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ON THE STABILITY OF METRIC SEMIGROUP HOMOMORPHISMS

HAMID REZAEI AND SOON-MO JUNG

(Communicated by J. Pečarić)

Abstract. In this paper, we investigate the stability of the homomorphism equation f (x◦1 y) =
f (x)◦2 f (y) between semigroups (G1,◦1) and (G2,◦2) , where the binary operation ◦i is square-
symmetric on the set Gi for i = 1,2 . Our results generalize the classical theorem of Hyers
concerning the stability of the Cauchy additive equation.

1. Introduction

The first stability problem concerning group homomorphisms was raised by Ulam
[14] in 1940. Let G1 be a group and let G2 be a metric group with a metric d(·, ·) .
Given ε > 0 , does there exist a δ > 0 such that if a function h : G1 → G2 satisfies
the inequality d(h(xy),h(x)h(y)) < δ for all x,y ∈ G1 , then there is a homomorphism
H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1 ?

If the answer is affirmative, we say that the functional equation for homomor-
phisms is stable.

D. H. Hyers [6] answered the question of Ulam for the case where G1 and G2 are
Banach spaces. This result of Hyers is stated as follows:

THEOREM 1. (Hyers) Let f : X1 → X2 be a function between Banach spaces such
that ‖ f (x + y)− f (x)− f (y)‖ � δ for some δ > 0 and for all x,y ∈ X1 . Then the
limit A(x) = limn→∞ 2−n f (2nx) exists for each x ∈ X1 and A : X1 → X2 is the unique
additive function such that ‖ f (x)−A(x)‖ � δ for every x ∈ X1 . Moreover, if f (tx) is
continuous in t for each fixed x ∈ X1 , then the function A is linear.

Hyers’ result was generalized to the stability involving a sum of powers of norms
by T. Aoki [1]. In 1978, Th. M. Rassias [13] addressed the Hyers’s stability theorem
and attempted to weaken the condition for the bound of the norm of Cauchy difference
f (x+y)− f (x)− f (y) and proved a considerably generalized result of Hyers by making
use of a direct method:
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THEOREM 2. (Rassias) Let E1 and E2 be Banach spaces and let f : E1 → E2 be
a mapping such that f (tx) is continuous in t for each fixed x . Assume that there exist
θ � 0 and p ∈ [0,1) such that

‖ f (x+ y)− f (x)− f (y)‖ � θ
(‖x‖p +‖y‖p) (x,y ∈ E1).

Then there exists a unique linear mapping T : E1 → E2 such that

‖ f (x)−T (x)‖ � 2θ‖x‖p

2−2p (x ∈ E1).

For the last thirty years, many results concerning the Hyers-Ulam-Rassias stability
of various functional equations have been obtained, and a number of definitions of
stability have been introduced (see [7, 4, 8]).

For a given nonempty set G , the operation ◦ : G×G → G is called square-
symmetric provided it satisfies the following identity

(x◦ y)◦ (x◦ y) = (x◦ x)◦ (y◦ y) (x,y ∈ G).

A semigroup is said to be square-symmetric provided the corresponding operation is
square-symmetric. It is easy to see that any abelian semigroup is square-symmetric and
a group is square-symmetric if and only if it is abelian. Moreover, a unital ring (R,+,◦)
is commutative if and only if ◦ is square-symmetric. A generalization of the Hyers-
Ulam-Rassias stability, using square-symmetric operations, has been obtained by Pales
et al. [11]. Indeed, they investigated the stability of the following family of functional
equations

f (x◦ y) = H( f (x), f (y)) (x,y ∈ S),

where S is a nonempty set, ◦ : S× S → S is a square-symmetric binary operation,
and H : G×G → G is a G-homogeneous function of two variables, i.e., H satisfies
H(uv,uw) = uH(v,w) for u,v,w ∈G and G is a semigroup of the real or complex field.

In this paper, by making use of the direct method and fixed point method, we will
prove the Hyers-Ulam stability of the following functional equation

f (x◦1 y) = f (x)◦2 f (y) (1)

between arbitrary square-symmetric semigroups. As consequences of this result, we
obtain the stability of several functional equations, which have been extensively inves-
tigated by a number of authors.

2. Hyers-Ulam stability of (1): direct method

In this section, we will prove the Hyers-Ulam stability of the functional equation
(1). The following notation is useful for stating our main theorem: Let G be a nonempty
set which is closed under the square-symmetric operation ◦ . For any function f :
G×G→ [0,∞) , we define

U( f ,◦) = inf
{

θ � 0 : f (x◦ x,y◦ y) � θ f (x,y) for all x,y ∈ G
}
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and
L( f ,◦) = sup

{
θ � 0 : f (x◦ x,y◦ y) � θ f (x,y) for all x,y ∈ G

}
.

Note that if f (x,y) = 0 implies f (x◦ x,y◦ y) = 0 for every x,y ∈ G (for example,
if f is a metric on G), then we have

U( f ,◦) = sup

{
f (x◦ x,y◦ y)

f (x,y)
: x,y ∈ G and f (x,y) �= 0

}

and

L( f ,◦) = inf

{
f (x◦ x,y◦ y)

f (x,y)
: x,y ∈ G and f (x,y) �= 0

}
.

THEOREM 3. Assume that Gi is a nonempty set which is closed under the square-
symmetric operation ◦i for i = 1,2 . Let (G2,d) be a complete metric space such
that the operation ◦2 is continuous and the mapping x �→ x ◦2 x is surjective on G2 .
Moreover, assume that β : G1×G1 → [0,∞) is a function such that

−∞ <U(β ) := U(β ,◦1) < L(d,◦2) =: L(d) < ∞.

If a mapping f : G1 → G2 is almost homomorphism, i.e., if f satisfies

d( f (x◦1 y), f (x)◦2 f (y)) � β (x,y) (x,y ∈ G1), (2)

then there exists a unique homomorphism A : G1 → G2 such that

d( f (x),A(x)) � β (x,x)
L(d)−U(β )

(x ∈ G1). (3)

Proof. Let α1 := U(β ) and α2 := L(d) . Then α1 < α2 and by the definitions of
U(β ) and L(d) , we have

β (x◦1 x,y◦1 y) � α1β (x,y) (x,y ∈ G1)

and
d(x◦2 x,y◦2 y) � α2d(x,y) (x,y ∈ G2).

In other words,
β (h1(x),h1(y)) � α1β (x,y) (x,y ∈ G1) (4)

and
d(h2(x),h2(y)) � α2d(x,y) (x,y ∈ G2), (5)

where hi(x) = x◦i x for x ∈ Gi and i = 1,2. Putting y = x in (2) yields

d( f (h1(x)),h2( f (x))) � β (x,x) (x ∈ G1). (6)

Since the operations are square-symmetric, the function hi is a homomorphism
for i = 1,2, i.e.,

hi(x◦i y) = hi(x)◦i hi(y) (x,y ∈ Gi). (7)
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In particular, h2 : G2 →G2 is an isomorphism. In fact, by the assumption, the mapping
x �→ x ◦2 x is surjective and by (5), h2 is one-to-one. Now, it follows from (4) and (5)
that

β (hn
1(x),h

n
1(y)) � αn

1 β (x,y) (x,y ∈ G1) (8)

and
d(hn

2(x),h
n
2(y)) � αn

2d(x,y) (x,y ∈ G2). (9)

Further, if x and y are replaced by h−n
2 (x) and h−n

2 (y) in the last relation, respectively,
then we get

d(h−n
2 (x),h−n

2 (y)) � α−n
2 d(x,y) (x,y ∈ G2). (10)

Here hn
i denotes the n -fold iteration of hi , i.e.,

hn
i = hi ◦ · · · ◦hi︸ ︷︷ ︸

n-times

and h−n
2 denotes (h−1

2 )n .
Let qn(x) := h−n

2 f (hn
1(x)) for every n � 1 and x ∈ G1 . Make use of (6), (8), and

(10) to see

d
(
qn+1(x),qn(x)

)
= d

(
h−n−1

2 f (hn+1
1 x),h−n

2 f (hn
1x)

)
= d

(
h−n−1

2

(
f h1(hn

1x)
)
,h−n−1

2

(
h2 f (hn

1x)
))

� α−n−1
2 d

(
f h1(hn

1x),h2 f (hn
1x)

)
� α−n−1

2 β (hn
1(x),h

n
1(x))

� α−1
2

(
α1α−1

2

)nβ (x,x).

Hence, we conclude that

d(qn+1(x),qn(x)) � α−1
2

(
α1α−1

2

)nβ (x,x) (x ∈ G1, n � 1) (11)

and α1α−1
2 < 1, which implies that the sequence {qn(x)} is a Cauchy sequence. Since

(G2,d) is complete, there exists a limit function A(x) := limn→∞ qn(x) .
We now apply induction on n to prove that

d(qn(x), f (x)) �
n−1

∑
i=0

α−1
2

(
α1α−1

2

)iβ (x,x) (x ∈ G1, n � 1). (12)

Fix x ∈ G1 . It follows from (6) and (10) that

d(q1(x), f (x)) = d
(
h−1

2 f (h1(x)), f (x)
)

� d
(
h−1

2 f (h1(x)),h−1
2 (h2( f (x)))

)
� α−1

2 d( f h1(x),h2 f (x))

� α−1
2 β (x,x).
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Now, suppose (12) holds for some integer n � 1. Then by using (11) and (12), we have

d(qn+1(x), f (x)) � d(qn+1(x),qn(x))+d(qn(x), f (x))

� α−1
2

(
α1α−1

2

)nβ (x,x)+
n−1

∑
i=0

α−1
2

(
α1α−1

2

)iβ (x,x)

=
n

∑
i=0

α−1
2

(
α1α−1

2

)iβ (x,x).

Letting n → ∞ in (12), we get

d(A(x), f (x)) � β (x,x)
α2−α1

=
β (x,x)

L(d)−U(β )
(x ∈ G1).

We now prove that A : G1 → G2 is a homomorphism. By the definition of qn and
the fact that h2 is a homomorphism, together with (2), (7), (8), and (10), we conclude
that

d(qn(x◦1 y),qn(x)◦2 qn(y)) = d
(
h−n

2 f (hn
1(x◦1 y)),qn(x)◦2 qn(y)

)
= d

(
h−n

2 f (hn
1(x◦1 y)),h−n

2 (hn
2(qn(x)◦2 qn(y)))

)
� α−n

2 d
(
f (hn

1(x◦1 y)),hn
2(qn(x)◦2 qn(y))

)
= α−n

2 d
(
f (hn

1(x◦1 y)),hn
2(qn(x))◦2 hn

2(qn(y))
)

= α−n
2 d( f (hn

1x◦1 hn
1y), f (hn

1x)◦2 f (hn
1y))

� α−n
2 β (hn

1(x),h
n
1(y))

� α−n
2 αn

1 β (x,y)

for every x,y ∈ G1 . Therefore, we have

d(qn(x◦1 y),qn(x)◦2 qn(y)) �
(
α1α−1

2

)nβ (x,x) (x,y ∈ G1, n � 1).

Applying the continuity of operation ◦2 , considering 0 < α1α−1
2 < 1, and letting n →

∞ in the last inequality, we conclude that A is indeed a homomorphism.

It remains to prove that A : G1 → G2 is the unique homomorphism satisfying (3).
Assume that there exists another homomorphism A′ : G1 → G2 satisfying (3). Since hi

is a homomorphism for i = 1,2, we see that Ah1x = h2Ax and A′h1x = h2A′x and more
generally

Ahn
1x = hn

2Ax and A′hn
1x = hn

2A
′x (x ∈ G1, n � 1).

Hence, we have

A(x) = h−n
2 A(hn

1x) and A′(x) = h−n
2 A′(hn

1x) (x ∈ G1, n � 1).
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By the triangle inequality, (3), (8), and (10), we obtain

d(A(x),A′(x)) = d
(
h−n

2 A(hn
1x),h

−n
2 A′(hn

1x)
)

� α−n
2 d(A(hn

1x),A
′(hn

1x))
� α−n

2

(
d(A(hn

1x), f (hn
1x))+d( f (hn

1x),A
′(hn

1x))
)

� 2α−n
2

β (hn
1x,h

n
1x)

α2 −α1

� 2
(
α1α−1

2

)n β (x,x)
α2−α1

for all x ∈ G1 and n � 1. Since 0 < α1α−1
2 < 1, letting n → ∞ , we get A(x) = A′(x)

for all x ∈ G1 , which ends the proof. �

Recall that if T is a bounded linear operator on a Banach space X , then

‖T‖ = sup

{‖Tx‖
‖x‖ : x ∈ X ,x �= 0

}
.

Moreover, if T is invertible, then

‖T−1‖ = inf

{‖Tx‖
‖x‖ : x ∈ X ,x �= 0

}
.

COROLLARY 1. Let (G, ·) be an abelian semigroup, X a Banach space, x0 ∈ X ,
and let T1 and T2 be bounded linear operators on X such that T1T2 = T2T1 and T1 +T2

is invertible. Assume that β : G×G → [0,∞) is a function such that U(β , ·) < ‖(T1 +
T2)−1‖ . If f : G → X is a function satisfying

‖ f (xy)−T1( f (x))−T2( f (y))− x0‖ � β (x,y) (x,y ∈ G),

then there exists a unique mapping A : G → X such that

A(xy) = T1A(x)+T2A(y)+ x0 (x ∈ G)

and

‖ f (x)−A(x)‖ � β (x,x)
‖(T1 +T2)−1‖−U(β )

(x ∈ G).

Proof. Let us define the binary operations ◦1 and ◦2 on G and X by

x◦1 y = xy (x,y ∈ G)

and
x◦2 y = T1x+T2y+ x0 (x,y ∈ X).
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We claim that ◦2 is square-symmetric: To see this, we note that

(x◦2 x)◦2 (y◦2 y) = [(T1 +T2)(x)+ x0]◦2 [(T1 +T2)(y)+ x0]
= T1[(T1 +T2)(x)+ x0]+T2[(T1 +T2)(y)+ x0]+ x0

= (T1 +T2)(T1x+T2y+ x0)+ x0

= (T1 +T2)(x◦2 y)+ x0

= (x◦2 y)◦2 (x◦2 y)

for every x,y ∈ X . Hence, ◦2 is square-symmetric. Since (G, ·) is an abelian semi-
group, ◦1 is also square-symmetric.

Let d(x,y) = ‖x− y‖ . Then we have

L(d) = L(d, ·)
= inf

{
d(x◦2 x,y◦2 y)

d(x,y)
: x,y ∈ X ,x �= y

}

= inf

{‖[(T1 +T2)(x)+ x0]− [(T1 +T2)(y)+ x0]‖
‖x− y‖ : x,y ∈ X , x �= y

}

= inf

{‖(T1 +T2)(x− y)‖
‖x− y‖ : x,y ∈ X , x �= y

}

= inf

{‖(T1 +T2)(x)‖
‖x‖ : x ∈ X , x �= 0

}

= ‖(T1 +T2)−1‖.

Therefore, U(β ) < ‖(T1 + T2)−1‖ = L(d) . Since T1 + T2 is invertible and x ◦2 x =
(T1 +T2)x+x0 , the mapping x �→ x◦2 x is bounded and surjective. Finally, by Theorem
3, the assertion is true. �

If T1 and T2 are identity operators and x0 = 0, then the Hyers-Ulam stability
of Eq. (1) is an immediate consequence of Corollary 1. We remark that the additive
functional equation f (x + y) = f (x) + f (y) and the logarithmic functional equation
f (xy) = f (x)+ f (y) are special cases of Eq. (1).

Let X be a normed space and let H : X ×X → X be a function such that there
exists a nonnegative real number α with

H(x,x) = αx and H(αx,αy) = αH(x,y) (x,y ∈ X). (13)

Then the binary operation ◦ : X ×X → X defined by

x◦ y := H(x,y) (x,y ∈ X)



942 H. REZAEI AND S.-M. JUNG

is square-symmetric. To see this, we note that

(x◦ x)◦ (y◦ y) = H((x◦ x),(y◦ y))
= H(H(x,x),H(y,y))
= H(αx,αy) = αH(x,y)
= H(H(x,y),H(x,y)) = H(x,y)◦H(x,y)
= (x◦ y)◦ (x◦ y).

This observation leads to the following proposition.

PROPOSITION 1. Let X1 be a normed space, X2 a Banach space, and let Hi :
Xi ×Xi → Xi be functions satisfying (13) for all x,y ∈ Xi and for nonnegative real
numbers α1,α2 . Assume that a function f : X1 → X2 satisfies

‖ f (H1(x,y))−H2( f (x), f (y))‖ � θ (‖x‖p +‖y‖p) (x,y ∈ X1),

where θ and p are nonnegative constants. If α p
1 < α2 , then there exists a unique

mapping A : X1 → X2 such that

‖ f (x)−A(x)‖ � 2θ‖x‖p

α2 −α p
1

(x ∈ X1)

and
A(H1(x,y)) = H2(A(x),A(y)) (x,y ∈ X1).

Proof. If we define x ◦i y := Hi(x,y) , then the above observation implies that the
binary operation ◦i is square-symmetric, x◦2 x = H2(x,x) = α2x for every x ∈ X2 , and

‖x◦2 x− y◦2 y‖ = ‖α2x−α2y‖ = α2‖x− y‖.

Hence the mapping x → x◦2 x is surjective, the operation ◦2 is continuous and L(d) =
α2 . On the other hand, if we put β (x,y) := θ

(‖x‖p +‖y‖p
)
, then

β (x◦1 x,y◦1 y) = β (α1x,α1y) = θα p
1

(‖x‖p +‖y‖p) = α p
1 β (x,y).

Thus, we obtain U(β ) = α p
1 .

According to Theorem 3, there exists a unique homomorphism A : X1 → X2 such
that

‖ f (x)−A(x)‖ � 2θ‖x‖p

L(d)−U(β )
=

2θ‖x‖p

α2 −α p
1

(x ∈ X1).

For the verification of the last assertion, we have

A(H1(x,y)) = A(x◦1 y) = A(x)◦2 A(y) = H2(A(x),A(y)) (x,y ∈ X1),

which ends the proof. �
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EXAMPLE 1. Let A be a C∗ -algebra and a∈A a self-adjoint element, i.e., a= a∗ .
Then a is said to be positive if it is of the form a = bb∗ for some b ∈ A . The set of
positive elements of A is denoted by A+ . Note that A+ is a closed convex cone (see
[5]). It is well-known that for a positive element a and a positive integer n there exists
a unique positive element x ∈ A+ such that a = xn . We denote such an x by n

√
a .

In view of Proposition 1, the functional equation

f
(√

ax2 +by2
)

=
√

a f (x)2 +b f (y)2

where f : A+ → A+ , a,b > 0, and
√

a+b > 1, is stable in the sense of Hyers-Ulam.
To see this, consider the function H : A+×A+ → A+ defined by

H(x,y) =
√

ax2 +by2.

Then, we have H(x,x) = (
√

a+b)x and

H
(√

a+bx,
√

a+by
)

=
√

a+b
√

ax2 +by2 =
√

a+bH(x,y).

By Proposition 1 for α2 =
√

a+b and p = 0, we see that the above equation is stable
in the sense of Hyers-Ulam.

3. Hyers-Ulam stability of (1): fixed point method

In this section, using the fixed point method, we will prove the Hyers-Ulam stabil-
ity of the functional equation (1) for Banach spaces.

For a nonempty set X , we introduce the definition of the generalized metric on
X . A function d : X ×X → [0,∞] is called a generalized metric on X if and only if d
satisfies

• d(x,y) = 0 if and only if x = y ;

• d(x,y) = d(y,x) for all x,y ∈ X ;

• d(x,z) � d(x,y)+d(y,z) for all x,y,z ∈ X .

We remark that the only difference between the generalized metric and the usual
metric is that the range of the former is permitted to include the infinity. We now
introduce one of the fundamental results of the fixed point theory. For the proof, we
refer to [9].

THEOREM 4. Let (X ,d) be a generalized complete metric space. Assume that
Λ : X → X is a strictly contractive operator with the Lipschitz constant L < 1 , i.e.,

d(Λg,Λh) � Ld(g,h) (g,h ∈ X ).

If there exists a nonnegative integer n0 such that d(Λn0+1 f ,Λn0 f ) < ∞ for some f ∈
X , then the following statements are true:
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(i) The sequence {Λn f} converges to a fixed point A of Λ;

(ii) A is the unique fixed point of Λ in X ∗ = {g ∈ X : d(Λn0 f ,g) < ∞} ;

(iii) If g ∈ X ∗ , then

d(g,A) � 1
1−L

d(Λg,g).

In 2003, V. Radu proved the Hyers-Ulam-Rassias stability of the additive func-
tional equation (1) by using the fixed point method (see [12, 2, 10]). In what follows,
we give a fixed point version of the proof of Theorem 3.

Proof. Letting y = x in (2), we get

d( f h1(x),h2 f (x)) � β (x,x) (x ∈ G1).

Consider the set X := { f : f : G1 →G2 is a function} and define the generalized metric
on X by

D(g,h) = inf
{

μ ∈ (0,∞) : d(g(x),h(x)) � μβ (x,x) for all x ∈ G1},
where we set inf /0 = ∞ as usual. It is easy to show that (X ,D) is a complete metric
space (see [10]).

We now consider the mapping Λ : X → X defined by

(Λg)(x) = h−1
2 g(h1x) (x ∈ G1).

For given g,h ∈ X , d(g(x),h(x)) � D(g,h)β (x,x) . Hence, it follows from (10) that

d((Λg)(x),(Λh)(x)) = d
(
h−1

2 g(h1x),h−1
2 h(h1x)

)
� α−1

2 d(g(h1x),h(h1x))

� α−1
2 D(g,h)β (h1x,h1x)

� α1α−1
2 D(g,h)β (x,x)

for all x ∈ G1 . By the definition of D , we have

D(Λg,Λh) � α1α−1
2 D(g,h) (g,h ∈ X), (14)

which implies that Λ is strictly contractive.
By (6), we get

d( f (x),(Λ f )(x)) = d( f (x),h−1
2 f (h1x)) � α−1

2 d(h2 f (x), f (h1x)) � α−1
2 β (x,x)

for all x∈G1 . Therefore, D(Λ f , f ) � α−1
2 < ∞ . By Theorem 4, there exists a mapping

A : X → X satisfying the following conditions:

(i) A is a fixed point of Λ , i.e., ΛA = h−1
2 Ah1 = A and hence, A(h1(x)) = h2(A(x))

for all x ∈ G1 . Moreover, A is the unique fixed point of Λ in the set X∗ := {g ∈
X : D( f ,g) < ∞} , which implies that d( f (x),A(x)) � D( f ,A)β (x,x) ;
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(ii) D(Λn f ,A) → 0 as n → ∞ , i.e., A(x) = limn→∞ h−n
2 f (hn

1x) ;

(iii) By Theorem 4 (iii) and (14), we conclude that

D( f ,A) � 1

1−α1α−1
2

D( f ,Λ f ) <
α−1

2

1−α1α−1
2

=
1

α2 −α1
,

which implies that

d( f (x),A(x)) � D( f ,A)β (x,x) � β (x,x)
α2 −α1

=
β (x,x)

L(d)−U(β )
.

Finally, we can prove that A : G1 → G2 is a unique homomorphism as we did in
the proof of Theorem 3. �

In 1993, J. Chmielinski and J. Tabor [3] investigated the stability of the Pexider
equation

f (x+ y) = g(x)+h(y).

It will be interesting to investigate the generalized Pexider equation

f (x◦1 y) = g(x)◦2 h(y),

where f ,g,h : (G1,◦1)→ (G2,◦2) are functions between square-symmetric semigroups
(G1,◦1) and (G2,◦2) .
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