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Abstract. In this paper we prove and discuss some new (Hp,Lp) type inequalities of maximal
operators of Vilenkin-Nörlund means with non-decreasing coefficients. We also apply these
inequalities to prove strong convergence theorems of such Vilenkin-Nörlund means. These in-
equalities are the best possible in a special sense. As applications, both some well-known and
new results are pointed out.
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[4] G. GÁT, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hung., 61
(1993), 131–149.
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