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AN OPERATOR α –GEOMETRIC MEAN INEQUALITY

XIAOHUI FU

(Communicated by Y. Seo)

Abstract. We square operator α -geometric mean inequality as follows: If 0 < m1 � A � M1
and 0 < m2 � B � M2 for some positive real numbers m1 < M1 and m2 < M2 , then for every
unital positive linear map Φ and α ∈ [0,1] , the following inequality holds:

(Φ(A)�αΦ(B))2 �
(

(M1 +m1)2((M1 +m1)−1(M2 +m2))2α

4(m2M2)α (m1M1)(1−α)

)2

Φ2(A�αB).

1. Introduction

We continue the recent study on squaring operator inequalities; see [4, 5]. Let
B(H ) denote the C∗ -algebra of all bounded linear operators on a complex Hilbert
space (H ,〈·, ·〉) with the identity I . Throughout the paper, a capital letter means an
operator in B(H ) . An operator A is called positive if 〈Ax,x〉 � 0 for all x ∈ H ,
and we then write A � 0. An operator A is said to be strictly positive (i.e. A > 0)
if it is a positive invertible operator. In this paper, the inequality between operators is
in the sense of Löewner partial order, that is, B � A means B−A � 0. A linear map
Φ : B(H ) → B(K ) is called (strictly) positive if (A > 0) A � 0 implies (Φ(A) >
0) Φ(A) � 0. Φ is said to be unital if Φ(I) = I. The operator norm is denoted by
‖ · ‖ . For A,B > 0 and α ∈ [0,1] , the geometric mean A�αB is defined by A�αB =
A

1
2 (A− 1

2 BA− 1
2 )αA

1
2 .

Seo [8, Theorem 3] gave α -geometric mean inequality as follows:

THEOREM 1.1. Let Φ : B(H ) → B(K ) be a unital positive linear map and let
A and B be positive operators such that 0 < m2

1 � A � M2
1 and 0 < m2

2 � B � M2
2 for

some positive real numbers m1 < M1 and m2 < M2 . Then for α ∈ [0,1]

Φ(A)�α Φ(B) � K (m,M,α)−1 Φ(A�αB) (1.1)

where we suppose ( m2
M1

)2 = m, (M2
m1

)2 = M and the generalized Kantorovich constant
K (m,M,α) [2, Definition 2.2] is defined by

K (m,M,α) =
mMα −Mmα

(α −1)(M−m)

(
α −1

α
Mα −mα

mMα −Mmα

)α

for any real number α ∈ R .
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Let 0 < m � A � M and Φ be positive unital linear map. Marshall and Olkin [6]
proved the following operator Kantorovich inequality:

Φ(A−1) � (M +m)2

4Mm
Φ(A)−1. (1.2)

It is surprising that Lin [5, Theorem 2.8] showed that the operator inequality (1.2) can
be squared:

Φ2(A−1) �
(

(M +m)2

4Mm

)2

Φ(A)−2. (1.3)

Inspired by Lin’s idea in obtaining the inequality (1.3), we prove a second power-
ing of the operator inequality (1.1) in this paper: It is well known that ts (0 � s � 1)
is an operator monotone function and not so is t2 ; see [7]. However, by the opera-
tor inequality (1.1) we can say that t2 is order preserving in the following sense: If
0 < m1 � A � M1 and 0 < m2 � B � M2 for some positive real numbers m1 < M1

and m2 < M2 , then for every unital positive linear map Φ and α ∈ [0,1] , the following
inequality holds:

(Φ(A)�α Φ(B))2 �
(

(M1 +m1)2((M1 +m1)−1(M2 +m2))2α

4(m2M2)α(m1M1)(1−α)

)2

Φ2(A�αB).

2. Main result

We start our work with the Lemmas which describes Ando’s inequality.

LEMMA 2.1. [7, Theorem 1.17] Let Φ be a unital strictly positive linear map
and A > 0 . Then

Φ−1(A) � Φ(A−1) . (2.1)

LEMMA 2.2. [3] Let Φ be a unital positive linear map and A, B be positive
operators. Then for α ∈ [0,1]

Φ(A�αB) � Φ(A)�α Φ(B) . (2.2)

LEMMA 2.3. [1] Let A,B > 0 . Then the following norm inequality holds:

‖AB‖ � 1
4
‖A+B‖2. (2.3)

Now we give our main result.

THEOREM 2.4. Let Φ : B(H ) → B(K ) be a unital positive linear map and let
A and B be positive operators such that 0 < m1 � A � M1 and 0 < m2 � B � M2 for
some positive real numbers m1 < M1 and m2 < M2 . Then for α ∈ [0,1]

(Φ(A)�α Φ(B))2 �
(

(M1 +m1)2((M1 +m1)−1(M2 +m2))2α

4(m2M2)α(m1M1)1−α

)2

Φ2(A�αB). (2.4)
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Proof. As (2.4) is equivalent to

‖(Φ(A)�α Φ(B))Φ−1(A�αB))‖ � (M1 +m1)2((M1 +m1)−1(M2 +m2))2α

4(m2M2)α(m1M1)1−α . (2.5)

It is easy to obtain that

(M1 −A)(m1−A)A−1 = A+m1M1A
−1−m1−M1 � 0,

and hence

m1M1Φ(A−1)+ Φ(A) � M1 +m1. (2.6)

In the same way, we also have

m2M2Φ(B−1)+ Φ(B) � M2 +m2. (2.7)

Whence, by the α -geometric means of both sides (2.6) and (2.7), we have

(m1M1Φ(A−1)+ Φ(A))�α(m2M2Φ(B−1)+ Φ(B))
� (M1 +m1)�α (M2 +m2),

(2.8)

Since the α -geometric mean operation is subadditivity, we can see

(m2M2)α(m1M1)1−α(Φ−1(A�αB))+ Φ(A)�α Φ(B)

� (m1M1Φ(A−1))�α (m2M2Φ(B−1))+ (Φ(A)�α Φ(B)) (by (2.1) and (2.2))

= (m2M2)α (m1M1)1−α(Φ(A−1)�α Φ(B−1))+ (Φ(A)�α Φ(B))

� (m1M1Φ(A−1)+ Φ(A))�α(m2M2Φ(B−1)+ Φ(B)).

(2.9)

So

‖(Φ(A)�α Φ(B))((m2M2)α (m1M1)1−αΦ−1(A�αB))‖
� 1

4
‖(Φ(A)�α Φ(B)+ (m2M2)α (m1M1)1−αΦ−1(A�αB))‖2 (by (2.3))

� 1
4
‖(m1M1Φ(A−1)+ Φ(A))�α(m2M2Φ(B−1)+ Φ(B))‖2 (by (2.9))

� 1
4
((M1 +m1)�α(M2 +m2))2 (by (2.8))

=
(M1 +m1)2((M1 +m1)−1(M2 +m2))2α

4
,

which implies that

‖(Φ(A)�α Φ(B))Φ−1(A�αB))‖ � (M1 +m1)2((M1 +m1)−1(M2 +m2))2α

4(m2M2)α(m1M1)1−α .

Thus, (2.5) holds. This completes the proof of Theorem 2.4. �
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REMARK 2.5. It is easy to know that the coefficient

K

(
m2

M1
,
M2

m1
,α

)−1

in (1.1) is smaller than

(M1 +m1)2((M1 +m1)−1(M2 +m2))2α

4(m2M2)α (m1M1)(1−α)

in (2.4), but we obtain the relation between (Φ(A)�α Φ(B))2 and Φ2(A�αB) .

CONJECTURE 2.6. Under the same condition as in Theorem 1.1, the following
inequality holds:

(Φ(A)�α Φ(B))2 � K (m,M,α)−2 Φ2(A�αB).
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