1
2π

(
L2

π
−2A+ |Ã|

)
, (9)

10A �
∫

γ
k2ds+

∫ 2π

0
ρ2

β (θ )dθ +
9
4
|Ã| (10)

and

2L2 �
∫ 2π

0
ρ (θ )2 dθ +

∫ 2π

0
ρ2

β (θ )dθ +30A, (11)

where k is the curvature of γ , ρ and ρβ respectively denote curvature radii of the
curve γ and the locus of curvature centers. Moreover, (8) is actually an improved and
sharp version of (4). The equalities in (8) and (9) hold if γ is a circle. Furthermore,
if the equalities in (8) and (9) hold, then the Minkowski support function of γ is of the
form

p(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ ,

if the equalities in (10) and (11) hold, then γ is a circle.
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REMARK 3. We can actually derivemore new and interesting geometric Bonnesen-
type inequalities by selecting the appropriate parameters α , β , λ , δ , σ , ω satisfying
(6).

The stability problem associated with isoperimetric inequality is also interesting
and significant. A well-known and the most frequently used example is the Steiner disc
S (K) (see section 4 for the definition of S (K)).

Recently in [6], S. L. Pan and H. P. Xu obtained the following stability estimates
for the reverse isoperimetric inequality (2) by comparing a convex body K with its
Steiner disk S (K) :

h1 (K,S (K))2 =
(
max

u

∣∣pK (u)− pS(K) (u)
∣∣)2

� 4π2−33
96π2

(
4π
(
A(K)+ |Ã(K)|)−L2 (K)

)
and

h2 (K,S (K))2 =
∫ 2π

0

∣∣pK (θ )− pS(K) (θ )
∣∣2dθ

� 1
18π

(
4π
(
A(K)+ |Ã(K)|)−L2 (K)

)
,

where pK (θ ) denotes the Minkowski support function of a given domain K, and S (K)
denotes the Steiner disc associated with K which satisfies

4π
(
A(S (K))+ |Ã(S (K))|)−L2 (S (K)) = 0.

For arbitrary ε > 0 such that

ϕ (K) = 4π
(
A(K)+ |Ã(K)|)−L2 (K) < ε,

by the stability estimates for inequality above it follows that

max
{

h1 (K,S (K))2 ,h2 (K,S (K))2
}

� C|ϕ (K)−ϕ (S (K))| < Cε,

which implies that the reverse isoperimetric inequality (2) does have well stability prop-
erty with respect to both Hausdorff distance and L2 -metric.

In this paper, we will also research the stability properties of our isoperimetric
inequality (7) with respect to both Hausdorff distance and L2 -metric. The paper is
organized as follows. In section 2, we recall some basic facts about the plane convex
geometry. In section 3, we firstly prove the Gage-Type isoperimetric inequality (5), and
then provide a simpler proof of Theorem 1.6 by using Fourier series, which is different
from the approach in [2] and [4]. In section 4, we investigate stability properties of
inequality (7) (near equality implies curve nearly circular). We believe that our trick
could be used to derive more interesting isoperimetric inequalities.
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2. Geometric quantities and their Fourier series

In this section, we recall some basic facts about the convex plane curve which
will be used later. In this paper we always assume that γ is a closed and convex plane
curve which is sufficiently regular, actually it should be a C 2

+ closed and strictly convex
curve in the plane R

2 , such that the curvature radii discussed can be defined and the
Fourier series needed in the proof convergent uniformly. The details can be found in
the classical literature [7].

Let p(θ ) denote the Minkowski support function of curve γ (θ ) , where θ is the
angle between x-axis and the outward normal vector at the corresponding point p . It
gives us the parametrization of γ (θ ) in terms of θ as follows:

γ (θ ) = (γ1 (θ ) ,γ2 (θ )) =
(
p(θ )cosθ − p′ (θ )sinθ , p(θ )sinθ + p′ (θ )cosθ

)
.

Therefore the curvature k (θ ) and the radius of curvature ρ (θ ) of γ (θ ) can be calcu-
lated by

k (θ ) =
dθ
ds

=
1

p(θ )+ p′′ (θ )
> 0

and

ρ (θ ) =
ds
dθ

= p(θ )+ p′′ (θ ) > 0,

where we use the fact that γ is a strictly convex plane curve. The length L of γ (θ ) and
the area A it bounds can be also calculated respectively by

L =
∫

γ
ds =

∫ 2π

0
p(θ )dθ

and

A =
1
2

∫
γ
p(θ )ds =

1
2

∫ 2π

0

(
p(θ )2 − p′ (θ )2

)
dθ .

At the same time, we could obtain the locus of centers of curvature of γ (θ ) as follows

β (θ ) = γ (θ )+ ρ (θ )N (θ )

=
(−p′ (θ )sinθ − p′′ (θ )cosθ , p′ (θ )cosθ − p′′ (θ )sinθ

)
,

then
β ′ (θ ) = −(p′ (θ )+ p′′′ (θ )

)
(cosθ ,sinθ) .

Therefore the curvature kβ (θ ) and the radius of curvature ρβ (θ ) of the locus of cur-
vature centers β (θ ) can be calculated by

kβ (θ ) =
dθ
ds

=
1

p′ (θ )+ p′′′ (θ )
,

ρβ (θ ) =
ds
dθ

= p′ (θ )+ p′′′ (θ )
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and ∫ 2π

0
ρ2

β (θ )dθ =
∫ 2π

0

(
p′ (θ )+ p′′′ (θ )

)2
dθ .

Moreover, the oriented area of the domain enclosed by β (θ ) is given by

Ã =
1
2

∫ 2π

0

(
p′ (θ )2− p′′ (θ )2

)
dθ .

Since the Minkowski support function of a given domain K is always continuous,
bounded and 2π -periodic, it has a Fourier series of the form

p(θ ) = a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ). (12)

Differentiation of (12) with respect to θ gives us

p′ (θ ) =
∞

∑
n=1

n(−an sinnθ +bn cosnθ), (13)

p′′ (θ ) = −
∞

∑
n=1

n2 (an cosnθ +bn sinnθ) (14)

and

p′′′ (θ ) = −
∞

∑
n=1

n3 (−an sinnθ +bn cosnθ). (15)

Thus by (12), (13), (14), (15) and the Parseval equality we could express these geomet-
ric quantities in terms of the Fourier coefficients of p(θ ) as follows

ρ (θ ) = p(θ )+ p′′ (θ )

= a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ )−
∞

∑
n=1

n2 (an cosnθ +bn sinnθ),

∫ 2π

0
ρ (θ )2dθ = 2

(
πa2

0−
π
2

∞

∑
n=2

(
n2−1

)(
a2

n +b2
n

)
+

π
2

∞

∑
n=2

n2 (n2−1
)(

a2
n +b2

n

))

= 2π

(
a2

0 +
1
2

∞

∑
n=2

(
n2−1

)2 (
a2

n +b2
n

))
,

L = 2πa0, (16)

A = πa2
0−

π
2

∞

∑
n=2

(
n2−1

)(
a2

n +b2
n

)
, (17)

|Ã| = π
2

∞

∑
n=2

n2 (n2−1
)(

a2
n +b2

n

)
(18)
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and ∫ 2π

0
ρ2

β (θ )dθ

=
∫ 2π

0

(
p′ (θ )+ p′′′ (θ )

)2
dθ

=
∫ 2π

0

(
∞

∑
n=1

n(−an sinnθ +bn cosnθ )−
∞

∑
n=1

n3 (−an sinnθ +bn cosnθ )

)2

dθ

=
∫ 2π

0

(
∞

∑
n=1

n
(
n2−1

)
(−an sinnθ +bn cosnθ)

)2

dθ

=π
∞

∑
n=1

n2 (n2−1
)2 (

a2
n +b2

n

)
.

3. Proof of the main theorems

In this section, we firstly prove the Gage-Type isoperimetric inequality (5).

Proof of Theorem 1.5. Applying the Hölder inequality we have

2π =
∫ 2π

0

1√
p(θ )+ p′′ (θ )

√
p(θ )+ p′′ (θ )dθ

�
√∫ 2π

0

1
p(θ )+ p′′ (θ )

dθ

√∫ 2π

0
(p(θ )+ p′′ (θ ))dθ ,

then

4π2 �
∫ 2π

0

1
p(θ )+ p′′ (θ )

dθ
∫ 2π

0

(
p(θ )+ p′′ (θ )

)
dθ

=
∫ 2π

0
k (θ )dθ

∫ 2π

0

1
k (θ )

dθ

=
∫

γ
k2ds

∫
γ
ds

= L
∫

γ
k2ds.

Together with the reverse isoperimetric inequality (3) we have

(
A+

1
4
|Ã|
)∫

γ
k2ds �

4π2
(
A+ 1

4 |Ã|
)

L
=

π
(
4A+ |Ã|

)
L

� πL2

L
= πL, (19)

which implies that ∫
γ
k2ds � 4πL

4A+ |Ã| .
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Moreover, if γ is a circle, by the equality condition in (3), it follows that the
equality in (5) holds clearly. Conversely, if the equality in (5) holds, then we actually

have the equalities in (19) holds. That is to say that L2 = π
(
4A+ |Ã|

)
, then by the

equality conditions in (3), we have γ is a circle. �

Now we turn to prove our main result Theorem 1.6.

Proof of Theorem 1.6. Firstly by the mean value inequality and the Gage-Type
isoperimetric inequality (5) we have

A+
1
4
|Ã|+

∫
γ
k2ds � 2

√(
A+

1
4
|Ã|
)∫

γ
k2ds � 2

√
πL,

thus to prove (7), we only need to prove that the following inequality satisfies under the
condition (6):

α
(∫

γ
k2ds+A+

1
4
|Ã|
)

+ β
∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ

+ δL2 +(σ −α)A+
(

ω − α
4

)
|Ã|

�2α
√

πL+ β
∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 +(σ −α)A+
(

ω − α
4

)
|Ã|

�0

Then by using the expression of the geometric quantities in terms of the Fourier
coefficients of p(θ ) in section 2, we have

2α
√

πL+ β
∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 +(σ −α)A+
(

ω − α
4

)
|Ã|

=2
√

2πα
√

a0+β2π

(
a2

0+
1
2

∞

∑
n=2

(
n2−1

)2 (
a2

n+b2
n

))
+λ π

∞

∑
n=2

n2 (n2−1
)2 (

a2
n+b2

n

)
+ δ (2πa0)

2 +(σ −α)

(
πa2

0−
π
2

∞

∑
n=2

(
n2−1

)(
a2

n +b2
n

))

+
(

ω − α
4

) π
2

∞

∑
n=2

n2 (n2−1
)(

a2
n +b2

n

)
=2

√
2πα

√
a0 +

(
2πβ +4π2δ + π (σ −α)

)
a2

0 + πβ
∞

∑
n=2

(
n2−1

)2 (
a2

n +b2
n

)
+ λ π

∞

∑
n=2

n2 (n2−1
)2 (

a2
n +b2

n

)− π
2

(σ −α)
∞

∑
n=2

(
n2−1

)(
a2

n +b2
n

)
+

π
2

(
ω − α

4

) ∞

∑
n=2

n2 (n2−1
)(

a2
n +b2

n

)
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=2
√

2πα
√

a0 +
(
2πβ +4π2δ + π (σ −α)

)
a2

0

+ π
∞

∑
n=2

((
β + λn2)(n2−1

)− σ −α
2

+
1
2

(
ω − α

4

)
n2
)(

n2−1
)(

a2
n +b2

n

)
,

where we use the fact that a0 = L
2π � 0. Thus it follows from (6) that

2
√

2πα
√

a0 +
(
2πβ +4π2δ + π (σ −α)

)
a2

0 � 0

and

π
∞

∑
n=2

((
β + λn2)(n2−1

)− σ −α
2

+
1
2

(
ω − α

4

)
n2
)(

n2−1
)(

a2
n +b2

n

)
�π

∞

∑
n=2

(
3(β +4λ)− σ −α

2
+2
(

ω − α
4

))
3
(
a2

n +b2
n

)
=

3
2

π
∞

∑
n=2

(6β +24λ −σ +4ω)
(
a2

n +b2
n

)
�0,

which implies that

2α
√

πL+ β
∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 +(σ −α)A+
(

ω − α
4

)
|Ã| � 0.

Then we completes the proof of inequality (7).
Furthermore, if γ is a circle, then the locus of its curvature centers is only a

point, and thus its area Ã = 0 and the curvature radius of the locus of curvature centers
ρβ (θ ) = 0, together with the equality conditions in (2) and (4) we have

L2 = 4π
(
A+ |Ã|)= 4πA

and ∫ 2π

0
ρ (θ )2dθ =

L2 −2πA
π

= 2A.

Hence

α
∫

γ
k2ds+ β

∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã|

=α
∫

γ
k2ds+2βA+4πδA+ σA,

then for the parameters α,β ,λ ,δ ,σ ,ω satisfy{
α = 0

2β +4πδ + σ = 0,
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we have

α
∫

γ
k2ds+ β

∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã| = 0.

On the other hand, if the equality in (7) holds, the inequalities in

α
(∫

γ
k2ds+A+

1
4
|Ã|
)

+ β
∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ

+ δL2 +(σ −α)A+
(

ω − α
4

)
|Ã|

�2α
√

πL+ β
∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 +(σ −α)A+
(

ω − α
4

)
|Ã|,

are all equalities, in particular we have(
A+

1
4
|Ã|
)∫

γ
k2ds = πL.

By the equality condition in (5) we have γ is a circle. Then we complete the proof of
Theorem 1.6. �

Proof of Theorem 1.7. We prove these geometric Bonnesen-type inequalities by
selecting the appropriate parameters α , β , λ , δ , σ , ω satisfying (6). Let α = 1,
β = − 1

π , λ = 2, δ = −1, we obtain (8). Moreover since

∫ 2π

0
ρ (θ )2dθ −

(
L2

π
−2A+ |Ã|

)
=

π
2

∞

∑
n=2

(
2
(
n2−1

)−2−n2)(n2−1
)(

a2
n +b2

n

)
=

π
2

∞

∑
n=3

(
n2−4

)(
n2−1

)(
a2

n +b2
n

)
and the coefficient an , and bn deeply depend on the curve γ we choose, thus the pa-
rameters α = 1, β = − 1

π , λ = 2, δ = −1 such that the inequality (8) is actually an
improved and sharp version of (4). Moreover, by using (8), the inequality (9) satisfies
clearly.

Furthermore if γ is a circle, by the equality conditions in (2) and (4), it follows
that the equalities in (8) and (9) hold apparently. Conversely, if the equality in (8) holds,
since ∫ 2π

0
ρ (θ )2dθ −

(
L2

π
−2A+ |Ã|

)
=

π
2

∞

∑
n=3

(
n2−4

)(
n2−1

)(
a2

n +b2
n

)
,

we have an = bn = 0 for n � 3 and the Minkowski support function of γ is of the form
p(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ .
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Moreover, since

max
θ∈[0,2π]

ρ (θ )2 � 1
2π

∫ 2π

0
ρ (θ )2dθ � 1

2π

(
L2

π
−2A+ |Ã|

)
,

if the equality in (9) holds, we have∫ 2π

0
ρ (θ )2dθ =

L2

π
−2A+ |Ã|.

By the equality condition in (8), it follows that the Minkowski support function of γ is
of the form p(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ .

On the other hand, let α = 1, β = 0, λ = 1, δ = 1, σ = −10, ω = 9
4 , we obtain

(10), let α = 0, β = 1, λ = 1, δ = −2, σ = 30, ω = 0, we can derive (11). Further-
more, if the equalities in (10) and (11) hold, then by using the equality conditions in
(7), we have γ is a circle. �

4. The stability properties of the isoperimetric inequality

Let K and M be two convex domains with respective Minkowski support functions
pK and pM . The most frequently used function to measure the deviation between K and
M is the Hausdorff distance

h1 (K,M) = max
u

|pK (u)− pM (u)|.

Another such measure which appears to be of particular value with respect to stability
problems is the measure that corresponds to the L2 -metric in function space, which is
defined by

h2 (K,M) =
(∫ 2π

0
|pK (θ )− pM (θ )|2dθ

) 1
2

,

where θ is the angle between x-axis and the outward normal vector at the corresponding
point p . It is obvious that h1 (K,M) = 0 or h2 (K,M) = 0 if and only if K = M.

The definition of Steiner disc S(K) which is well-known and the most frequently
used example is as follows:

DEFINITION 4.1. The Steiner disc of a domain K , denoted by S(K) is the circular

disc with radius L(K)
2π and center at the Steiner point −→s (K) which can be defined in

terms of the Minkowski support function pK (θ ) :

−→s (K) =
1
π

∫ 2π

0

−→u (θ ) pK (θ )dθ ,

where −→u (θ ) is a unit tangent vector at the corresponding point p , and L(K) denotes
the perimeter of the domain K .
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We now consider the stability properties of (7) with respect to both Hausdorff
distance h1 and h2 metric.

THEOREM 4.2. Let K be a domain enclosed by a C 2
+ closed and strictly convex

plane curve γ with area A(K) and perimeter L(K) , and let Ã(K) denote the oriented
area of the domain enclosed by the locus of curvature centers of γ , S(K) denotes the
Steiner disc associated with K . Then for arbitrary constants α , β , λ , δ , σ , ω
satisfying ⎧⎪⎪⎨⎪⎪⎩

α,λ � 0
2β +4πδ + σ −α � 0
8β −8λ +4ω −α � 0

6β +24λ +4ω −σ � 0,

(20)

we have

h1 (K,S (K))2

�C (α,β ,λ ,σ ,ω)
(

α
∫

γ
k2ds+β

∫ 2π

0
ρ (θ )2 dθ+λ

∫ 2π

0
ρ2

β (θ )dθ+δL2+σA+ω |Ã|
)

(21)

where k is the curvature of γ , ρ and ρβ respectively denote curvature radii of the
curve γ and the locus of curvature centers,

C (α,β ,λ ,σ ,ω)

=max

{
1,

∞

∑
n=2

1

π
(
(β + λn2)(n2−1)− σ−α

2 + 1
2

(
ω − α

4

)
n2
)
(n2−1)

}
.

The equality holds if γ is a circle and the parameters α , β , λ , δ , σ , ω satisfy{
α = 0

2β +4πδ + σ = 0.

Proof. We may assume −→s (K) = 0, because of (12) and (16), the support func-
tions pK and pS(K) have the following Fourier series:

pK (θ ) =
L(K)
2π

+
∞

∑
n=2

(an cosnθ +bn sinnθ ) (22)

and

pS(K) (θ ) =
L(K)
2π

. (23)
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One can observe that (22) and (23) yield an explicit expression (in terms of the Fourier
coefficients) for the quantity

α
∫

γ
k2ds+ β

∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã|

�2α
√

πL+ β
∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 +(σ −α)A+
(

ω − α
4

)
|Ã|

=2
√

2πα
√

a0 +
(
2πβ +4π2δ + π (σ −α)

)
a2

0

+ π
∞

∑
n=2

((
β + λn2)(n2−1

)− σ −α
2

+
1
2

(
ω − α

4

)
n2
)(

n2−1
)(

a2
n +b2

n

)
(24)

Since it is easily seen that

|an cosnθ +bn sinnθ | �
√

a2
n +b2

n,

it follows that

|pK (θ )− pS(K) (θ )| =
∣∣∣∣∣L(K)

2π
+

∞

∑
n=2

(an cosnθ +bn sinnθ)− L(K)
2π

∣∣∣∣∣
�

∞

∑
n=2

|an cosnθ +bn sinnθ |

�
∞

∑
n=2

√
a2

n +b2
n.

Using Hölder’s inequality, together with (24) we have

h1 (K,S (K))2

�
(

∞

∑
n=2

√
a2

n +b2
n

)2

�2
√

2πα
√

a0 +
(
2πβ +4π2δ + π (σ −α)

)
a2

0

+
∞

∑
n=2

1

π
(
(β + λn2)(n2−1)− σ−α

2 + 1
2

(
ω − α

4

)
n2
)
(n2−1)

×
(

π
∞

∑
n=2

((
β + λn2)(n2−1

)− σ −α
2

+
1
2

(
ω − α

4

)
n2
)(

n2−1
)(

a2
n +b2

n

))

� max

{
1,

∞

∑
n=2

1

π
(
(β + λn2) (n2−1)− σ−α

2 + 1
2

(
ω − α

4

)
n2
)
(n2−1)

}

×
(

2α
√

πL+β
∫ 2π

0
ρ (θ )2 dθ+λ

∫ 2π

0
ρ2

β (θ )dθ+δL2+(σ−α)A+
(

ω−α
4

)
|Ã|
)

�C (α,β ,λ ,σ ,ω)
(

α
∫

γ
k2ds+β

∫ 2π

0
ρ (θ )2 dθ+λ

∫ 2π

0
ρ2

β (θ )dθ+δL2+σA+ω |Ã|
)
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for arbitrary constants α , β , λ , δ , σ , ω satisfying (20).
Furthermore, if γ is a circle, as in the proof of Theorem 1.6 we have

α
∫

γ
k2ds+ β

∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã|

=α
∫

γ
k2ds+2βA+4πδA+ σA,

then for the parameters α , β , λ , δ , σ , ω satisfying{
α = 0

2β +4πδ + σ = 0,

we have

α
∫

γ
k2ds+ β

∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã| = 0.

It is obvious that h1 (K,S(K)) = 0, thus the equality in (21) holds. �

THEOREM 4.3. Under the same assumptions of Theorem 4.2, then for arbitrary
constants α , β , λ , δ , σ , ω satisfying⎧⎪⎪⎨⎪⎪⎩

α,λ � 0
2β +4πδ + σ −α � 0
8β −8λ +4ω −α � 0

18β +72λ −3σ +12ω −2 � 0,

(25)

we have

h2 (K,S (K))2 � α
∫

γ
k2ds+ β

∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã|.
(26)

The equality holds if γ is a circle and the parameters α , β , λ , δ , σ , ω satisfy{
α = 0

2β +4πδ + σ = 0.

Moreover if the equality in (26) holds and the parameters α , β , λ , δ , σ , ω satisfy
(25), then γ is a circle.

Proof. As in the proof of Theorem 4.2, we use Parseval’s equality, (22) and (23)
to deduce that

h2 (K,S (K))2 =
∫ 2π

0
|pK (θ )− pS(K) (θ )|2dθ = π

∞

∑
n=2

(
a2

n +b2
n

)
,
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together with (24) one gets that

2α
√

πL+ β
∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 +(σ −α)A+
(

ω − α
4

)
|Ã|

−h2 (K,S (K))2

=2
√

2πα
√

a0 +
(
2πβ +4π2δ + π (σ −α)

)
a2

0−π
∞

∑
n=2

(
a2

n +b2
n

)
+ π

∞

∑
n=2

((
β + λn2)(n2−1

)− σ −α
2

+
1
2

(
ω − α

4

)
n2
)(

n2−1
)(

a2
n +b2

n

)
=2

√
2πα

√
a0 +

(
2πβ +4π2δ + π (σ −α)

)
a2

0

+ π
∞

∑
n=2

(((
β + λn2)(n2−1

)− σ −α
2

+
1
2

(
ω − α

4

)
n2
)(

n2−1
)−1

)(
a2

n +b2
n

)
.

Hence for arbitrary constants α , β , λ , δ , σ , ω satisfying (25), we have

2
√

2πα
√

a0 +
(
2πβ +4π2δ + π (σ −α)

)
a2

0 � 0

and

π
∞

∑
n=2

(((
β + λn2)(n2−1

)− σ −α
2

+
1
2

(
ω − α

4

)
n2
)(

n2−1
)−1

)(
a2

n +b2
n

)
�π

∞

∑
n=2

(
3

(
3(β +4λ)− σ −α

2
+2
(

ω − α
4

))
−1

)(
a2

n +b2
n

)
=

π
2

∞

∑
n=2

(18β +72λ −3σ +12ω −2)
(
a2

n +b2
n

)
�0

which implies that

h2 (K,S (K))2

�2α
√

πL+ β
∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 +(σ −α)A+
(

ω − α
4

)
|Ã|

�α
∫

γ
k2ds+ β

∫ 2π

0
ρ (θ )2 dθ + λ

∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã|.

Furthermore, if γ is a circle and the parameters α , β , λ , δ , σ , ω satisfy{
α = 0

2β +4πδ + σ = 0,

as in the proof of Theorem 4.2, the equality in (26) holds. Conversely, if the equality in
(26) holds and the parameters α , β , λ , δ , σ , ω satisfy (25), then as in the proof of
Theorem 1.6, γ is a circle. This completes the proof of Theorem 4.3. �



912 C.-J. LI AND X. GAO

REMARK 4. The combination of Theorem 4.2 and 4.3 leads to

max
{

h1 (K,S (K))2 ,h2 (K,S (K))2
}

�C (α,β ,λ ,σ ,ω)
(

α
∫

γ
k2ds+β

∫ 2π

0
ρ (θ )2 dθ+λ

∫ 2π

0
ρ2

β (θ )dθ+δL2+σA+ω |Ã|
)

,

where

C (α,β ,λ ,σ ,ω)

= max

{
1,

∞

∑
n=2

1

π
(
(β + λn2) (n2−1)− σ−α

2 + 1
2

(
ω − α

4

)
n2
)
(n2−1)

}
,

which states that the isoperimetric inequality (7) does have well stability properties with
respect to both Hausdorff distance and L2 -metric.
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