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Abstract. We give an overview of the use of asymptotic expansions of gamma and related func-
tions — ratio of gamma functions, powers, digamma and polygamma functions. The aim is to
introduce a general theory which can unify various particular formulas for factorial functions and
binomial coefficients. The connection with inequalities for gamma function is established. Also,
a systematic approach to asymptotic expansion of various integral means, bivariate classical and
parameter means is given, with applications to comparison of means.
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1. Introduction

Gamma function is uniquely determined by its property of logarithmic convexity,
Γ(1) = 1 and recurrence formula

Γ(x+1) = xΓ(x).

It is natural to ask what is the half-step ratio of gamma functions, especially for large
values of x? One should expect

ϕ1(x) :=
Γ(x+1)
Γ(x+ 1

2)
∼√

x, and ϕ2(x) :=
Γ(x+ 1

2 )
Γ(x)

∼√
x.
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During this overview, we shall reveal the exact behaviour of these two functions.
This ratio appears in another form for the first time in the work of John Wallis. He

was the first who wrote an infinite product, searching for the value of π :

π
2

=
2
1
· 2
3
· 4
3
· 4
5
· 6
5
· · · 2n

2n−1
· 2n
2n+1

· · · . (1.1)

After truncation we get an approximation which can be written as

2nn!
(2n−1)!!

≈
√

π
(
n+

1
2

)
.

Since

Γ(n+1) = n!, Γ(n+ 1
2 ) =

(2n−1)!!
2n

√
π ,

this can be written as
Γ(n+1)
Γ(n+ 1

2 )
≈
√

n+
1
2
. (1.2)

On the other hand, from probability theory it is well known that(
2n
n

)
≈ 22n

√
πn

and this leads to the approximation

Γ(n+1)
Γ(n+ 1

2)
≈√

n. (1.3)

This follows also by (keeping an odd number of terms in (1.1)). Which one of (1.2) or
(1.3) is better? We shall see that the truth lies somewhere in the middle of these two
approximations. Let us note the early results in this direction.

D. K. Kazarinoff (1956) [38]:√
n+

1
4

<
Γ(n+1)
Γ(n+ 1

2)
<

√
n+

1
2
. (1.4)

G. N. Watson (1959) [55]:√
n+

1
4

<
Γ(n+1)
Γ(n+ 1

2 )
<

√
n+

1
π

. (1.5)

W. Gautschi (1959) [34] gives the first result which includes continuous parameter
into this fraction. Let 0 < s < 1:

n1−s <
Γ(n+1)
Γ(n+ s)

< (n+1)1−s, (1.6)

but the value s = 1/2 gives less precise bound than before.
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D. Kershaw (1983) [39] improves Gautschi’s bounds to the form(
x+

s
2

)1−s

<
Γ(x+1)
Γ(x+ s)

<

(
x− 1

2
+

√
s+

1
4

)1−s

. (1.7)

The left bound in this inequality is the best one, it is asymptotic and represent
the limit of the ratio when x → ∞ . The right bound is not the best one, since the
best bound is simply the value of the ratio at the beginning of the interval. The best
bounds are given by N. Elezović, C. Giordano and J. Pečarić [25]. For each s,t > 0 and
x > x0 > −min{s, t} , inequality

s+ t−1
2

<

(
Γ(x+ t)
Γ(x+ s)

) 1
t−s

− x <

[
Γ(x0 + t)
Γ(x0 + s)

] 1
t−s − x0 (1.8)

holds for |t− s| < 1, and with opposite sign for |t− s| > 1.
In this paper we shall discuss in details asymptotic expansions of gamma and re-

lated functions, which leads to such estimations. The subject is old, but the technique
used here is new. This enable us to generalize and improve many known particular
expansions for factorial and related functions, including various form of binomial co-
efficients. Our intention is to replace particular expansions with those which depend
on parameters. Therefore, instead numerical coefficients in an asymptotic expansion,
we obtain coefficients which are polynomials in one or two variables. This enable us to
give precise information of the best form of approximations. Also, using such approach
various particular results can be unified.

We shall show the close connection between asymptotic expansions, inequalities
and various means, especially connection with integral means. The same technique can
be used in more general asymptotic expansion through polygamma functions and also
in expansion of bivariate and multivariate means. Connection between special functions
and means are interesting in this context. Moreover, asymptotic expansions represent
an efficient tool for comparison of various means.

In this paper an overview of results obtained by the author, T. Burić and L. Vukšić
in the last few years will be presented. We believe that our approach will leads to new
important result in various fields where asymptotic expansions appear.

This paper is based on talks of the author on conferences MINFAA, July 2012, in
Jinju, S. Korea and MIA, June 2014, in Trogir, Croatia.

2. Stirling and Laplace expansions

2.1. Stirling approximation

One of the most beautiful formulas of entire mathematics is surely the following
one

n! ≈
√

2πn

(
n
e

)n

.
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This is the shortening of the following two expansions which are known for cen-
turies, Stirling’s expansion

n! ∼
√

2πn

(
n
e

)n

exp

(
1

12n
− 1

360n3 +
1

1260n5 + . . .

)
, (2.1)

and Laplace’s expansion

n! ∼
√

2πn

(
n
e

)n(
1+

1
12n

+
1

288n2 −
139

51840n3 −
571

2488320n4 + . . .

)
. (2.2)

However, it seems that connection between these two expressions is not widely
known, as well as various derivations of these initial expansions which can be found in
literature. Let us mention the most known one.

Karatsuba-Ramanujan [39, 51],

n! ≈
√

2πn

(
n
e

)n
6

√
1+

1
2n

+
1

8n2 +
1

240n3 −
11

1920n4 , (2.3)

formula of N. Batir, [3]

n! ≈
√

2πn

(
n
e

)n
4

√
1+

1
3n

+
1

18n2 −
2

405n3 −
31

9720n4 , (2.4)

and Wehmeier [43]

n! ≈
√

2πn

(
n
e

)n
√

1+
1
6n

+
1

72n2 −
31

6480n3 −
139

155520n4 . (2.5)

The coefficients of these expansions are calculated on a particularly basis, without
clear clue how to obtain general form. Of course, the main task of these papers was not
the development of asymptotic series, but instead in proving the truncation inequalities;
two consecutive terms of an asymptotic expansion usually gives lower and upper bound
for the function in-between.

We shall show that complete expansions are easily computable using simple re-
currence procedure.

Our first intention is to clarify these connections and to present efficient algorithm
for calculation of coefficients of these and similar expansions.

2.2. Bell polynomials and Stirling formula

Bell polynomials and numbers are essential in advanced combinatorics. Besides
definition, many properties can be found in [20]. We shall use here ordinary and not
exponential form of these polynomials, because it is better suited to our problems. Or-
dinary partial Bell polynomials (B̂n,k) are defined by double expansion

exp

(
u ∑

m�1
xmtm

)
=: 1+ ∑

n�1
tn
( n

∑
k=1

B̂n,k(x1,x2, . . .)
uk

k!

)
. (2.6)



ASYMPTOTIC EXPANSIONS, INEQUALITIES AND MEANS 1005

It is easy to see that B̂n,k depends on variables x1,x2, . . . ,xn−k+1 . Generating function
from (2.6) can be written in either form

∞

∏
m=1

( ∞

∑
j=0

u jx j
mtm j

j!

)
or

∞

∑
k=0

uk

k!

( ∞

∑
m=1

xmtm
)k

.

Hence, partial Bell polynomials have explicit form

B̂n,k(x1,x2, . . . ,xn−k+1) = ∑
(

k
k1,k2, · · · ,kr

)
xk1
1 xk2

2 · · ·xkr
r (2.7)

and the sum is taken over all k1,k2, . . . ,kr which satisfy

k1,k2, . . . ,kr � 0,

k1 + k2 + . . .+ kr = k,

k1 +2k2 + . . .+ rkr = n.

The ordinary complete Bell polynomials Ŷn = Ŷn(x1,x2, . . . ,xn) are defined by

exp

(
∑
m�1

xmtm
)

=: 1+ ∑
n�1

Ŷn(x1,x2, . . .)tn, (2.8)

i.e.

Ŷn =
n

∑
k=1

1
k!

B̂n,k, Y0 = 1. (2.9)

The following expansion of gamma function is known since Barnes (1899):

logΓ(x+ t) ∼ (x+ t− 1
2) logx− x+ 1

2 log(2π)+
∞

∑
n=1

(−1)n+1Bn+1(t)
n(n+1)

x−n. (2.10)

Here, Bn(t) are Bernoulli polynomials defined by generating function

ext

et −1
=

∞

∑
n=0

Bn(t)
n!

xn.

Let us denote

bn(t) :=
(−1)n+1Bn+1(t)

n(n+1)
. (2.11)

Then we can apply definition of Bell polynomials to the following part of this expansion

F(x,t) := exp

( ∞

∑
n=1

bn(t)x−n
)

.

Therefore, it follows



1006 N. ELEZOVIĆ

THEOREM 2.1. Laplace expansion has the following explicit form

logΓ(x+ t) ∼ (x+ t− 1
2) logx− x+ 1

2 log(2π)+ log

( ∞

∑
n=1

Ŷnx
−n
)

, (2.12)

where

Ŷn =
n

∑
k=1

1
k!

B̂n,k(bi(t))

and (bi(t)) are given in (2.11).

Taking t = 1 one obtain from (2.10) and (2.12) Laplace and Stirling expansion.
However, the calculation of such coefficients is not easy, because of Bell polynomials’
cumbersome explicit formula (2.7) and (2.9). Instead, one can use recursive procedure.
We need only complete polynomials, so, the following lemma will suffice:

LEMMA 2.2. Bell polynomials satisfy the following recursive relation, Ŷ0 = 1 and

Ŷn =
1
n

n

∑
k=1

kxkŶn−k. (2.13)

This should be known result, but it is easier to prove it than provide the reference.
The more general result is discussed in [17]. This and other necessary lemmas will be
repeated in the next section.

The following result is the main formula in subsequent applications, so we will
repeat original proof.

THEOREM 2.3. (Burić-Elezović (2011), [7]) We have

logΓ(x+ t)∼ (x+ t− 1
2 ) logx− x+ 1

2 log(2π)+
1
m

log

(
∞

∑
n=0

Pn(t)x−n

)
,

where Pn(t) are polynomials defined by P0(t) = 1 and

Pn(t) =
m
n

n

∑
k=1

(−1)k+1Bk+1(t)
k+1

Pn−k(t), n � 1.

Proof. Differentiating (2.3) we get

ψ(x+ t)∼ logx+
1
x
(t− 1

2 )+
1
m

(
∞

∑
n=0

Pnx
−n

)−1( ∞

∑
n=1

(−n)Pnx
−n−1

)
.

In fact, this should be written in a way

m

(
∞

∑
n=0

Pnx
−n

)[
ψ(x+ t)− logx− 1

x
(t − 1

2)
]
∼

∞

∑
n=1

(−n)Pnx
−n−1.
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Since (see [42, p. 33])

ψ(x+ t)∼ logx−
∞

∑
n=0

(−1)n+1Bn+1(t)
n+1

x−n−1, (2.14)

we have

ψ(x+ t)− logx− (t− 1
2 )

1
x
∼

∞

∑
n=1

(−1)nBn+1(t)
n+1

x−n−1.

Therefore

m

(
∞

∑
n=0

Pnx
−n

)(
∞

∑
k=1

(−1)kBk+1(t)
k+1

x−k−1

)
∼−

∞

∑
n=1

nPnx
−n−1,

wherefrom it follows:

−nPn = m
n

∑
k=1

(−1)kBk+1(t)
k+1

Pn−k.

Statement of the theorem follows. �

COROLLARY 2.4. It holds

n! ∼
√

2πn

(
n
e

)n
[

∞

∑
k=0

Pk n−k

]1/m

, (2.15)

where (Pn) is defined by

P0 = 1,

Pn =
m
n

�(n+1)/2�
∑
k=1

B2k

2k
Pn−2k+1, n � 1. (2.16)

It is interesting to see the form of the first few coefficients in this general formula:

n! ∼
√

2πn

(
n
e

)n[
1+

m
22 ·3 · 1

n
+

m2

25 ·32 ·
1
n2

+
(

m3

27 ·34 −
m

23 ·32 ·5
)

1
n3 +

(
m4

211 ·35 −
m2

25 ·33 ·5
)

1
n4 + . . .

]1/m

. (2.17)

From here one can see which choice of exponent m will give a good looking
expansions, besides those given by Karatsuba-Ramanujan, Batir or Wehmeier, the fol-
lowing ones will give even better first few coefficients:

n! ∼
√

2πn

(
n
e

)n
12

√
1+

1
n

+
1

2n2 +
2

15n3 +
1

120n4 +
1

840n5 + . . .. (2.18)
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n! ∼
√

2πn

(
n
e

)n
24

√
1+

2
n

+
2
n2 +

19
15n3 +

8
15n4 +

16
105n5 + . . .. (2.19)

In the formula (2.3), (2.4), (2.17), (2.18) and (2.19), one can see that the better
results are obtained for bigger values of the parameter m . Therefore, it is natural to
assume that the approximation with m substituted by variable x will be better for big
values of x . This is indeed the case.

THEOREM 2.5. (Burić-Elezović (2012), [9]) The following asymptotic expression
is valid

logΓ(x+ t) ∼ (x+ t− 1
2) logx− x+ 1

2 log(2π)+
1

12x
+

1
x

log

( ∞

∑
n=0

Pn(t)x−n
)

, (2.20)

where P0(t) = 1 and

Pn(t) =
1
n

n

∑
k=1

(−1)kkBk+2(t)
(k+1)(k+2)

Pn−k(t), n � 1. (2.21)

Proof. By comparing the following two asymptotic expansions:

logΓ(x+ t)∼
(
x+ t− 1

2

)
logx− x+

1
2

log(2π)+
1

12x
+

∞

∑
k=2

(−1)k+1Bk+1(t)
k(k+1)

x−k,

logΓ(x+ t)∼
(
x+ t− 1

2

)
logx− x+

1
2

log(2π)+
1

12x
+

1
x

log

( ∞

∑
n=0

Pn(t)x−n
)

,

we can write

log

( ∞

∑
n=0

Pn(t)x−n
)
∼

∞

∑
k=1

(−1)kBk+2(t)
(k+1)(k+2)

x−k.

By differentiating it follows

∞

∑
n=1

nPn(t)x−n−1 ∼
(

∞

∑
n=0

Pn(t)x−n

)(
∞

∑
k=1

(−1)k kBk+2(t)
(k+1)(k+2)

x−k−1

)
.

Hence,

nPn(t) =
n

∑
k=1

(−1)k kBk+2(t)
(k+1)(k+2)

Pn−k(t)

and we get the statement. �

COROLLARY 2.6. The following asymptotic expansion for the factorial function
is valid:

n! ∼
√

2πn

(
n
e

)n

e1/12n

[
∞

∑
m=0

P2m n−2m

]1/n

, (2.22)
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where (Pm) is a sequence defined by P0 = 1 and

P2m =
1

2m

m

∑
k=1

kB2k+2

(k+1)(2k+1)
P2m−2k. (2.23)

Therefore, it holds

n! ∼
√

2πn

(
n
e

)n

e1/12n
[
1− 1

360n2 +
1447

1814400n4 −
1170727

1959552000n6 + . . .

]1/n

. (2.24)

3. Transformations of asymptotic expansions. Useful lemmas

The operation of differentiation of an asymptotic series should be taken by care.
Our applications are covered by next two lemmas.

LEMMA 3.1. (Erdélyi [32, p. 21]) If the function

f (x) ∼ a0 +
a1

x
+

a2

x2 + . . . as x → ∞ (3.1)

is differentiable and if f ′ possesses an asymptotic power series expansion, then

f ′(x) ∼−a1

x2 − 2a2

x3 − 3a3

x4 − . . . , as x → ∞. (3.2)

LEMMA 3.2. (Erdélyi [32, p. 21]) Let R1 be the region |x|> r1 , γ1 < argx < γ2 ,
let r2 > r1 , γ1 < γ ′1 < γ ′2 < γ2 and let R2 be the region |x|> r2 , γ ′1 < argx < γ ′2 . If f (x)
is regular in R1 and

f (x) ∼
∞

∑
n=0

anx
−n

holds uniformly in argx as x → ∞ in R1 , then

f ′(x) ∼
∞

∑
n=1

(−n)anx
−n−1

holds uniformly in argx as x → ∞ in R2 .

The following lemma gives an algorithm for transformation of the power of an
asymptotic series. This lemma has origins in Euler works on power series. See [36,
Theorem 1.6c] for detailed analysis on the context of formal power series. We shall
rather use it in the contents of asymptotic series, see [17] for detailed discussion. This
lemma will be the crucial one in the sequel.

LEMMA 3.3. Let a0 	= 0 ,

g(x) ∼
∞

∑
n=0

anx
−n.
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Then for all real r it holds

[g(x)]r ∼
∞

∑
n=0

En[a,r]x−n,

where
E0[a,r] = ar

0,

En[a,r] =
1

na0

n

∑
k=1

[k(1+ r)−n]akEn−k[a,r].
(3.3)

In this paper we will reserve symbol En[a,r] for coefficient of the term x−n in
r -th power of the asymptotic expansion of ∑∞

k=0 akx−k .
More generally, one can obtain explicit form for functional transformation of an

asymptotic expansion:

LEMMA 3.4. Let

f (x) = xr
∞

∑
n=0

bnx
n, b0 	= 0,

and

A(x) = x−s
∞

∑
n=0

anx
−n, a0 	= 0,

where r,s are real numbers and s > 0 . Then f (A(x)) has asymptotic expansion of the
form

f (A(x)) = xrs
∞

∑
n=0

(
∑

k+�s j�=n

x−{s j}Ek[a,r+ j]b j

)
x−n

Here, �x� is integer part and {x} fractional part of x .

We will use the following two special cases. The first one is already discussed in
the context of Bell polynomial, see [17] for the proof and applications.

LEMMA 3.5. Let A be a function with asymptotic expansion

A(x) ∼
∞

∑
n=1

anx
−n.

Then the composition B(x)= exp(A(x)) has asymptotic expansion of the following form

B(x) ∼
∞

∑
n=0

bnx
−n

where b0 = 1 and

bn =
1
n

n

∑
k=1

kakbn−k, n � 1. (3.4)

The alternative procedure is also mentioned in [17]:
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LEMMA 3.6. If A(x) has an asymptotic expansion

A(x) ∼
∞

∑
n=0

anx
−n+1, a0 	= 0

then

exp(A(x)) ∼
∞

∑
n=0

bnx
−n,

where b0 = 1 and

bn =
n

∑
k=0

Ek[a,n− k]
1

(n− k)!
.

LEMMA 3.7. If A(x) has an asymptotic expansion

A(x) ∼
∞

∑
n=0

anx
−n+1, a0 	= 0

then

log(1+A(x))∼
∞

∑
n=1

bnx
−n,

where

bn =
n−1

∑
k=0

Ek[a,n− k]
(−1)n−k+1

n− k
.

4. Ratio of gamma functions. Wallis function

Asymptotic expansion of the ratio of two gamma function can be obtained using
the same technique. The same is true for product/ratio of few gamma functions, since
logarithm transform this to sum or difference, and all recursive formula are linear. Let
us start with some notations.

4.1. Wallis fraction and Wallis power function

DEFINITION 4.1. (Wallis fraction) The fraction

W (x,t,s) :=
Γ(x+ t)
Γ(x+ s)

(4.1)

is called the Wallis’ function, or the Wallis’ fraction.

DEFINITION 4.2. (Wallis power function) Function

F(x,t,s) :=
[

Γ(x+ t)
Γ(x+ s)

] 1
t−s

(4.2)

is called the Wallis power function.
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4.2. Classical expansions

In the standard reference for this subject, Tricomy-Erdélyi (1951) [52] is proved:

Γ(x+ t)
Γ(x+ s)

∼ xt−s
∞

∑
n=0

(−1)nB(t−s+1)
n (t)(t − s)n

n!
x−n. (4.3)

Here, B(a)
n (x) are generalized Bernoulli polynomials defined by:

xaetx

(ex −1)a =
∞

∑
n=0

B(a)
n (t)

xn

n!
. (4.4)

Note that B(1)
n (x) = Bn(x) .

Our opinion is that this form of expansion is misleading. It looks like the co-
efficients are given by closed formulas, but there is no easy way to calculate directly
generalized Bernoulli polynomials, one should apply some recurrence procedure. Also,
variables s and t appear in the argument, but also as the parameter of these polynomials
which can (and will) causes troubles with degree of polynomials. In [42, page 22.] the
following recursive formula for generalized Bernoulli polynomials is given:

B(a)
n+1(x) = B(a)

1 (x)B(a)
n (x)−a

�(n−1)/2�
∑
k=0

( n
2k+1

)
B2k+2

(2k+2)
B(a)

n−2k−1(x). (4.5)

We prefer the following simpler form of this recursion, see [24]:

B(a)
n (x) = B(a)

1 (x)B(a)
n−1(x)−

a
n

�n/2�
∑
k=1

(
n
2k

)
B2kB

(a)
n−2k(x). (4.6)

4.3. Asymptotic expansion of Wallis power function

It is possible to write this expansion using only ordinary Bernoulli polynomials.
J. Bukac, T. Burić and N. Elezović made the first attempt in this direction in [6]. The
final result is given in the next theorem, coefficients can be calculated using simple
recursion.

THEOREM 4.3. (Burić-Elezović (2011), [7]) The Wallis power function has the
following expansion:

F(x,t,s) =
[

Γ(x+ t)
Γ(x+ s)

] 1
t−s ∼

∞

∑
n=0

Pn(t,s)x−n+1.

Pn(t,s) are polynomials of degree n defined by P0(t,s) = 1 and

Pn(t,s) =
1
n

n

∑
k=1

(−1)k+1 Bk+1(t)−Bk+1(s)
(k+1)(t− s)

Pn−k(t,s), n � 1.

Bk(t) are the Bernoulli polynomials.
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Proof. We can use known expansion of the logarithm of gamma function (2.10) to
obtain

1
t− s

log
Γ(x+ t)
Γ(x+ s)

− logx ∼
∞

∑
n=1

anx
−n,

Applying Lemma 3.6 to the function g(x) = exp(x) , we have

[
Γ(x+ t)
Γ(x+ s)

] 1
t−s ∼ x

∞

∑
n=0

bnx
−n (4.7)

and the existence of the expansion is ensured. Therefore, representation (4.7) is valid,
with P0(t,s) = 1. Further, it holds

∂
∂x

F(x,t,s) =
1

t− s
F(x,t,s)[ψ(x+ t)−ψ(x+ s)].

Since both functions F(x,t,s) and [ψ(x + t)−ψ(x + s)] have asymptotic expansions
as x → ∞ , there exists asymptotic expansion for their product and, by Lemma 3.1, it
can be obtained by termwise differentiation of expansion (4.7). Therefore, it holds

1
t− s

F(x,t,s)[ψ(x+ t)−ψ(x+ s)]∼
∞

∑
n=0

Pn(t,s)
−n+1

xn . (4.8)

Using asymptotic expansion of the psi function, see (2.14), we obtain[ ∞

∑
j=0

Pj(t,s)
1

x j−1

][ ∞

∑
k=1

(−1)k+1[Bk(t)−Bk(s)]
k(t − s)

1
xk

]
∼

∞

∑
n=0

Pn(t,s)
−n+1

xn .

After rearrangement of the terms of the product on the left-hand side and comparing
the coefficients next to x−n we get

n

∑
k=0

(−1)k Bk+1(t)−Bk+1(s)
(k+1)(t− s)

Pn−k(t,s) = −(n−1)Pn(t,s).

The member of the sum for k = 0 has the value

B1(t)−B1(s)
t− s

Pn(t,s) = Pn(t,s).

Hence,

nPn(t,s) =
n

∑
k=1

(−1)k+1 Bk+1(t)−Bk+1(s)
(k+1)(t− s)

Pn−k(t,s)

which proves the theorem. �
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The first few polinomials (Pn) are:

P1 =
1
2
(t + s−1)

P2 =
1
24

(1− t2 +2ts− s2)

P3 =
1
48

(1− t− s− t2 +2ts− s2 + t3− t2s− ts2 + s3)

P4 =
1

5760
(23−120t−120s+50t2+140st +50s2 +120t3−120st2

−120s2t +120s3−73t4 +52t3s+42t2s2 +52ts3−73s4)

However, there exists even more simple form of this expansion which use different
set of variables.

4.4. Intrinsic variables

Bernoulli polynomials has better descriptions in terms of their intrinsic variables
defined by

α = 1
2 (s+ t−1), β = 1

4 [1− (t− s)2].

See [10] for detailed analysis of this subject. In Section 5 we will explain the nature of
intrinsic variables for general class of Appell polynomials.

THEOREM 4.4. (Burić-Elezović (2011), [7]) The Wallis power function has the
asymptotic expansion of the following form:

[
Γ(x+ t)
Γ(x+ s)

] 1
t−s ∼ x+

∞

∑
n=0

Qn+1(α,β )x−n, (4.9)

where it holds Q0(α,β ) = 1 and

Qn(α,β ) =
1
n

n

∑
k=1

(−1)k+1∇k(α,β )Qn−k(α,β ), n � 1. (4.10)

Here, ∇n is a polynomial in variables α and β given by

∇n(α,β ) =
1

n+1

n

∑
k=0

(
n+1
k+1

)
Bn−k(α)Tk(β ). (4.11)

and (Tk) are defined by

Tn = β n
1 + β n−1

1 β2 + ...+ β1β n−1
2 + β n

2 .

The first few polynomials Qn :

Q1 = α,
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Q2 =
1
6

β ,

Q3 = −1
6

αβ ,

Q4 =
1
6

α2β − 1
60

β − 13
360

β 2,

Q5 = −1
6

α3β +
1
20

αβ +
13
120

αβ 2,

Q6 =
1
6

α4β − 1
10

α2β − 13
60

α2β 2 +
1

126
β +

53
2520

β 2 +
737

45360
β 3.

The comparison of these two form is visible in the following example of the same
polynomials, Q6 given above and

P6(t,s) =
1

2903040

[
−18125s6 +6(1493t +8316)s5

+3
(
2111t2−9576t−1267

)
s4

+4
(
1417t3−5292t2 +11361t−18900

)
s3

+3
(
2111t4−7056t3 +12558t2−15120t +10675

)
s2

+6
(
1493t5−4788t4 +7574t3−7560t2 +917t +4284

)
s

−18125t6+49896t5−3801t4−75600t3

+32025t2+25704t−10099
]
.

4.5. Asymptotic expansion of Wallis fraction

We are able now to offer different approach to expansion of Wallis fraction.

THEOREM 4.5. (Burić-Elezović (2012), [9]) It holds

Γ(x+ t)
Γ(x+ s)

∼ xt−s

(
∞

∑
n=0

Pn(t,s,r)x−n

) 1
r

, (4.12)

where polynomials Pn(t,s,r) are defined by:

P0(t,s,r) = 1

Pn(t,s,r) =
r
n

n

∑
k=1

(−1)k+1 Bk+1(t)−Bk+1(s)
k+1

Pn−k(t,s,r). (4.13)

Proof. Differentiating the logarithm of (4.12)

logΓ(x+ t)− logΓ(x+ s) ∼ (t− s) logx+
1
m

log

(
∞

∑
n=0

Pn(t,s)x−n

)
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we have

ψ(x+ t)−ψ(x+ s)∼ 1
x
(t − s)+

1
m

(
∞

∑
n=0

Pnx
−n

)−1( ∞

∑
n=1

(−n)Pnx
−n−1

)
.

Applying (2.14) we get(
∞

∑
n=0

Pnx
−n

)(
∞

∑
k=1

(−1)k Bk+1(t)−Bk+1(s)
k+1

x−k−1

)
∼− 1

m

∞

∑
n=1

nPnx
−n−1

wherefrom it follows:

−nPn = m
n

∑
k=1

(−1)k Bk+1(t)−Bk+1(s)
k+1

Pn−k. �

We are able now to answer to the question from the introduction. Taking r = 1,
t = 1, s = 1/2 we obtain

ϕ1(x) =
Γ(x+1)
Γ(x+ 1

2 )
∼√

x

[
1+

1
8x

+
1

128x2 −
5

1024x3 −
21

32768x4 + . . .

]
, (4.14)

while for r = 1, t = 1
2 and s = 0 it follows

ϕ2(x) =
Γ(x+ 1

2 )
Γ(x)

∼√
x

[
1− 1

8x
+

1
128x2 +

5
1024x3 −

21
32768x4 + . . .

]
. (4.15)

The similarity of these two expansions should be explained. There are another way to
obtain coefficients of ϕ2(x) . We can take r = −1, t = 1, s = 1

2 and use the following
result:

Pn(t,s,−r) = (−1)nPn(t,s,r)

which immediately follows by induction from (4.13).

5. Appell polynomials and asymptotic expansions

In this subsection we shall discuss two properties of Bernoulli polynomials, the
existence of intrinsic variables and appearance of Bernoulli polynomials in expansion
formulas for gamma function. It will be shown that both questions are connected with
Appell properties of Bernoulli polynomials.

5.1. Appell polynomials and expansions

Rn(t) is Appell sequence of polynomials, if there exist analytic function A(x) such
that

A(x)etx =
∞

∑
n=0

Rn(t)
n!

xn. (5.1)
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Functions Rn defined by (5.1) are polynomials and

R′
n(t) = nRn−1(t). (5.2)

(Rn(t)) is determined by (5.2) and known values an = Rn(0) .
The symmetry property of the Appell polynomials is connected with the property

of its generating function.

LEMMA 5.1. It holds

Rn(λ − t) = (−1)nRn(t) (5.3)

if and only if
A(−x) = A(x)eλ x. (5.4)

Proof. From Rn(λ − t) = (−1)nRn(t) , one obtains

A(x)e(λ−t)x =
∞

∑
n=0

Rn(λ − t)
n!

xn =
∞

∑
n=0

(−1)nRn(t)
n!

xn

=
∞

∑
n=0

Rn(t)
n!

(−x)n = A(−x)e−tx,

therefore A(−x) = A(x)eλ x .
Reversly, from A(−x) = A(x)eλ x it follows

A(−x)e−tx = A(x)e(λ−t)x

∞

∑
n=0

Rn(t)
n!

(−1)nxn =
∞

∑
n=0

Rn(λ − t)
n!

xn

(−1)nRn(t) = Rn(λ − t). �

For generalized Bernoulli polynomials it is easy to see that λ = a satisfies this
condition. Therefore, using Lemma 5.1 this is equivalent to

Ba
n(a− t) = (−1)nBa

n(t).

Let us suppose in the sequel that (Rn) is a sequence of Appell polynomials such that
(5.3) is fulfilled. Then, a more natural expression of these polynomials exists.

THEOREM 5.2. (Burić-Elezović-Vukšić, [15]) Let Rn(t) be an Appell sequence
and denote v = t− λ

2 . Then there exist polynomials Cn(v) and Dn(v) of degree n such
that it holds

R2n(t) = Cn(v2), R2n+1(t) = vDn(v2). (5.5)

These polynomials satisfy relations

C′
n(v) = nDn−1(v),

Dn(v)+2vD′
n(v) = (2n+1)Cn(v)

(5.6)
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and can be calculated by

Cn(v) = n

v∫
0

Dn−1(v)dv+Rn

(
λ
2

)
, (5.7)

Dn(v) =
2n+1
2
√

v

v∫
0

Cn(v)√
v

dv. (5.8)

Proof. First, let us define polynomials R̃n(v) := Rn(t) . Then, using the symmetry
property, we have

R̃n(−v) = R̃n

(
λ
2
− t

)
= Rn(λ − t) = (−1)nRn(t) = (−1)nR̃n(v).

Therefore, R̃2n(−v) = R̃2n(v) , i.e. R̃2n(v) is an even function and can be written as
Cn(v2) . Similary, from R̃2n+1(−v) = −R̃2n+1(v) it follows R2n+1(t) = R̃2n+1(v) =
vDn(v2) .

Now, let us prove (5.6). Using (5.5) and property (5.2), it holds

R′
2n(t) = C′

n(v
2) ·2v = 2nR2n−1(t) = 2nvDn−1(v2),

wherefrom it follows C′
n(v

2) = nDn−1(v2) .
In a same way,

R′
2n+1(t) = Dn(v2)+2v2D′

n(v
2) = (2n+1)R2n(t) = (2n+1)Cn(v2).

From C′
n(v) = nDn−1(v) it follows

Cn(v) = n

v∫
0

Dn−1(v)dv+Cn(0),

where Cn(0) = R2n

(
λ
2

)
. �

5.2. Digamma function and Appell property

The asymptotic expansion of the digamma (psi) function is as follows.

ψ(x) ∼ logx− 1
2x

−
∞

∑
n=1

B2n

2n
x−2n. (5.9)

This can be written as:

ψ(x) ∼ logx+
∞

∑
n=1

(−1)n+1Bn

n
x−n. (5.10)
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and the following generalization through Bernoulli polynomials is well known

ψ(x+ t)∼ logx+
∞

∑
n=1

(−1)n+1Bn(t)
n

x−n. (5.11)

One may wonder about the nature of this generalization. It is connected with Appell
property, which can be seen from the following result. See also description in [14].

THEOREM 5.3. (Burić-Elezović-Vukšić, [15]) Let

f (x) ∼
∞

∑
n=0

(−1)n an

xn+1 (5.12)

be asymptotic expansion of the function f (x) . Then:

f (x+ t) ∼
∞

∑
n=0

(−1)n Rn(t)
xn+1 , (5.13)

where (Rn(t)) are Appell polynomials generated by (an) .

The proof in one direction is straightforward:

f (x+ t) ∼
∞

∑
k=0

(−1)kak(x+ t)−k−1

∼
∞

∑
k=0

(−1)kak

∞

∑
j=0

(−1) j
(

j + k
j

)
t jx−k− j−1

∼
∞

∑
k=0

(−1)kak

∞

∑
n=k

(−1)n−k
(

n
n− k

)
tn−kx−n−1

∼
∞

∑
n=0

(−1)n
( n

∑
k=0

(
n

n− k

)
akt

n−k
)

x−n−1

∼
∞

∑
n=0

(−1)nRn(t)x−n−1.

See [15] for complete proof.
The natural example for this theorem is trigamma function:

ψ ′(x) ∼
∞

∑
n=0

(−1)n Bn

xn+1 ⇐⇒ ψ ′(x+ t)∼
∞

∑
n=0

(−1)n Bn(t)
xn+1 .

Therefore, the easiest way to obtain generalized esymptotic expansion for digamma
function (and consequently also for the gamma function) is to begin with simple expan-
sion for trigamma function and integrate termwise obtained expansions.
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6. Shifts in asymptotic expansions

In the formula of the type

f (x+ t) ∼
∞

∑
n=0

(−1)n Rn(t)
xn+1 , (6.1)

one can easily manipulate with shifts in asymptotic terms, for any α we have

f (x+ t) ∼
∞

∑
n=0

(−1)n Rn(t−α)
(x+ α)n+1 . (6.2)

Therefore, properties of included Appell polynomials can be used to simplify coeffi-
cients of such expansion. The starting example is modification of Stirling formula.

COROLLARY 6.1. (Burić, Elezović [8]) It holds

n! ∼
√

2π
(

n+ 1
2

e

)n+ 1
2
[

∞

∑
k=0

Pk (n+ 1
2 )−k

]1/m

, (6.3)

where (Pn) is a sequence defined by

P0 = 1

Pn =
m
n

�(n+1)/2�
∑
k=1

(2−2k+1−1)B2k

2k
Pn−2k+1, n � 1.

(6.4)

As an example, we shall give three formulas for the choice of m = 6, m = 12 and
m = 24:

n! ∼
√

2π
(

n+ 1
2

e

)n+ 1
2

6

√
1− 1

4(n+ 1
2 )

+
1

32(n+ 1
2)2

+
23

1920(n+ 1
2 )3

+ . . . (6.5)

n! ∼
√

2π
(

n+ 1
2

e

)n+ 1
2

12

√
1− 1

2(n+ 1
2 )

+
1

8(n+ 1
2 )2

+
1

120(n+ 1
2 )3

+ . . . (6.6)

n! ∼
√

2π
(

n+ 1
2

e

)n+ 1
2

24

√
1− 1

n+ 1
2

+
1

2(n+ 1
2 )2

− 13

120(n+ 1
2 )3

+ . . . (6.7)

The analysis of the best shifts can be made for all included formulas. There is
a classical result in this direction for the ratio of two gamma functions The shifted
variable is choosen as

w = x+ t−ρ ,

where 2ρ = t− s+1, see [42, p. 34] and [33]

Γ(x+ t)
Γ(x+ s)

∼ wt−s
∞

∑
n=0

B(2ρ)
2n (ρ)(t− s)2n

(2n)!
w−2n. (6.8)
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The coefficients B(2ρ)
2k (ρ) are not appropriate here, it should be calculated not through

the generalized Bernoulli polynomials. Namely a �→ B(a)
2n (x) and x �→ B(a)

2n (x) are poly-

nomials of order 2n , and ρ �→ B(2ρ)
2n (ρ) is a polynomial of order n . In [42] the follow-

ing recursion is given:

B(2ρ)
2n (ρ) = −2ρ

n−1

∑
k=0

(2n−1
2k+1

)
B2k+2

2k+2
B(2ρ)

2n−2k−2(ρ).

It is better to use another name and symbol for these polynomials. I used symbol

Vn(a) and the name reduced Bernoulli polynomials, see [24]. Since Vn(a) = B(2a)
2n (a) ,

its generating function is

G(x) =

(
xex/2

ex −1

)2a

. (6.9)

Since G is an even function, it follows

G(x) =
∞

∑
n=0

Vn(a)
(2n)!

x2n. (6.10)

We have

G′(x)
G(x)

=
2a
x

[
1− x

2
− x

ex −1

]
=

2a
x

[
1− x

2
−

∞

∑
n=0

Bn

n!
xn
]

= −2a
∞

∑
n=1

B2n

(2n)!
x2n−1.

Using (6.10) it is easy to derive

Vn(a) = −a
n

n−1

∑
k=0

(
2n
2k

)
B2n−2kVk(a). (6.11)

The analysis of the best shift for central binomial sequence and sequence of Cata-
lan numbers will be given in separate section.

7. Applications: binomial coefficients

7.1. Classical approach

The classical expansion for central binomial coefficients reads as [42, p. 12]):(
2n
n

)
∼ 22n

√
nπ

[
1− 1

8n
+

1
128n2 +

5
1024n3 −

21
32768n4 + . . .

]
. (7.1)
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In [42, p. 35] the following asymptotic expansion is connected to binomial coeffi-
cients: (

x
n

)
∼ (−1)nn−(x+1)

Γ(−x)

∞

∑
k=0

B(−x)
k (x)(x+1)k

k!nk
. (7.2)

This expansion is derived from the formula for the ratio of two gamma functions

Γ(x+ t)
Γ(x+ s)

∼ xt−s
∞

∑
n=0

(−1)n (s− t)n

n!
B(t−s+1)

n (t)
1
xn . (7.3)

Namely, for x = − 1
2 , the following identity holds true(−1/2

n

)
=

(−1)n

22n

(
2n
n

)
,

so expansion (7.1) follows from (7.2).

7.2. Central binomial coefficient expansion

Central binomial coefficients are closely related with the functions ϕ1(x) and
ϕ2(x) from the introduction. Namely, from the duplication formula for the gamma
function we have (

2n
n

)
=

Γ(2n+1)
Γ(n+1)2 =

4n
√

π
· Γ(n+ 1

2)
Γ(n+1)

. (7.4)

However, we shall recall a more general formula, since it connect duplication for-
mula for the gamma function and central binomial coefficients. Both of these two
formulas have the same origin. Duplication formula reads as

Γ(2x)
Γ(x)Γ(x+ 1

2 )
=

22x−1
√

π
.

The quotient on the left side is similar to one used in the calculation of binomial coef-
ficients.

THEOREM 7.1. (Burić-Elezović (2012), [9]) It holds

F(x, t,s,u) :=
Γ(2x+2t)

Γ(x+ s)Γ(x+u)
∼ 22x+2t−1

√
π

xγ
∞

∑
k=0

Pkx
−k, (7.5)

where γ = 2t− s−u+ 1
2 , (Pn) is defined by P0 = 1 and

Pn =
1
n

n

∑
k=1

(−1)k+1�kPn−k, n � 1, (7.6)

�k =
Bk+1(t)+Bk+1(t + 1

2)−Bk+1(s)−Bk+1(u)
k+1

. (7.7)

Here Bk(t) are the Bernoulli polynomials.



ASYMPTOTIC EXPANSIONS, INEQUALITIES AND MEANS 1023

Proof. Differentiating expansion (7.5) with respect to variable x we get

F · [2ψ(2x+2t)−ψ(x+ s)−ψ(x+u)]

∼ 22x+2t−12 log2√
π

∞

∑
k=0

Pkx
γ−k +

22x+2t−1
√

π

∞

∑
k=0

(γ − k)Pkx
γ−k−1.

Using duplication formula for the psi function

ψ(2x) = 1
2 ψ(x)+ 1

2 ψ(x+ 1
2 )+ log2,

we can write
∞

∑
k=0

Pkx
γ−k · [ψ(x+ t)+ ψ(x+ t+ 1

2 )−ψ(x+ s)−ψ(x+u)]∼

2log2
∞

∑
k=0

Pkx
γ−k +

∞

∑
k=0

(γ − k)Pkx
γ−k−1.

Hence (using (5.11)), it follows

∞

∑
k=0

Pkx
γ−k ·

∞

∑
j=0

(−1) j B j+1(t)+Bj+1(t + 1
2)−Bj+1(s)−Bj+1(u)
j +1

x− j−1

∼
∞

∑
n=0

(γ −n)Pnx
γ−n−1.

For k = 0 we have:

B1(t)+B1(t + 1
2 )−B1(s)−B1(u) = 2t− s−u+ 1

2 = γ.

Equating the coefficients we get:

−nPn =
1
n

n

∑
k=1

(−1)k�kPn−k, n � 1,

where �k is defined by (7.7). �
If s = t , u = t + 1

2 , then asymptotic expansion (7.5) collapses to the duplication
formula for the gamma function since in this case we have γ = 0, �k = 0, Pn = 0 for
all n � 0.

COROLLARY 7.2. The central binomial coefficient has the following asymptotic
expansion: (

2n
n

)
∼ 22n

√
nπ

∞

∑
k=0

Pkx
−k (7.8)

where (Pn) is defined by P0 = 1 and

Pn =
1
n

�(n+1)/2�
∑
k=1

[2−2k −1]B2k

k
Pn−2k+1, n � 1, (7.9)

where B2k are the Bernoulli numbers.
The expansion (7.8) is exactly (7.1).
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Proof. We can write (
2n
n

)
=

Γ(2n+1)
Γ(n+1)2 .

Hence, t = 1
2 , s = u = 1 wherefrom γ = − 1

2 . The statement follows easily since
Bk(1) = (−1)kBk and Bk( 1

2) = −(1−2−k+1)Bk and B2k+1 = 0 for k � 1. �

7.3. Asymptotic expansion of general binomial coefficients

The next important class of binomial coefficients is given in the following theorem.

THEOREM 7.3. (Burić-Elezović (2013), [11]) The following asymptotic expansion
holds true: (

px
rx

)
∼
√

p
2πrsx

(
pp

rrss

)x ∞

∑
n=0

Pnx
−n, (7.10)

where polynomials (Pn) satisfy P0 = 1 and

Pn =
1
n

n

∑
k=1

(−1)k

k+1
(r−k + s−k − p−k)Bk+1Pn−k. (7.11)

Examples:(
3n
n

)
∼ 33n+ 1

2

22n+1
√

πn

(
1− 7

72n
+

49
10368n2 +

6425
2239488n3 −

187103
644972544n4 + ...

)
(

4n
n

)
∼ 44n+ 1

4

33n+ 1
2
√

πn

(
1− 13

144n
+

169
41472n2 +

48635
17915904n3 −

2614703
10319560704n4 + ...

)
(

5n
n

)
∼ 55n+ 1

2

44n+ 3
4
√

πn

(
1− 7

80n
+

49
12800n2 +

37847
46080000n3 −

1167761
14745600000n4 + ...

)
(

5n
2n

)
∼ 55n+ 1

2

22n+133n+ 1
2
√

πn

(
1− 19

360n
+

361
259200n2 +

165337
1399680000n3 + ...

)

7.4. The best shift for central binomial coefficients

On very interesting page [43] one can find this expansion:(
2n
n

)
∼ 4n√

Nπ/2

(
2− 2

N2 +
21
N4 − 671

N6 +
450803

4

N8

)
, (7.12)

where N = 8n+2.
The analysis of the best shift is summarized in the following result.
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THEOREM 7.4. (Elezović (2014), [21]) The following asymptotic expansion is valid:

(
2n
n

)
∼ 4n√

π(n+ α)

(
∞

∑
m=0

Pm(α)(n+ α)−m

)1/r

, (7.13)

where P0 = 1 and

1. for α = 1
4

Pm =
r
m

�m/2�
∑
k=1

2−2k−1EkPm−2k; (7.14)

2. for α = 1
2

Pm =
r
m

�(m+1)/2�
∑
k=1

(1−2−2k)B2k

k
Pm−2k+1; (7.15)

3. for α = 3
4

Pm =
r
m

�m/2�
∑
k=1

2−2k−1(2−Ek)Pm−2k; (7.16)

Here, Ek are Euler’s numbers.

The best choice is α = 1
4 . Using r = 1 we get

(
2n
n

)
∼ 4n√

π(n+ 1
4 )

[
1− 1

64
(
n+ 1

4

)2 +
21

8192
(
n+ 1

4

)4 − 671

524288
(
n+ 1

4

)6
+

180323

134217728
(
n+ 1

4

)8 − 20898423

8589934592
(
n+ 1

4

)10 + · · ·
]
, (7.17)

(
2n
n

)
∼ 4n√

π(n+ 1
2 )

[
1+

1

8
(
n+ 1

2

) +
1

128
(
n+ 1

2

)2 − 5

1024
(
n+ 1

2

)3
− 21

32768
(
n+ 1

2

)4 +
399

262144
(
n+ 1

2

)5 +
869

4194304
(
n+ 1

2

)6 + · · ·
]
, (7.18)

(
2n
n

)
∼ 4n√

π(n+ 3
4 )

[
1+

1

4
(
n+ 3

4

) +
5

64
(
n+ 3

4

)2 +
5

256
(
n+ 3

4

)3
+

21

8192
(
n+ 3

4

)4 +
21

32768
(
n+ 3

4

)5 +
715

524288
(
n+ 3

4

)6 + · · ·
]
. (7.19)
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7.5. An interesting symmetry

This is connected with properties of functions ϕ1 and ϕ2 .(
2n
n

)
∼ 4n

√
πn

[
1− 1

8n
+

1
128n2 +

5
1024n3 −

21
32768n4

− 399
262144n5 +

869
4194304n6 + · · ·

]
, (7.20)

1

/(
2n
n

)
∼

√
πn
4n

[
1+

1
8n

+
1

128n2 −
5

1024n3 −
21

32768n4

+
399

262144n5 +
869

4194304n6 + · · ·
]
. (7.21)

7.6. Multinomial central coefficients

Using formula (
kn

n,n, . . . ,n

)
=

(kn)!
(n!)k =

Γ(kn+1)
Γk(n+1)

and lemmas from Section 2, the algorithm for computation of coefficients can be easily
prepared.

THEOREM 7.5. (Burić-Elezović-Šimić (2013), [13]) Central multinomial coeffi-
cient has following asymptotic expansion(

kn
n,n, . . . ,n

)
∼
(√

2πn
)1−k

kkn+ 1
2

(
∞

∑
j=0

c jn
− j

)1/m

, (7.22)

where

a0 = 1, a j =
m
j

�( j+1)/2�
∑
i=1

B2i

2i
a j−2i+1, j � 1, (7.23)

b0 = 1, b j =
1
j

j

∑
i=1

[(k+1)i− j]aib j−i, j � 1, (7.24)

c0 = 1, c j = a jk
− j −

j

∑
i=1

bic j−i, j � 1, (7.25)

and Bk are Bernoulli numbers.

Let us give here the first terms of the first few expansions, in the case m = 1 we
obtain:(

3n
n,n,n

)
∼ 33n+1/2

2πn
·
(

1− 2
9n

+
2

81n2 +
14

2187n3 −
34

19683n4 + . . .

)
, (7.26)
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4n

n,n,n,n

)
∼ 44n

πn
√

2πn
·
(

1− 5
16n

+
25

512n2 +
49

8192n3 −
1605

524288n4 + . . .

)
. (7.27)

Let us note that m = 1/k is good choice for exponent, which can be seen from the
following expansions, see [13]:

(
3n

n,n,n

)
∼ 33n+1/2

2πn
·
(

1− 2
3n

+
2

9n2 −
2

81n3 −
2

243n4 + . . .

)1/3

, (7.28)

(
4n

n,n,n,n

)
∼ 44n

πn
√

2πn
·
(

1− 5
4n

+
25

32n2 −
9

32n3 −
95

2048n4 + . . .

)1/4

. (7.29)

7.7. Coefficients close to central

Let us denote
Sk

r = 1k +2k + . . .+ rk.

THEOREM 7.6. (Burić-Elezović (2013), [11]) The following asymptotic expansion
holds true: (

2x
x− r

)
∼ 4x

√
πx

∞

∑
n=0

Pnx
−n, (7.30)

where polynomials (Pn) satisfy P0 = 1 and

Pn =
1
n

�n/2�
∑
k=1

r2kPn−2k

+
1
n

�(n+1)/2�
∑
k=1

[
2−2k −1

k
B2k −2S2k−1

r−1 − r2k−1
]
Pn−2k+1. (7.31)

Examples:(
2n

n−1

)
∼ 4n

n
√

π

(
1− 9

8n
+

145
128n2 −

1155
1024x3 +

36939
32768n4 + . . .

)
,(

2n
n−2

)
∼ 4n

n
√

π

(
1− 33

8n
+

1345
128n2 −

23835
1024x3 +

1599339
32768n4 + . . .

)
.

7.8. Comparison with central coefficient

The ratio

F(x,r) =
(

2x
x− r

)/(
2x
x

)
(7.32)

is connected with ratio of gamma functions:

F(x,r) =
Γ(x+1)2

Γ(x+1− r)Γ(x+1+ r)
(7.33)

and can be expanded into asymptotic series using the same principle.
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THEOREM 7.7. (Burić-Elezović (2013), [11]) The function (7.32) has the asymp-
totic expansion:

F(x,r) =
∞

∑
m=0

Qmx−m, (7.34)

where polynomials (Qk) are defined by Q0 = 1 and

Qm =
1
m

�(m+1)/2�
∑
k=1

r2k−1Qm−2k+1− 1
m

�m/2�
∑
k=1

(2Sk
r−1 + rk)Qm−k. (7.35)

(
2n

n−2

)
=
(

2n
n

)[
1− 4

n
+

10
n2 − 22

n3 +
46
n4 − 94

n5 + . . .

]
,(

2n
n−3

)
=
(

2n
n

)[
1− 9

n
+

45
n2 − 177

n3 +
621
n4 − 2045

n5 + . . .

]
.

The shift analysis can be made in this context. If we write

F(x,r) =
∞

∑
m=0

Qm(x+ α)m, (7.36)

then

Qm =
1
m

m

∑
k=1

(−1)k+1

k+1
[2Bk+1(1−α)−Bk+1(1− r−α)−Bk+1(1+ r−α)]Qm−k.

(7.37)
From the value of the first few coefficients the best shift α can be deduced:

Q1 = −r2,

Q2 =
r2

2
+

r4

2
−αr2,

Q3 = − r2

6
− 2r4

3
− r6

6
+(r2 + r4)α − r2α2.

(7.38)

The coefficient Q2 will be equal to zero if

α =
r2

2
+

1
2
. (7.39)

Hence (
2x

x− r

)
≈
(

2x
x

)[
1− 2r2

2x+ r2 +1
+ ...

]
. (7.40)

The right hand side gives a good lower estimate for the binomial coefficient from the
left: (

2n
n− r

)
>

[
1− 2r2

2n+ r2 +1

](
2n
n

)
. (7.41)

This inequality can be proved using the following theorem:
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THEOREM 7.8. (Burić-Elezović (2013), [11]) Let function f be defined as

f (x) =
Γ(x+1)2

Γ(x+1− r)Γ(x+1+ r)
· 2x+ r2 +1
2x− r2 +1

. (7.42)

Then log f (x) is completely monotonic on (r−1,+∞) .

Proof. Using the following integral representations [2]:

logΓ(x) =
∫ ∞

0

[
(x−1)e−t − 1− e(1−x)t

et −1

]
dt
t

,

logx =
∫ ∞

0
[e−t − e−xt ]

dt
t

it is easy to obtain

log f (x) =
∫ ∞

0
2h(t)

e−xt

t(et −1)
dt.

Here function h(t) is defined by

h(t) = 1− cosh(rt)− cosh
(

1−r2
2 t
)

+ cosh
(

1+r2
2 t
)

=
∞

∑
k=1

c2k

(2k)!
t2k

where

c2k =
(

1+ r2

2

)2k

−
(

1− r2

2

)2k

− r2k.

It is obvious that it holds c2 = 0 and c2k > 0 for k > 1. Hence, h(t) > 0 for all t > 0
and the claim follows. �

As a consequence, we have f (x) > 1 for all x > r−1. Therefore, (7.41) follows.

7.9. Asymptotic expansion of Catalan numbers

Catalan numbers are given by the following explicit formula:

Cn =
1

n+1

(
2n
n

)
=

Γ(2n+1)
Γ(n+1)Γ(n+2)

. (7.43)

Hence, Catalan numbers can be expressed as a ratio of two gamma functions

Cn =
4n
√

π
· Γ(n+ 1

2 )
Γ(n+2)

. (7.44)

Putting x = n+ α , t = 1
2 −α , s = 2−α , from (4.5) we get

Cn ∼ 4n
√

π
x−3/2

(
∞

∑
m=0

Pmx−m

)1/r

, (7.45)
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with P0 = 1 and

Pm =
r
m

m

∑
k=1

ck(α)Pm−k, (7.46)

where we denote

ck(α) =
Bn+1(α + 1

2)−Bk+1(α −1)
k+1

. (7.47)

As before, 0 and 1
2 are the natural choice for α . Two other good values follow

from α + 1
2 = 1− (α − 1) and α + 1

2 = −(α − 1) , wherefrom one gets α = 3
4 and

α = 1
4 , respectively.

THEOREM 7.9. (Elezović (2014), [21]) The following asymptotic expansion holds:

Cn ∼ 4n
√

π
(n+ α)−3/2

(
∞

∑
m=0

Pm(α)(n+ α)−m

)1/r

, (7.48)

where P0 = 1 and

1. for α = 0

Pm =
r
m

m

∑
k=1

[
(2−k −2)Bk+1

k+1
+(−1)k

]
Pm−k; (7.49)

2. for α = 1
2

Pm =
r
m

m

∑
k=1

[
(2−2−k)Bk+1

k+1
+

(−1)k+1

2k

]
Pm−k; (7.50)

3. for α = 3
4

Pm =
r
m

�m/2�
∑
k=1

2 ·4−2k−1(4−E2k)Pm−2k; (7.51)

4. for α = 1
4

Pm =
r
m

m

∑
k=1

[2−2k−1Ek +(− 3
4)

k]Pm−k. (7.52)

We give here expansions for r = 1 and in two most important cases, α = 0 and
α = 3

4 .

Cn ∼ 4n
√

πn3

[
1− 9

8n
+

145
128n2 −

1155
1024n3 +

36939
32768n4

− 295911
262144n5 +− 4735445

4194304n6 + · · ·
]
, (7.53)
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Cn ∼ 4n√
π(n+ 3

4)3

[
1+

5

64
(
n+ 3

4

)2 +
21

8192
(
n+ 3

4

)4 +
715

524288
(
n+ 3

4

)6
− 162877

134217728
(
n+ 3

4

)8 +
19840275

8589934592
(
n+ 3

4

)10 + · · ·
]
. (7.54)

As one can see, the expansion in terms of n + 3
4 has additional property that it

contains only odd terms. Having in mind that Catalan number differs from central
binomial coefficient by factor of (n+1) , and binomial coefficient has similar property
for expansions through n + 1

4 , this property of Catalan numbers seems very strange.
But, it can be clearly seen from previous theorem. See [21] for detailed discussion.

7.10. Sum of binomial coefficients and Catalan numbers

If asymptotic expansion of some series a(n) is known, then in some situations it
is possible to determine asymptotic expansion of its finite sum.

Suppose that the following expansion is known

a(n) ∼ bn
∞

∑
k=0

Pk(α)(n+ α)−k−r, (7.55)

where r > 0 is a real number, b > 1 and Pk are polynomials, P0 = 1.
The next theorem is a slight extension of [21, Theorem 6.1]

THEOREM 7.10. If A(n) are given by (7.55) then

n

∑
k=0

a(k) ∼ bn+1

b−1

∞

∑
k=0

Sk(α)(n+ α)−k−r, (7.56)

where the coefficients of this expansion satisfy S0(α) = 1 and

Sk(α) = Pk(α)+
1

b−1

k−1

∑
j=0

(−1)k− j
(− j− r

k− j

)
S j(α). (7.57)

Proof. Denote Σ(n) = ∑n
k=0 a(k) . Suppose that

Σ(n) ∼C ·bnn−r +O(n−r−1).

Then

Σ(n) ∼ a(n)+ Σ(n−1)

∼ bn n−r +C ·bn−1(n−1)−r +O(n−r−1)

∼ bn n−r +C ·bn−1 n−r +O(n−r−1)

∼C ·bn n−r +O(n−r−1)
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and from here it follows that C = b/(b−1) . The fact that Σ(n) indeed has the asymp-
totic behavior of this type may be proved in the same way as it is done for the case
r = 1/2 in [44].

Hence, we obtain that Σ(n) has the asymptotic expansion of the following form:

Σ(n) =
bn+1

(b−1)

∞

∑
k=0

Sk(α)(n+ α)−k−r. (7.58)

Then, using the asymptotic expansion (7.55), we get

bn+1

(b−1)

∞

∑
k=0

Sk(α)(n+ α)−k−r

= bn
∞

∑
k=0

Pk(α)(n+ α)−k−r +
bn

(b−1)

∞

∑
k=0

Sk(α)(n+ α −1)−k−r

= bn
∞

∑
k=0

Pk(α)(n+ α)−k−r

+
bn

(b−1)

∞

∑
k=0

Sk(α)(n+ α)−k−r
∞

∑
j=0

(−1) j
(−k− r

j

)
(n+ α)− j.

Hence

bSk(α) = (b−1)Pk(α)+
k

∑
j=0

(−1)k− j
(− j− r

k− j

)
S j(α).

Extracting from the right side the member Sk , we get (7.57). �
Taking b = 4, α = 0 and r = 1/2 or r = 3/2, it is easy to obtain the following

asymptotics for the sum of binomial coefficients and sum of Catalan numbers:

n

∑
k=0

(
2k
k

)
∼ 4n+1

3
√

πn

(
1+

1
24n

+
59

384n2 +
2425

9216n3 +
576793

884736n4

+
5000317

2359296n5 +
953111599

113246208n6 + . . .

)
,

n

∑
k=0

Cn ∼ 4n+1

3n
√

πn

(
1− 5

8n
+

475
384n2 +

1225
9216n3 +

395857
98304n4

+
27786605
2359296n5 +

6798801295
113246208n6

)
.

8. Wallis functions and inequalities

The main property of Wallis function is given in the next theorem.

THEOREM 8.1. (Elezović-Giordano-Pečarić (2000) [25]) Let s,t > 0 , r = min(s,t) .
Then

z(x) :=
(

Γ(x+ t)
Γ(x+ s)

) 1
t−s

− x (8.1)
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is convex and decreasing function on (−r,+∞) for |t − s| < 1 , and concave and in-
creasing on the same interval for |t− s| > 1 .

Let α and β be lower and upper bounds for this function. Because of the mono-
tonicity we immediate obtain Gautschi-Kershawfirst inequality in its most natural form:

x+ α <

(
Γ(x+ t)
Γ(x+ s)

) 1
t−s

< x+ β . (8.2)

THEOREM 8.2. (Elezović-Giordano-Pečarić (2000), [25]) For each x > 0 and s, t >
0 , inequality

x+
s+ t−1

2
<

(
Γ(x+ t)
Γ(x+ s)

) 1
t−s

< x+
[

Γ(t)
Γ(s)

] 1
t−s

(8.3)

holds for |t − s| < 1 , and with opposite sign for |t − s| > 1 . The bounds are the best
possible.

It should be noticed that condition x > 0 is posed because of the right side of this
inequality. The left side holds for x > −r , as before.

Figure 1. Upper and lower bound in the first Gautschi’s inequality.

Gautschi-Kershaw inequality is just the very beginning of an asymptotic expan-
sion. Taking into account the second term of this expansion, one can write inequality
which is waiting for the proof:

CONJECTURE 8.3.

(
Γ(x+ t)
Γ(x+ s)

) 1
t−s

< x+
(1− (t− s)2)

24x
. (8.4)



1034 N. ELEZOVIĆ

Figure 2. The second asymptotic term added.

F. Qi [50] give an extensive study of the various inequalities connected to the ratio
of gamma functions.

9. Integral means and the second Gautschi-Kershaw’s inequality

9.1. Second Gautschi inequality

In 1983 D. Kershaw [39] splitted original Gautschi’s inequality (1.6) into two of
different type, the first one is given in (1.7) and the second one reads as

exp[(1− s)ψ(x+
√

s)] <
Γ(x+1)
Γ(x+ s)

< exp
[
(1− s)ψ

(
x+

s+1
2

)]
. (9.1)

In 2005 D. Kershaw [40] proved the following inequality:

ψ(x+
√

st) <
1

t− s
log

Γ(x+ t)
Γ(x+ s)

< ψ
(

x+
s+ t
2

)
(9.2)

for x � 0 and 0 < s � t , and in 2008. F. Qi raises the left bound from geometrical to
logarithmic mean

L(s,t) =
t− s

logt− logs
,

but this was already proved in [25]. Moreover, in [25] the best bound was given:

THEOREM 9.1. (Elezović-Pečarić (2000) [27]) For each x � 0 , s,t > 0 it holds

ψ
(
x+ Iψ(s,t)

)
<

1
t−s

∫ t

s
ψ(x+u)du < ψ(x+

s+t
2

). (9.3)

Here

Iψ(s,t) = ψ−1
(

1
t − s

∫ t

s
ψ(u)du

)
is integral ψ -mean of s and t , ψ−1 denotes the inverse function of ψ . Namely, in [27]
it is proved that √

st � L(s,t) � Iψ(s,t).
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Since
Iψ(x+ s,x+ t)− x→ s+ t

2
as x → ∞,

this implies that

1
t− s

log
Γ(x+ t)
Γ(x+ s)

∼ ψ
(

x+
s+ t
2

)
as x → ∞. (9.4)

Therefore, the bounds given in (9.3) are the best possible. The left bound is obtained
for x = 0, and the right one is asymptotical.

THEOREM 9.2. (Elezović-Giordano-Pečarić (2000), [25]) Let s,t > 0 , r = min(s,t) .
Function

v(x) = ψ
(
x+

s+ t
2

)
− 1

t − s
log

Γ(x+ t)
Γ(x+ s)

is completely monotonic on (−r,+∞) .

It is known that if v is completely monotonic then −v′ is completely monotonic,
hence exp(v) is also completely monotonic. Bustoz and Ismail [16] proved that −v′ is
completely monotonic, for t = 1 and 0 < s < 1.

Proof of Theorem 9.2. We shall use the following representation of gamma and
digamma functions:

logΓ(x) =
∫ ∞

0

[
(x−1)e−u− e−u− e−xu

1− e−u

]
du
u

,

ψ(x) =
∫ ∞

0

[
e−u

u
− e−xu

1− e−u

]
du.

Hence, for any value of ϕ we have

ψ(x+ ϕ)− 1
t − s

[logΓ(x+ t)− logΓ(x+ s)]

=
∫ ∞

0

e−xu

1− e−u

[
−e−ϕu− e−tu − e−su

u(t− s)

]
=
∫ ∞

0

e−xu

1− e−u g(u)du,

where

g(u) = −e−ϕu +
1

t− s

∫ t

s
e−τudτ.

By Hermite-Hadamard inequality for convex function τ �→ e−τu , we have g(u) > 0 for
ϕ � A(s, t) . Therefore, for this value of ϕ

(−1)kv(k)(x) =
∫ ∞

0
uk e−xu

1− e−u g(u)du > 0

and the theorem is proved. �



1036 N. ELEZOVIĆ

9.2. Integral mean formulation

Let f be monotone on [s,t] . Integral mean of f is defined by

I f = I f (s,t) = f−1
[

1
t − s

∫ t

s
f (u)du

]
. (9.5)

Equivalent form of the second Gautschi-Kershow’s inequality is: find the best
constants α , β such that

ψ(x+ α) <
1

t − s

∫ t

s
ψ(x+u)du < ψ(x+ β ). (9.6)

Equivalent notation to inequality (9.3) is:

x+ Iψ(s,t) < Iψ(x+ s,x+ t) < x+A(s,t). (9.7)

The natural question connected with this inequality is to find asymptotic expansion
of the function G defined by

[
Γ(x+ t)
Γ(x+ s)

] 1
t−s

= expψ(G(x)). (9.8)

Equivalent form is to find asymptotic expansion of the integral mean of digamma func-
tion:

Iψ(x+ s,x+ t) = ψ−1
(

1
t− s

∫ t

s
ψ(x+u)du

)
= G(x)

=
∞

∑
k=0

ck(t,s)x−k+1. (9.9)

This problem is solved in the following theorem.

THEOREM 9.3. (Chen-Elezović-Vukšić (2013), [17]) Let (ak) and (bk) are re-
lated to (ck) through:

an =
cn

c0
− 1

nc0

n−1

∑
k=1

kakcn−k, n � 1. (9.10)

bn(r) =
1

nc0

n

∑
k=1

[k(1+ r)−n]ckbn−k(r). (9.11)

Then integral mean of digamma function has asymptotic expansion

cn(t,s) =
1
n

n−1

∑
k=1

kakcn−k(t,s)+
n

∑
k=1

Bk(1)
k

bn−k(k)

+
Bn+1(1− t)−Bn+1(1− s)

n(n+1)(t− s)
. (9.12)
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The first few coefficients are:

c0 = 1,

c1 =
1
2
(t + s),

c2 = − 1
24

(t− s)2,

c3 =
1
48

(t − s)2(s+ t−1),

c4 = − 1
5760

(t− s)2
[
73(t2 + s2)+94ts−120(t+ s)+20

]
,

c5 =
1

3840
(t − s)2

[
33(t3 + s3)+47ts(t + s)

−73(t2 + s2)−94ts+20(t+ s)+20)
]
,

This implies, among others, the hypothesis about improvement of the second
Gautschi’s inequality.

CONJECTURE 9.4. The following inequality is satisfied for all x > x0 :

exp
(

ψ(x+ 1
2 (t + s)− 1

24(t− s)2x−1)
)

<

[
Γ(x+ t)
Γ(x+ s)

]1/(t−s)

.

Also, this was a clear signal that asymptotic expansion can be efficient tool in
investigation of various means.

The coefficients of the asymptotic expansions of the mean M(x+ t,x+ s) usually
has simpler form (especially in the case of symmetric mean, this one is not symmetric)
if one uses another set of variables, α = (s+ t)/2, β = (s− t)/2. We shall use these
substitutions in the sequell.

10. Asymptotic inequalities and integral means

10.1. Integral means

Let I ⊂ R be an interval and let f be a strictly monotone continuous function on
I and s, t ∈ I , s < t . Then there exists the unique ϑ ∈ [s,t] for which

1
t − s

∫ t

s
f (u)du = f (ϑ).

ϑ is called integral f -mean of s and t , and is denoted by

I f (s,t) = f−1
(

1
t− s

∫ t

s
f (u)du

)
, (10.1)
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see [4, 5] for details.
Many classical means can be interpreted as integral means, for suitably chosen

function f . For example,

f (x) = x, Ix(s,t) =
s+ t
2

= A(s,t),

f (x) = logx, Ilogx(s,t) =
1
e

(
tt

ss

) 1
t−s

= I(s, t),

f (x) =
1
x
, I1/x(s,t) =

s− t
logs− logt

= L(s, t),

f (x) =
1
x2 , I1/x2(s,t) =

√
st = G(s,t),

f (x) = xr, r 	= 0,−1 Ixr(s,t) =
(

tr+1− sr+1

(r+1)(t− s)

) 1
r

= Lr(s, t),

where A , I , L , G , and Lr are arithmetic, identric, logarithmic, geometric and general-
ized logarithmic mean.

Let us denote:

A(x) ∼ xw
∞

∑
n=0

anx
−n, B(x) ∼ xu

∞

∑
n=0

bnx
−n, C(x) ∼ xv

∞

∑
n=0

cnx
−n. (10.2)

10.2. Finding asymptotic expansion

N. Elezović and L. Vukšić [26] solved general problem of finding coefficients of
an asymptotic expansion A(x) such that the formal equation

B(A(x)) = C(x) (10.3)

is satisfied. The algorithm depends on the sign of exponent w . In applications to mean,
this exponent is always equal to 1 and this case is covered in the following result:

THEOREM 10.1. (Elezović-Vukšić (2013), [26]) Suppose u 	= 0 . Then there ex-
ists asymptotic expansion A(x) of with w > 0 , if and only if:

1. u and v have the same sign and w = v/u is a rational number,

2. If nw is not a positive integer then bn = 0 ,

3. b0 and c0 are of the same sign.

Then:

an = − a0

b0uE0[a,u]

[ �n/w�
∑
j=1

b jEn−w j[a,u− j]

+
b0

na0

n−1

∑
k=1

[k(1+u)−n]akEn−k[a,u]− cn

]
. (10.4)
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THEOREM 10.2. (Elezović-Vukšić (2013), [26]) Let B(x) and C(x) be asymp-
totic series given by (10.2). Let us suppose that the following conditions are fulfilled:

1. representation of B is finite, ie.

B(x) ∼ xu
M

∑
n=0

bnx
−n, (10.5)

where M is such that bM 	= 0 .

2.
w =

v
u−M

< 0. (10.6)

Then there exists series A(x) of the form (10.2) such that (10.3) is satisfied. Coefficients
of the series A(x) can be calculated using recursive formula:

a0 =
(

c0

bM

)M−u

,

an =
a1−u+M

0

(u−M)bM

(
cn − bM

na0

n−1

∑
k=1

[k(1+u−M)−n]akEn−k[a,u−M]

−
min{M,−n/w}

∑
j=1

bM− jEn+w j[a,u−M+ j]
)

. (10.7)

The following example ilustrates both situations.

EXAMPLE 10.3. Let us find asymptotic series which satisfies the equation A2(x)+
1/A(x) = x2 . Here B(x) = x2 +1/x , C(x) = x2 . Hence, for the first solution we have
u = 2, v = 2, w = 1 and (10.4) will give

A(x) ∼ x

(
1− 1

2x3 −
3

8x6 −
1

2x9 −
105

128x12 −
3

2x15 −
3003

1024x18 −
6

x21 + . . .

)
.

The expansion of the function B is finite, and this enables another solution for
which M = 3, hence w = −2 and (10.7) gives

A(x) ∼ 1
x2

(
1+

1
x6 +

3
x12 +

12
x18 +

55
x24 +

273
x30 +

1428
x36 − 7752

x42 + . . .

)
.

10.3. Asymptotic expansion of integral mean

Theorem 10.1 can be applied to the problem of finding asymptotic expansion

A(x) ∼ x
∞

∑
m=0

anx
−n (10.8)
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of an integral mean of function f , if the asymptotic expansion of a function f is known:

f (x) ∼ xu
∞

∑
n=0

bnx
−n.

The right side is given by

C(x) =
1

t − s

∫ t

s
f (x+u)du ∼ xv

∞

∑
n=0

cnx
−n.

Coefficients (cn) can be calculated in a straightforward way:

cn =
n

∑
k=0

bk

n+1− k

(
u− k
n− k

)
tn+1−k − sn+1−k

t− s
. (10.9)

The algorithm for calculation of integral mean reads as:

THEOREM 10.4. Let function f have the following asymptotic expansion

f (x) ∼ xu
∞

∑
n=0

bnx
−n. (10.10)

Then the integral mean of function f has the form

If (x+ s,x+ t)∼ x
∞

∑
n=0

anx
−n (10.11)

and coefficients an satisfy the following recursive relation:

a0 = 1,

an = − 1
b0u

( n

∑
j=1

b jEn− j[a,u− j]

+
b0

n

n−1

∑
k=1

(k(1+u)−n)akEn−k[a,u]− cn

)
, (10.12)

where coefficients (cn) are defined by (10.9).

EXAMPLE 10.5. Asymptotic expansion of generalized logarithmic mean. Sup-
pose f (x) = xr , r 	= 0, r 	= −1. Then the integral mean has the form (10.11) where
a0 = 1 and

an = −1
r

(
1
n

n−1

∑
k=1

(k(1+ r)−n)akEn−k[a,r]− cn

)
where

cn =
1

n+1

(
r
n

)
tn+1− sn+1

t− s
.



ASYMPTOTIC EXPANSIONS, INEQUALITIES AND MEANS 1041

The first few coefficients are

a0 = 1,

a1 = α,

a2 = 1
6 (r−1)β 2,

a3 = − 1
6 (r−1)αβ 2,

a4 = 1
360(r−1)β 2[(−2r2−5r+13)β 2 +60α2],

a5 = − 1
120(r−1)αβ 2[(−2r2−5r+13)β 2 +20α2].

(10.13)

Here we use α = (s+ t)/2 and β = (s− t)/2.

10.4. Logarithmic case

This theorem does not cover initial example of integral mean of psi function, be-
cause of the logarithm term in asymptotic expansion. Introduction of logarithm term
into function f

f (x) ∼ b · logx+ x−1
∞

∑
n=0

bnx
−n (10.14)

leads to different algorithm. We shall give only the final form, interested readers can
find details in [28].

THEOREM 10.6. Let

f (x) ∼ b logx+ x−1
∞

∑
n=0

bnx
−n. (10.15)

Then the coefficients from the asymptotic expansion

If (x+ s,x+ t)∼ x
∞

∑
n=0

anx
−n (10.16)

can be calculated as follows

a0 = 1,

an = −dn

n
+

cn−1

b
+

1
n

n−1

∑
k=1

kLkan−k − 1
b

n−1

∑
k=0

bkEn−1−k[a,−k−1], (10.17)

where

Ln = an− 1
n

n−1

∑
k=1

kLkan−k. (10.18)

Using this teorem one can deduce coefficients of integral means of psi function
which are given before. Another example is asymptotic expansion of identric mean.
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EXAMPLE 10.7. Identric I(s,t) mean is integral mean of the function f (x) =
logx , therefore all coefficients bk are equal to zero. Applying the algorithm stated in
Theorem 10.6, we obtain the following coefficients:

I(x+ s,x+ t)∼ x
∞

∑
n=0

akx
−k,

where
a0 = 1,

a1 = α,

a2 = − 1
6β 2,

a3 = 1
6αβ 2,

a4 = − 1
360β 2(60α2 +13β 2),

a5 = 1
120αβ 2(20α2 +13β 2),

a6 = − 1
45360β 2(7560α4 +9828α2β 2 +737β 4).

(10.19)

Identric mean is the special case of generalized logarithmic mean, obtained by
taking a limit r → 0. So, it is not a surprise that these coefficients coincide to ones
calculated in (10.13), if we choose there r = 0.

11. Asymptotic expansion of bivariate means

11.1. Bivariate means

Asymptotic expansion is very efficient tool in analysis of bivariate and multivariate
means, since it describes behaviour of means when the data are translated by some
large quantity x . Therefore, we will analyse the asymptotic behaviour of the function
F(x+ s,x+ t) , where F is bivariate mean and x tends to ∞ . By a bivariate mean we
understand a function M : R+×R+ → R+ which satisfies

min(s,t) � M(s,t) � max(s,t).

It follows that M(s,s) = s for all s > 0. Means considered here will be homogeneous
and symmetric.

Condition of homogeneity is not necessary, but it will simplify comparison of
means, and all classical bivariate and parameter means has this property. Some other
means are not homogeneous, like quasi-arithmetic mean or integral mean of nonhomo-
geneous function.

If the mean is homogeneous, then we have

F(x+ s,x+ t) = xF(1+
s
x
,1+

t
x
).

So, the asymptotic expansion is essentially equivalent to the power series expansion
of the function F(1+ s,1+ t) for small values of s and t . It will be shown that it is
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sufficient to consider symmetric case F(1− t,1 + t) . H. W. Gould and M. E. Mays
[35] consider expansion of the function F(1,1+ t) , but this is non-symmetric case and
results are not so clear as in our approach.

Let F be homogeneous bivariate mean. We expect to obtain asymptotic expan-
sions of this mean in the form

F(x+ s,x+ t) = x+
s+ t
2

+
∞

∑
n=2

cn(t,s)x−n+1. (11.1)

Here, cn are homogeneous polynomials of two variables of degree n , which depend, of
course, also on the parameters of the involved mean.

Such expansions have many important properties. First, they are introduction for
the similar analysis for general n -variable means. Further, they reveal many important
properties of the means under consideration, for example, the comparison of various
means. In [41], [45]–[48] similar problems were studied.

The notation will be much simpler with s and t being replaced by variables α and
β , t = α + β and s = α −β . Then

α =
t + s
2

, β =
t − s

2
.

We shall use also

γ = st = α2 −β 2, δ =
s2 + t2

2
= α2 + β 2.

In all examples, the asymptotic expansions will be stated in terms of α and β .
Finally, let us denote

Sn = tn− sn, Tn = 1
2 (sn + tn).

These sequences can be calculated by recursive relations

Sn = 2αSn−1− γSn−2, n � 2,

where S0 = 0 and S1 = 2β , and

Tn = 2αTn−1− γTn−2, n � 2,

where T0 = 1 and T1 = α .

11.2. Asymptotic expansions of bivariate classical means

N. Elezović and L. Vukšić [29] considered bivariate classical means, contrahar-
monic mean (N ), quadratic mean (Q), centroidal mean (C ), arithmetic mean (A),
identric mean (I ), Heronian mean (He), logarithmic mean (L ), geometric mean (G),
cologarithmic mean (cL ), coidentric mean (cI ), harmonic mean (H ). They are listed
in the falling order, since all these means are comparable:

N � Q � C � A � I � He � L � G � cL � cI � H.
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If M(s, t) is any of the means above, our intention is to find asymptotic expansion
for the function x �→ M(x+ s,x+ t) as x → ∞ .

For all x it holds
A(x+ s,x+ t) = x+A(s, t),

and this is (degenerated) asymptotic expansion of arithmetic mean. The asymptotic
expansion of all other means are given, in explicit or recursive form. It is shown that
it is sufficient to consider the case α = 0, since general case can be deduced from this
one. Denote: The main expansion has the form

M(x+ s,x+ t)∼ x+ α +
∞

∑
n=0

cn+2(α,β )x−n−1 (11.2)

and this relation is valid for all values of s and t , not only for the positive ones. This
can be written as

M(x+ α −β ,x+ α + β )∼ x+ α +
∞

∑
n=0

cn+2(α,β )x−n−1.

Now, choose in (11.2) s = −β , t = β . Then corresponding α is equal to zero, so

M(x−β ,x+ β )∼ x+
∞

∑
n=0

cn+2(0,β )x−n−1,

and this holds for any sufficiently large x , hence, also for x+ α :

M(x+ α −β ,x+ α + β )∼ x+ α +
∞

∑
n=0

cn+2(0,β )(x+ α)−n−1.

THEOREM 11.1. The coefficients (cn) of the asymptotic expansion of the mean
M satisfy

cn+2(α,β ) =
n

∑
k=0

(−1)n−k
(

n
k

)
αn−kck+2(0,β ), n � 0. (11.3)

Proof. From the analysis above, one can write

∞

∑
n=0

cn+2(α,β )x−n−1 =
∞

∑
n=0

cn+2(0,β )(x+ α)−n−1

=
∞

∑
n=0

cn+2(0,β )
∞

∑
k=0

(−1)k
(

n+ k
k

)
αkx−n−1−k

=
∞

∑
n=0

( n

∑
k=0

(−1)n−k
(

n
k

)
αn−kck+2(0,β )

)
x−n−1,

which had to be proved. �
However, we shall here repeat formulas for general expansions.
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THEOREM 11.2. (Elezović-Vukšić (2014), [29]) Classical bivariate means have
following asymptotic expansions:

M(x+ s,x+ t) = x ·
∞

∑
n=0

cnx
−n (11.4)

where c0 = 1 , c1 = α . The other coefficients are given by
1. Geometric mean:

cn =
(

3
n
−2

)
αcn−1 +

(
3
n
−1

)
(α2 −β 2)cn−2. (11.5)

2. Quadratic mean:

cn =
(

3
n
−2

)
αcn−1 +

(
3
n
−1

)
(α2 + β 2)cn−2. (11.6)

3. Harmonic mean:
cn = (−1)nβ 2αn−1. (11.7)

4. Contraharmonic mean:

cn = (−1)n−1β 2αn−1. (11.8)

5. Centroidal mean:

cn =
(−1)n−1

3
β 2αn−1. (11.9)

6. Logarithmic mean:

cn =
n

∑
k=1

(−1)k−1 Sk+1

2(k+1)β
cn−k. (11.10)

7. Cologarithmic mean:

cn =
(−1)n

β (n+2)

[
αSn+1

n+1
− (α2 −β 2)Sn

n

]
x−n. (11.11)

8. Identric mean:

cn =
1
n

n

∑
k=1

(−1)k−1 Sk+1

2(k+1)β
cn−k. (11.12)

9. Coidentric mean:

cn =
1
n

n

∑
k=1

(−1)k−1

2(k+1)β
[2kαSk − (2k+1)(α2−β 2)Sk−1]cn−k. (11.13)
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In the following table, the coefficients of some of these means are listed, with the
choice α = 0.

x β 2/x β 4/x3 β 6/x5 β 8/x7

N 1 1 0 0 0

Q 1
1
2

−1
8

1
16

− 5
128

A 1 0 0 0 0

I 1 −1
6

− 13
360

− 737
45360

− 50801
5443200

L 1 −1
3

− 4
45

− 44
945

− 428
14175

G 1 −1
2

−1
8

− 1
16

− 5
128

H 1 −1 0 0 0

For example, one has

L(x+ s,x+ t)∼ x− β 2

3x
− 4β 4

45x3 −
44β 6

945c5 −
428b8

14175x7 + . . . .

As a first byproduct of these results, the following inequalities are proved in [29].

THEOREM 11.3. Let α > 0 . Then the following inequalities are valid for all
x > −s:

G(x+ s,x+ t) > x+ α − β 2

2x
,

H(x+ s,x+ t) > x+ α − β 2

x
,

L(x+ s,x+ t) > x+ α − β 2

3x
,

I(x+ s,x+ t) > x+ α − β 2

6x
.

(11.14)

For α � 0 these inequalities are valid with opposite sign.

Note that the first neglected term in asymptotic expansion of the functions from
the left is negative.



ASYMPTOTIC EXPANSIONS, INEQUALITIES AND MEANS 1047

11.3. Asymptotic expansions of bivariate parameter means

Some classes of parameter means are important in applications, we shall refer here
to generalized logarithmic mean, power means, Stolarsky and Gini means. Here is a
short overview of results given by N. Elezović and L. Vukšić [30]. We shall restrict
ourselves to the definition, algorithm for calculations of coefficients and the table with
first few coefficients.

1. Generalized logarithmic mean. Let r be a real number. The generalized loga-
rithmic mean is defined for all s,t > 0 by

Lr(s,t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
tr+1− sr+1

(r+1)(t− s)

)1/r

, r 	= −1,0,

t − s
logt − logs

, r = −1,

1
e

(
tt

ss

)1/(t−s)

, r = 0.

(11.15)

THEOREM 11.4. Generalized logarithmic mean can be expanded into asymptotic
series

Lr(x+ s,x+ t) = x
∞

∑
n=0

cnx
−n,

where sequence (cn) is defined by c0 = 1 and

cn =
1
2n

n

∑
k=1

(
k
r
− n

r+1

)(
r+1
k+1

)
Sk+1

β
cn−k. (11.16)

The first few coefficients in this asymptotic expansion are:

c0 = 1, c3 = − 1
6(r−1)αβ 2,

c1 = α, c4 = − 1
360(r−1)β 2[(2r2 +5r−13)β 2−60α2],

c2 = 1
6 (r−1)β 2, c5 = 1

120(r−1)αβ 2[(2r2 +5r−13)β 2−20α2].

Parameter means are defined by various formulas according to the full or special
meaning of some of theirs parameters. But, there exists only one set of coefficients,
for general value of parameters. Expansions of the critical cases which correspond to
particular choice of parameters follow from these general values. For example, taking
r =−1 and r = 0 we obtain the special cases: the asymptotic expansion of logarithmic
and identric mean:

L(x+ s,x+ t) = x+ α − β 2

3x
+

αβ 2

3x2 − β 2(15α2 +4β 2)
45x3 +

αβ 2(5α2 +4β 2)
15x4 ,

I(x+ s,x+ t) = x+ α − β 2

6x
+

αβ 2

6x2 − β 2(60α2 +13β 2)
360x3 +

αβ 2(20α2 +13β 2)
120x4 .
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2. Power mean. The r -th power mean is defined for all s,t > 0 by

Mr(s,t) =

⎧⎪⎨⎪⎩
(

tr + sr

2

)1/r

, r 	= 0,
√

st, r = 0.

(11.17)

The important particular cases of this mean are arithmetic mean A = M1 , quadratic
mean Q = M2 and harmonic mean H = M−1 . Geometric mean G = M0 is obtained as
limit of means Mr for r → 0.

THEOREM 11.5. The power mean has the asymptotic expansion of the form

Mr(x+ s,x+ t) = x
∞

∑
k=0

ckx
−k,

where c0 = 1 and

cn =
1
n

n

∑
k=1

[
k

(
1+

1
r

)
−n

](
r
k

)
Tkcn−k. (11.18)

The first few coefficients are

c0 = 1,

c1 = α,

c2 = 1
2 (r−1)β 2,

c3 = − 1
2 (r−1)αβ 2,

c4 = 1
24 (r−1)β 2(12α2 +(3+ r−2r2)β 2),

c5 = − 1
8 (r−1)αβ 2(4α2 +(3+ r−2r2)β 2).

3. Stolarsky mean or the extended mean of order p,r is defined for all s,t > 0 by

Ep,r(s,t) =
[
r(t p− sp)
p(tr − sr)

]1/(p−r)

, p 	= r, p,r 	= 0. (11.19)

It is symmetric both on t and s as well on p and r . Therefore, we may suppose that
s � t and r � p . The excluded cases are obtained by limit procedure:

Er,r(s,t) =
1

e1/r

(
tt

r

ssr

)1/(tr−sr)

, r = p 	= 0,

E0,r(s,t) =
[

tr − sr

r(logt − logs)

]1/r

, r 	= 0,

E0,0(s,t) =
√

st.
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Let us denote

an(q) =
(

q
n+1

)
tn+1− sn+1

q(t− s)
. (11.20)

Then the asymptotic expansion of Stolarsky mean can be obtained by the following
algorithm.

THEOREM 11.6. Let r 	= p, r, p 	= 0 . The Stolarsky mean has the asymptotic
expansion of the form

Ep,r(x+ s,x+ t) = x
∞

∑
n=0

cnx
−n,

where (cn) is obtained by following algorithm, c0 = 1 and

b0 = 1,

bn = an(p)−
n

∑
k=1

ak(r)bn−k, n � 1 (11.21)

cn =
1
n

n

∑
k=1

[
k

(
1+

1
p− r

)
−n

]
bkcn−k, n � 1. (11.22)

The first few coefficients are:

c0 = 1, c1 = α,

c2 = 1
6(−3+ p+ r)β 2,

c3 = − 1
6(−3+ p+ r)αβ 2,

c4 = 1
360β 2

[
60(p+ r−3)α2 +(−2(p+ r)(p2 + r2)

+5(p+ r)2 +10(p+ r)−45)β 2
]
,

c5 = − 1
120αβ 2

[
20(p+ r−3)α2 +(−2(p+ r)(p2 + r2)

+5(p+ r)2 +10(p+ r)−45)β 2
]
.

4. Gini means are defined for all s,t > 0 by

Gp,r(s,t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
t p + sp

tr + sr

) 1
p−r

, p 	= r,

exp

(
sp logs+ t p logt

sp + t p

)
, p = r 	= 0,

√
st, p = r = 0.

(11.23)

Some of the special cases of the Gini means are power mean G0,r = Mr and Lehmer
mean Gr+1,r .

Let us denote

ak(q) =
(

q
k

)
tk + sk

2
.
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THEOREM 11.7. Let r 	= p and r, p 	= 0 . The Gini mean has asymptotic expan-
sion

Gp,r(x+ t,x+ s) = x
∞

∑
n=0

cnx
−n,

where coefficients cn are obtained by the following algorithm:

c0 = 1;

cn =
1
n

n

∑
k=1

[
k

(
1+

1
p− r

)
−n

]
bkcn−k, (11.24)

and

bn = an(p)−
n

∑
k=1

ak(r)bn−k. (11.25)

The first few coefficients are

c0 = 1,

c1 = α,

c2 = 1
2 (p+ r−1)β 2,

c3 = − 1
2(p+ r−1)αβ 2,

c4 = 1
24β 2[12(p+ r−1)α2

+(−3−2p3 + p2(3−2r)+2r+3r2−2r3 + p(2+6r−2r2))β 2],

c5 = 1
8 αβ 2[−4(−1+ p+ r)α2

+(3+2p3−2r−3r2 +2r3 + p2(−3+2r)+2p(−1−3r+ r2))β 2],
...

COROLLARY 11.8. (Lehmer mean) The asymptotic expansion of Lehmer mean

Gr+1,r(s,t) =
tr+1 + sr+1

tr + sr (11.26)

reads as folows:

Gr+1,r(x+ s,x+ t) = x
∞

∑
n=0

anx
−n,

where

c0 = 1,

cn =
1
n

n

∑
k=1

(2k−n)bkcn−k, (11.27)

bn = an(r+1)−
n

∑
k=1

ak(r)bn−k. (11.28)
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The first few coefficients are

c0 = 1,

c1 = α,

c2 = rβ 2,

c3 = −rαβ 2,

c4 = 1
3 rβ 2[3α2− (r2−1)β 2],

c5 = rαβ 2[−α2 +(r2−1)β 2],

c6 =
1
15

rβ 2[15α4−30(r2−1)α2β 2 +(2r4−5r2 +3)β 4],

...

12. Comparison of means

Knowing asymptotic expansion of means is a powerful tool for comparison of its
values. Let us repeat some definitions from [22, 29, 30].

DEFINITION 12.1. Let M be bivariate function, and

M(x+ s,x+ t) = ck(s,t)x−k+1 +O(x−k). (12.1)

If ck(s, t) > 0 for all s and t , then we say that M is asymptotically greater than zero,
and write M � 0.

If M(x+ s,x+ t) � 0 for all values x,s,t > 0, then M � 0. Namely, for x large
enough, the sign of M(x+ s,x+ t) is the same as the sign of the first term in its asymp-
totic expansion.

Therefore, one may consider asymptotic inequalities as a necessary condition for
the inequality between comparable means.

For example, in [26] the following expansions are derived

Q(x+ s,x+ t) = x+ α +
β 2

2x
− αβ 2

2x2 +
β 2(4α2−β 2)

8x3 +
αβ 2(4α2 +3β 2)

8x4 + . . . ,

G(x+ s,x+ t) = x+ α − β 2

2x
+

αβ 2

2x2 − β 2(4α2 + β 2)
8x3 +

αβ 2(4α2 +3β 2)
8x4 + . . . .

Since it holds A(x+ s,x+ t) = x+ α , adding the previous two expansions one obtain

2A−G−Q∼ β 4

4x3 .

Hence,
2A−G−Q� 0.
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This is a strong suggestion that the inequality

2A−G−Q � 0

may be valid. This is of course the true inequality.
The similar analysis can be made for various combination of means. Such analysis

was done in a series of papers [22, 30, 53], unifying various particular results in this
field. See, for example, paper [31] in this issue of the journal.

Calculation of asymptotic expansion is possible for means defined by limit proce-
dures, arithmetic-geometric mean is such example. By knowing coefficients of these
means enables us to determine its approximate value for large arguments, and also to
compare it with other means. See, for example, paper [12] in this issue of the journal.
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dation under the project 5435.

RE F ER EN C ES

[1] J. ABAD, J. SESMA, Two new asymptotic expansions of the ratio of two gamma functions, J. Comput.
Appl. Math. 173 (2005), 359–363.

[2] M. ABRAMOWITZ AND I. A. STEGUN (Eds), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th
printing, Washington, 1970.

[3] N. BATIR, Very accurate approximations for the factorial function, J. Math. Inequal., 4, 3 (2010),
335–344.

[4] P. S. BULLEN, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht,
2003.
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[7] T. BURIĆ, N. ELEZOVIĆ, Bernoulli polynomials and asymptotic expansions of the quotient of gamma
functions, J. Comput. Appl. Math., 235, 11 (2011), 3315–3331.
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[27] N. ELEZOVIĆ, J. PEČARIĆ, Differential and integral f -means and applications to digamma function,

Math. Inequal. Appl. 3 (2000), 189–196.
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[30] N. ELEZOVIĆ, L. VUKŠIĆ Asymptotic expansions and comparison of bivariate parameter means,

Math. Inequal. Appl., 17, 4 (2014) 1225–1244.
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