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THE LOGARITHMIC COEFFICIENT INEQUALITY FOR
CLOSE-TO-CONVEX FUNCTIONS OF COMPLEX ORDER

MURAT CAGLAR

(Communicated by J. Pecari¢)

Abstract. We prove that if n > 2 for each close-to-convex functions of complex order b in ./
whose 1 —th logarithmic coefficients ¥, satisfies |y,| < An~!logn, where A is an absolute
constant.

1. Introduction

Let o denote the class of functions f analytic in the unitdisk  ={z€ C: |z| <
1} having the power series

f(z)=z+ianz", ICEU. (1.1)
n=2

Let . denote the class of functions f € &/ which are univalent in % and .%*
point out the subset of . consisting of those functions f € .7 for which f(%) is
starlike with respect to 0. It is well known that if f € .*, then

{80

for all z € % . Aouf and Nasr [1] introduced the class .#*(b) of starlike functions of
order b, where b is a nonzero complex number, as follows:

Re{1+%<zﬁg)—1>}>o, LEU.

Let ., denote the set of those functions f € . for which there exists a function
g € . such that
!
Re {Zf @) } >0,
8(2)
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for all z € % . The elements of .. are called close-to-convex functions. Clearly,
S C Se. Al-Amiri and Fernando [2] introduced the class .7, (D) of close-to-convex
functions of complex order b as follows:

Re{1+l<zf/(z)—l)}>0, rew, (1.2)
b\ g(2)

for some starlike function g.
Associated with each f(z) in .7 is a well defined logarithmic function

log@:22%zn, zEU. (1.3)
g n=1

The numbers ¥, are called the logarithmic coefficients of f(z). Thus the Koebe func-
tion k(z) = z(1 —z) ™2 has logarithmic coefficients 7, = . Itis clear that || < I for
each f(z) € . The problem of the best upper bounds for |y,| is still open. In fact
even the proper order of magnitude is still not known. It is known, however, for the
starlike functions that the best bound is |¥,| < % and that this is not true in general [7,
p. 1517; [6, p. 898]; [3, p. 140] and [8].

In the paper [4] it is pointed out that the inequality |y,| < An~'logn (A is an
absolute constant) which holds for circularly symmetric functions.

In a recent paper [9], it is presented that the inequality |y,| < % holds also for
close-to-convex functions. However, it is pointed out in [12] that there are some errors
in the proof and, hence, the result is not substantiated. It is proved in [10] that there
exists a function f(z) € .7 such that |y,| > 1. Furthermore, it is proved in [14] that the
inequality |7;,| <An~'logn holds for close-to-convex functions, where A is an absolute
constant.

In the present paper, we study the logarithmic coefficients of the class .7.(b).

2. Main results
First, we give the following lemmas.

LEMMA 2.1. [14] Let f(z) € . Then, for z=re'%, L <r<1,

L7Zf/(z) 2de< 14—t gL 2.1)
2n0 f(z2) S = Tl ’
and
i/? a'(2) 2d6dr< | +2log —— 2.2)
ano f(z) b 1—r :
2

LEMMA 2.2. [5] Let f(z) €., t€C. Then, z=re'®, 0<r<1,

;_9 (arg <@)T> = T% (arg @) . (2.3)
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Proof. Ttis clear that

f'(z) 10 f(2)
T =ia (oe" ) 41 oy
It follows that
d J
(A ) s
Since f’() L9 £ T
zf (2 <
o =resa (o2 (7)) 11 =
then

Re Z;/(S) - %Im {% <log (@)T) } f1= %% <log (@)1) 1. 27

From (2.5) and (2.7) we obtain

(1)) ) o

LEMMA 2.3. [2] Let f(z) € S(b). Then for |z =r <1 and |2b—1|< 1

— — ! —
1—|2b 1|r< 7f'(z) - 1+|2b 1|r. 2.8)
L+r g(2) L—r
THEOREM 2.1. Let f(z) € .7c(b). Then for n > 2,
17| < An~'logn (2.9)

where A is an absolute constant, and the exponent —1 is the best possible.

Proof. If f(z) € .(b), then there exist g(z) € .%* such that Re { 1+1 (Z!{E—S)— 1> }

>0, b#£0, be C. Write h(z) =1+ (ZZE—S) - 1) , then Re hi(z) > 0. It is clear that
h(z) = 2Re h(z) — h(z).

From (1.3), we obtain

f'(2) ( f(Z))' S
—14z(10g2Z ) =14+ 2kp . (2.10)
f(2) z kg’l
Then, for z=re®® (0<r<1)and n=2,3,...
1 !
2ny, = (@) 7" ldz.

o JOf(2)

|z|=
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Hence, we get

2r

g(z) —in
—EO/W’“(Z)‘”*”me °d0

1
[2ny,r"| = E

2r
Zf/(Z) —in6 _ 1
Q) e dGl

N

‘b / g Z _. 0
1 2R o\~/ m
o eh(z fz de

8\& —m(-)
de
/fz

=L+hL+5. (2.11)

2
‘b| —g(z) —in
+% /h(Z)me 9d9

NLEll

Now, we estimate two terms I; and I,. Write

Zf/(z) = u(re'® iv(re'®

a) For I; :
|/R h(z ’ 8()
f(2)

l Zf() zargg()de
AN

do < |b‘
T

(2)
0/<>|j%de
-5 | 7]
1—-b O/‘JgTi)

T
| F £6)
+— / y(re'®)e' " 5 4
T
0

< do

+

2r

2r
i0) ot £} 8()
O/u(re ) 50 46 o/’f@ a0

=2(Jy +r+J3). (2.13)

[1-b|

+

N
=

Applying the part of integration, (2.5) and (2.3), we have

2n

d f(Z) iargf(—z)

__ EARA ©
0/&9 (arg . e “sdo

(eiarg @) e—iarg@de

/
i
_|_
Sl
v S~y

VAN
+

) do (2.14)

51—

Ty o —_
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Since g(z) € .7*, we have (see [13])

d d
%(argg(z)) >0 and O/%(argg(z)) =2r. (2.15)

By applying (2.15), from (2.14) we get

2T
1 d
< _ _
T 0/ - (argg(2))d0 + 0/ rdo

1
= l—i—2 (2r+2mr)

< 3. (2.16)

By the Cauchy-Riemann condition, we obtain, for 0 < rp <r < 1

r i0 / i0
V(re,-e>_v(roeie):/9v(arj )dr:_/%%dn (2.17)

o )

By (2.17), we get

2r

1 o~ i 1 8 , 1)
<o / W(roe®)e' ™ i T / / ure) o i g
0 0 1o
=1+ J». (2.18)

Taking ry = , it follows that

< g o < [ | < R e
By the part of integration, we obtain

Lot (9 (@Y 9 (s
Jn < o r{()/ re @) <3— (arg T) 59 (arg7>)d0dr . (2.20)

By (2.5), we have

g (527) 3 () |- (e L) - (e )

2.21)
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By Schwarz inequality, Lemma 2.1 and (2.21), from (2.20) we get

1r27‘r f’()2 1r2n’f/()
J22<—//ZZ d6dr+ —//ZZ dOd—// * d0dr
™ f(2) T f(2)
o 0 o 0
1
<4 <1 +2log 1—) . (2.22)
—r
By (2.19) and (2.22), from (2.18) we obtain
1
JH < T+ 810g1—. (2.23)
—r
By (2.16) and (2.23), from (2.13) we have
1
I <20+1610gm+213. (2.24)
b) For I, :
| 27 j( | E| 2 ( )
z _2lafg L 7m6 — 8\&) _ino
bh<— 6| + / 8 -ino 40
SNy /( ) 2n f@°
0 0
i }1 b}
2zarg ‘ m(—) B Z ﬂn(-)
— a6/ + / ae|. 2.5
. O/ e (2.25)

From (2.10) we get

2f'(2) e _ ino S k no |\ k i(n+k)0
=" =" [ 1+ Z 2ky " | =" + Z 2kyrkel )
k= k=1

f(2)
19 ¢in® oo 2k,ykrkei(n+k)6 19
_ 19 ) =2LF(3). 2.26
id0 ( +k:1 n+k ido @) (2.26)
By the part of integration, we obtain
] 8 /@) @
2iarg Z 8\Z
< — @ | — ) - o\
I2\7t/F() ( 6(arg . ) a0<arg ))d@
0
— | 2@
|1_b| 8(2) _ine
+—— || == "7d0)|. 2.27
2r /f(z)e (@27)
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By (2.5) and Schwartz inequality, it follows from (2.27)
1
| 2n 2 1 21
~ [IF@)Pas| | — /
s [1FGPas | {5 (
0 0

15| T8 o
+ o /me de

= 2(LiLy)? + Ls. (2.28)

zf'(2)
(@)

28’ (z)
8(2)

+

2
)d@

Lebedev proves (see [11]) that if f(z) € 7 then
S 2k 1
N klplr* <log—. (2.29)
P} 1—r

By the definition of F(z) in (2.26), we obtain from (2.29)

L5 Clnlr

= (n+k)2 S n2

4 1
L4 Zkh/k\z k= 3 +-log—.  (230)

By Lemma 2.1, it follows that

1 T2 @) ') Tl @
< — 46 +2 / 46— / 6
’ znO/ ) | T e e | P ] e
2
+i/ﬂ 28 (2)
21
) g(z)
4 1
<4(1 1 } 2.31
(e =
Combining (2.30) and (2.31), from (2.28) we get
1 4 1 4 1 \?
<4 =+ —log— —log—— . .
12\4<n2+n10g1_r) (l—i—l_rlogl_\/;) + L3 (2.32)

We obtain from (2.11), (2.24) and (2.32) that

+I5+2J5+Ls. (2.33)

[2ny,r"| <20+ 1610 L+4 i10 1 l+ilo Ly
" & n gl—r 1—r gl—\/;
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From Lemma 2.1 and Lemma 2.3, we have

L4235+ 13 =

do

8\& 71n6 ‘ ‘ ﬁ
/fz ®r O/‘f(z)
15| T8 o
3b—1| 7 g(2) sp—1| [ F
B )| .. 3l
< oo =5 /

2r
J|
0
1

1
4 2 1+r
<6lb—1|(1 1 . 234
| |(+1—r°g1—ﬁ> <1—|2b—1|r) (2.34)

D=

' (@)
(@)

8(z)
zf'(2)

2
do

Letr=1-— %, n>2, |2b— 1] < 1. We obtain from (2.33) and (2.34) that

1 1\ ™"
%l <5 ((1—;) 20+ 161ogn + (1 + 8nlogn)?

1
1 4 P o62n—1)p—1|
4 =+211 2.35
8 <n2+n0gn) +n—(n—1)\2b—l| ’ (2.35)

|Yn‘ <14’/1_1102(:{”7

where A is an absolute constant. Thus, we have proved Theorem 2.1. [J
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REMARK 2.2. If we take b =1 in (2.35), we have results of [14].
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