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A REFINEMENT OF THE JESSEN–MERCER INEQUALITY

AND A GENERALIZATION ON CONVEX HULLS IN R
k

A. MATKOVIĆ, J. PEČARIĆ AND J. PERIĆ

(Communicated by S. Varošanec)

Abstract. A refinement of the Jessen-Mercer inequality is obtained and shown to be an improve-
ment of the upper bound for the Jessen’s difference given in [12]. Also a generalization of
the Jessen-Mercer inequality for convex functions on convex hulls in R

k is given and demon-
strated to be an improvement of the inequalities obtained in [3]. An elegant method of producing
n -exponentially convex and exponentially convex functions is applied using the Jessen-Mercer
differences. Lagrange and Cauchy mean value type theorems are proved and shown to be useful
in studying Stolarsky type means defined by using the Jessen-Mercer differences.

1. Introduction

Let E be a nonempty set and L be a subspace of the vector space R
E over R

which contains 1 , that is L having following properties
L1: f ,g ∈ L ⇒ (α f + βg) ∈ L for all α,β ∈ R ;
L2: 1 ∈ L , i.e., if f (t) = 1 for t ∈ E , then f ∈ L .
If L additionally has property
L3: (∀ f ,g ∈ L) (min{ f ,g} ∈ L∧max{ f ,g} ∈ L) ,

then it is a lattice. Obviously,
(
R

E ,�
)

(with standard ordering) is a lattice. It can
also be easily verified that a subspace X ⊆ R

E is a lattice if and only if x ∈ X implies
|x| ∈ X . This is a simple consequence of the fact that for every x ∈ X the functions |x| ,
x− and x+ can be defined by

|x|(t) = |x(t)| , x+ (t) = max{0,x(t)} , x− (t) = −min{0,x(t)} , t ∈ E,

and x+ + x− = |x| , x+− x− = x ,

min{x,y} =
1
2

(x+ y−|x− y|) , max{x,y} =
1
2

(x+ y+ |x− y|) . (1.1)

We consider positive linear functionals A : L → R , i.e., functionals having properties
A1: A(α f + βg) = αA( f )+ βA(g) for f ,g ∈ L , α,β ∈ R (linearity);
A2: f ∈ L , f (t) � 0 on E ⇒ A( f ) � 0 (positivity).
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If A additionally satisfies the condition A(1) = 1, then it is normalized.
Throughout the paper when using interval [m,M] we assume that −∞ < m < M <

∞.
The following result is a variant of the well known Jessen’s inequality [6] (see also

[14, p. 47]) of Mercer’s type [10] proved in [3]. We call it the Jessen-Mercer inequality.

THEOREM A. Let L satisfy L1 , L2 on a nonempty set E , and let A be a positive
normalized linear functional. If ϕ is a continuous convex function on [m,M] , then for
all f ∈ L such that ϕ ( f ) , ϕ (m+M− f ) ∈ L (so that m � f (t) � M for all t ∈ E) ,
we have

ϕ (m+M−A( f )) � ϕ (m)+ ϕ (M)−A(ϕ ( f )) . (1.2)

REMARK 1. In fact, to be more specific, the following series of inequalities was
proved

ϕ (m+M−A( f )) � A(ϕ (m+M− f ))

� M−A( f )
M−m

ϕ(M)+
A( f )−m
M−m

ϕ(m) (1.3)

� ϕ (m)+ ϕ (M)−A(ϕ ( f )) .

Furthermore, if the function ϕ is concave, inequalities (1.2) and (1.3) are reversed.

The reversed Jensen inequality follows easily from Jensen’s inequality (see [14]).

THEOREM B. Let pppp be a real n-tuple such that

p1 > 0, pi � 0(i = 2, . . . ,n), Pn > 0

where Pn =
n

∑
i=1

pi . Let U be a convex set in a real vector space M , xxxxi ∈U (i = 1, . . . ,n)

and
1
Pn

n

∑
i=1

pixxxxi ∈U . If f : U → R is a convex function, then

f

(
1
Pn

n

∑
i=1

pixxxxi

)
� 1

Pn

n

∑
i=1

pi f (xxxxi). (1.4)

Recently, M. Klaričić Bakula et al. [8] obtained the following refinement of the
converse Jessen’s inequality [1] (see also [14, p. 98]).

THEOREM C. Let L satisfy L1 , L2 , L3 on a nonempty set E , and let A be a
positive normalized linear functional. If ϕ is a convex function on [m,M] then for all
g ∈ L such that ϕ (g) ∈ L we have A(g) ∈ [m,M] and

A(ϕ (g)) � M−A(g)
M−m

ϕ (m)+
A(g)−m
M−m

ϕ (M)−A(g̃)δϕ , (1.5)
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where

g̃ =
1
2
− 1

M−m

∣∣∣∣g− m+M
2

∣∣∣∣ , δϕ = ϕ (m)+ ϕ (M)−2ϕ
(

m+M
2

)
.

Using inequality (1.5) and the following Lemma we will refine the series of in-
equalities (1.3) .

LEMMA 1. Let φ be a convex function on U where U is a convex set in R
k ,

(xxxx1, . . . ,xxxxn) ∈ Un and pppp = (p1, . . . , pn) is nonnegative n-tuple such that
n

∑
i=1

pi = 1 .

Then

min{p1, . . . , pn}
[

n

∑
i=1

φ(xxxxi)−nφ

(
1
n

n

∑
i=1

xxxxi

)]

�
n

∑
i=1

piφ(xxxxi)−φ

(
n

∑
i=1

pixxxxi

)
(1.6)

� max{p1, . . . , pn}
[

n

∑
i=1

φ(xxxxi)−nφ

(
1
n

n

∑
i=1

xxxxi

)]
. (1.7)

Proof. This is a simple consequence of [11, p. 717, Theorem 1]. �

2. Refinement of the Jessen-Mercer inequality

Next two theorems are our main results.

THEOREM 1. Let L satisfy L1 , L2 , L3 on a nonempty set E , and let A be a
positive normalized linear functional. If ϕ is a continuous convex function on [m,M] ,
then for all f ∈ L such that ϕ ( f ) , ϕ (m+M− f ) ∈ L, we have

ϕ (m+M−A( f )) � A(ϕ(m+M− f ))

� M−A( f )
M−m

ϕ (M)+
A( f )−m
M−m

ϕ (m)−A

(
1
2
− 1

M−m

∣∣∣∣ f−m+M
2

∣∣∣∣)δϕ

� ϕ (m)+ ϕ (M)−A(ϕ ( f ))−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]δϕ

� ϕ (m)+ ϕ (M)−A(ϕ ( f )) ,

where

δϕ = ϕ (M)+ ϕ (m)−2ϕ
(

M +m
2

)
. (2.1)
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Proof. Using the first inequality from the series (1.3) and applying inequality
(1.5) first to the function m+M− f , and then to the function f , we obtain

ϕ (m+M−A( f ))
� A(ϕ(m+M− f ))

� M−A( f )
M−m

ϕ (M)+
A( f )−m
M−m

ϕ (m)−A

(
1
2
− 1

M−m

∣∣∣∣ f − m+M
2

∣∣∣∣)δϕ

= ϕ (m)+ϕ (M)−
[
M−A( f )

M−m
ϕ (m)+

A( f )−m
M−m

ϕ (M)
]
−A

(
1
2
− 1

M−m

∣∣∣∣ f−m+M
2

∣∣∣∣)δϕ

� ϕ (m)+ ϕ (M)−A(ϕ ( f ))−2A

(
1
2
− 1

M−m

∣∣∣∣ f − m+M
2

∣∣∣∣)δϕ

= ϕ (m)+ ϕ (M)−A(ϕ ( f ))−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]δϕ ,

� ϕ (m)+ ϕ (M)−A(ϕ ( f )) .

The last inequality is a simple consequence of the easily provable facts that δϕ =
ϕ (M)+ ϕ (m)−2ϕ

(
M+m

2

)
� 0 and 1− 2

M−mA
(∣∣ f − m+M

2

∣∣)� 0. �

THEOREM 2. Let L satisfy L1 , L2 , L3 on a nonempty set E , and let A be a
positive normalized linear functional. If ϕ is a continuous convex function on [m,M] ,
then for all f ∈ L such that ϕ ( f ) , ϕ (m+M− f ) ∈ L, we have

ϕ (m+M−A( f ))

� M−A( f )
M−m

ϕ (M)+
A( f )−m
M−m

ϕ (m)−
(

1
2
− 1

M−m

∣∣∣∣A( f )− m+M
2

∣∣∣∣)δϕ

� ϕ (m)+ϕ (M)−A(ϕ( f ))−
[
1− 1

M−m

(
A

(∣∣∣∣ f−m+M
2

∣∣∣∣)+
∣∣∣∣A( f )−m+M

2

∣∣∣∣)]δϕ

� ϕ (m)+ ϕ (M)−A(ϕ( f ))−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]δϕ

� ϕ (m)+ ϕ (M)−A(ϕ ( f )) ,

where δϕ is defined as in (2.1).

Proof. Theorem C for the function f gives us

A(ϕ( f )) � M−A( f )
M−m

ϕ (m)+
A( f )−m
M−m

ϕ (M)−A

(
1
2
− 1

M−m

∣∣∣∣ f − m+M
2

∣∣∣∣)δϕ .

(2.2)
Let the functions p,q : [m,M] → [0,1] be defined by

p(t) =
M− t
M−m

, q(t) =
t−m
M−m

.
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For any t ∈ [m,M] we can write

ϕ(t) = ϕ
(

M− t
M−m

m+
t−m
M−m

M

)
= ϕ(p(t)m+q(t)M).

By Lemma 1 for n = 2 it follows

ϕ(t) � p(t)ϕ (m)+q(t)ϕ (M)−min{p(t) ,q(t)}δϕ ,

where δϕ = ϕ (M)+ ϕ (m)−2ϕ
(

M+m
2

)
. Using (1.1) we can write it in the form

ϕ(t) � M− t
M−m

ϕ (m)+
t−m
M−m

ϕ (M)−
(

1
2
− 1

M−m

∣∣∣∣t− m+M
2

∣∣∣∣)δϕ .

Substituting t ↔ A(g) , where g ∈ L such that A(g) ∈ [m,M] , we get

ϕ(A(g)) � M−A(g)
M−m

ϕ (m)+
A(g)−m
M−m

ϕ (M)−
(

1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣)δϕ .

(2.3)
Now, applying inequality (2.3) on g = m+M− f (and using linearity and normality
of A), and then using inequality (2.2) , we have

ϕ (m+M−A( f ))

� M−A( f )
M−m

ϕ (M)+
A( f )−m
M−m

ϕ (m)−
(

1
2
− 1

M−m

∣∣∣∣A( f )− m+M
2

∣∣∣∣)δϕ

= ϕ (m)+ ϕ (M)−
[
M−A( f )

M−m
ϕ (m)+

A( f )−m
M−m

ϕ (M)
]

−
(

1
2
− 1

M−m

∣∣∣∣A( f )− m+M
2

∣∣∣∣)δϕ

� ϕ (m)+ ϕ (M)−A(ϕ( f ))

−A

(
1
2
− 1

M−m

∣∣∣∣ f − m+M
2

∣∣∣∣)δϕ −
(

1
2
− 1

M−m

∣∣∣∣A( f )− m+M
2

∣∣∣∣)δϕ

= ϕ (m)+ ϕ (M)

−A(ϕ( f ))−
[
1− 1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣)]δϕ

� ϕ (m)+ ϕ (M)−A(ϕ( f ))−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]δϕ .

The last inequality is obtained applying Jessen’s inequality to the continuous and con-
vex function |x| so that∣∣∣∣A( f )− m+M

2

∣∣∣∣= ∣∣∣∣A( f − m+M
2

)∣∣∣∣� A

(∣∣∣∣ f − m+M
2

∣∣∣∣) . �

Using Theorem2 we can get an upper bound for the difference A(ϕ ( f ))−ϕ (A( f ))
obtained in [12].
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COROLLARY 1. Let L satisfy L1 , L2 , L3 on a nonempty set E , and let A be a
positive normalized linear functional. If ϕ is a continuous convex function on [m,M] ,
then for all f ∈ L such that ϕ ( f ) ,ϕ (m+M− f ) ∈ L, we have

A(ϕ ( f ))−ϕ (A( f )) � 1
M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣)δϕ ,

where δϕ is defined as in (2.1).

Proof. Theorem 2 gives us

A(ϕ ( f )) �ϕ (m)+ ϕ (M)−ϕ (A( f )−m+M)

−
[
1− 1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣)]δϕ . (2.4)

Since the function ϕ is convex, it follows

ϕ (m+M−A( f ))+ ϕ (A( f )) � 2ϕ
(

M +m
2

)
. (2.5)

Combining inequalities (2.4) and (2.5) we obtain

A(ϕ ( f ))−ϕ (A( f ))
�ϕ (m)+ ϕ (M)− [ϕ (m+M−A( f ))+ ϕ (A( f ))]

−
[
1− 1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣)]δϕ

�ϕ (m)+ ϕ (M)−2ϕ
(

M +m
2

)
−
[
1− 1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣)]δϕ

=
1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣)δϕ . �

3. Generalization on convex hulls in R
k

We present a generalization of the Jessen-Mercer inequality for convex functions
on convex hulls in R

k .
Convex hull of vectors xxxx1, . . . ,xxxxn ∈ R

k is the set{
n

∑
i=1

αixxxxi|αi ∈ R,αi � 0,
n

∑
i=1

αi = 1

}

and it is represented by K = co({xxxx1, . . . ,xxxxn}) .
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Barycentric coordinates over K are continuous real functions λ1, . . . ,λn on K with
the following properties:

λi(xxxx) � 0, i = 1, ...,n
n

∑
i=1

λi(xxxx) = 1

xxxx =
n

∑
i=1

λi(xxxx)xxxxi. (3.1)

If xxxx2 − xxxx1, . . . ,xxxxn − xxxx1 are linearly independent vectors, then each xxxx ∈ K can be
written in the unique way as a convex combination of xxxx1, . . . ,xxxxn in the form (3.1) .

We also consider k -simplex S = co({vvvv1,vvvv2, . . . ,vvvvk+1}) in R
k which is a convex

hull of its vertices vvvv1, . . . ,vvvvk+1 ∈R
k , where vertices vvvv2−vvvv1, . . . ,vvvvk+1−vvvv1 ∈R

k are lin-
eary independent. In this case we denote k -simplex by S = [vvvv1, . . . ,vvvvk+1] . Barycentric
coordinates λ1,λ2, . . . ,λk+1 over S are nonnegative linear polynomials on S and have
a special form (see [2]).

With Lk we denote the linear class of functions gggg : E → R
k defined by

gggg(t) = (g1(t), . . . ,gk(t)), gi ∈ L (i = 1, . . . ,k).

For a given linear functional A , we also consider linear operator Ã = (A, . . . ,A) : Lk →
R

k defined by
Ã(gggg) = (A(g1), . . . ,A(gk)). (3.2)

If A(1) = 1 is satisfied, then using (A1) we also have
A3: A( f (gggg)) = f (Ã(gggg)) for every linear function f on R

k .
For n ∈ N we denote

Δn−1 =

{
(μ1, . . . ,μn) : μi � 0, i ∈ {1, . . . ,n},

n

∑
i=1

μi = 1

}
.

Also, if ϕ is a function defined on a convex subset U ⊆R
k and xxxx1,xxxx2, . . . ,xxxxn ∈U ,

we denote

Sn
ϕ(xxxx1, . . . ,xxxxn) =

n

∑
i=1

ϕ(xxxxi)−nϕ

(
1
n

n

∑
i=1

xxxxi

)
.

Let’s notice that δϕ from Theorem B is equal to S2
ϕ(m,M) .

Obviously, if ϕ is convex, Sn
ϕ(xxxx1, . . . ,xxxxn) � 0.

The next variant of Jensen’s inequality was proved by A. Matković and J. Pečarić
in [9].

THEOREM 3. Let U be a convex subset in R
k , xxxx1, . . . ,xxxxn ∈U and yyyy1, . . . ,yyyym ∈

co({xxxx1, . . . ,xxxxn}) . If ϕ is a convex function on U , then the inequality

ϕ
(

∑n
i=1 pixxxxi −∑m

j=1 wjyyyy j

Pn−Wm

)
�

∑n
i=1 piϕ (xxxxi)−∑m

j=1 wjϕ (yyyy j)
Pn−Wm

(3.3)
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holds for all positive real numbers p1, . . . , pn and w1, . . . ,wm satisfying the condition

pi � Wm for all i = 1, . . . ,n,

where Pn =
n

∑
i=1

pi and Wm =
m

∑
j=1

wj .

Next theorem generalizes and improves Theorem 3.

THEOREM 4. Let L satisfy properties L1, L2, L3 on a nonempty set E , A be a
positive linear functional on L and Ã defined as in (3.2). Let xxxx1, . . . ,xxxxn ∈ R

k and
K = co({xxxx1, . . . ,xxxxn}) . Let ϕ be a convex function on K and λ1, . . . ,λn barycentric
coordinates over K . Then for all gggg ∈ Lk such that gggg(E) ⊂ K and ϕ(gggg),λi(gggg) ∈ L,
i = 1, . . . ,n and positive real numbers p1, . . . , pn , with Pn = ∑n

i=1 pi, satisfying the
condition

pi � A(1) for all i = 1, . . . ,n, (3.4)

we have

ϕ

(
∑n

i=1 pixxxxi− Ã(gggg)
Pn−A(1)

)

� ∑n
i=1 piϕ (xxxxi)−∑n

i=1 A(λi(gggg))ϕ (xxxxi)−mini {pi−A(λi(gggg))}Sn
ϕ(xxxx1, . . . ,xxxxn)

Pn−A(1)

� ∑n
i=1 piϕ (xxxxi)−A(ϕ(gggg))−Sn

ϕ(xxxx1, . . . ,xxxxn) [mini {pi −A(λi(gggg))}+A(mini {λi(gggg)})]
Pn−A(1)

.

(3.5)

Proof. For each t ∈ E we have gggg(t) ∈ K . Using barycentric coordinates we have

λi(gggg(t)) � 0, i = 1, . . . ,n ,
n

∑
i=1

λi(gggg(t)) = 1 and

gggg(t) =
n

∑
i=1

λi(gggg(t))xxxxi.

Since ϕ is convex on K , then

ϕ(gggg(t)) �
n

∑
i=1

λi(gggg(t))ϕ(xxxxi)−min
i
{λi(gggg(t))}Sn

ϕ(xxxx1, . . . ,xxxxn). (3.6)

Applying positive linear functional A on (3.6) we get

A(ϕ(gggg)) �
n

∑
i=1

A(λi(gggg))ϕ(xxxxi)−A

(
min

i
{λi(gggg)}

)
Sn

ϕ(xxxx1, . . . ,xxxxn),

where
n

∑
i=1

A(λi(gggg)) = A

(
n

∑
i=1

λi(gggg)

)
= A(1)
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and
A(1) � A(λi(gggg)) � 0 for all i = 1, . . . ,n.

Also we have

Ã(gggg) =
n

∑
i=1

A(λi(gggg))xxxxi.

Now we can write

∑n
i=1 pixxxxi − Ã(gggg)

Pn−A(1)
=

1
Pn−A(1)

(
n

∑
i=1

pixxxxi −
n

∑
i=1

A(λi(gggg))xxxxi

)

=
1

Pn−A(1)

n

∑
i=1

(pi −A(λi(gggg)))xxxxi.

We have
1

Pn−A(1)

n

∑
i=1

(pi−A(λi(gggg))) = 1

and
1

Pn−A(1)
(pi−A(λi(gggg))) � 0 for all i = 1, . . . ,n,

since
pi � A(1) � A(λi(gggg)) for all i = 1, . . . ,n.

Therefore, expression
∑n

i=1 pixxxxi − Ã(gggg)
Pn−A(1)

is a convex combination of vectors xxxx1, . . . ,xxxxn

and belongs to K .
Since ϕ is convex on K , we have

ϕ

(
∑n

i=1 pixxxxi− Ã(gggg)
Pn−A(1)

)

= ϕ

(
1

Pn−A(1)

n

∑
i=1

(pi −A(λi(gggg)))xxxxi

)

� 1
Pn−A(1)

n

∑
i=1

(pi −A(λi(gggg)))ϕ (xxxxi)−min
i

{
pi−A(λi(gggg))

Pn−A(1)

}
Sn

ϕ(xxxx1, . . . ,xxxxn)

=
∑n

i=1 piϕ (xxxxi)−∑n
i=1 A(λi(gggg))ϕ (xxxxi)−mini {pi−A(λi(gggg))}Sn

ϕ(xxxx1, . . . ,xxxxn)
Pn−A(1)

� ∑n
i=1 piϕ (xxxxi)−A(ϕ(gggg))−Sn

ϕ(xxxx1, . . . ,xxxxn) [mini {pi −A(λi(gggg))}+A(mini {λi(gggg)})]
Pn−A(1)

.

�

Next Corollary shows that Theorem 4 is a generalization of Theorem 2 for convex
hulls.
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COROLLARY 2. Let L satisfy properties L1, L2, L3 on a nonempty set E and A
be a positive normalized linear functional on L. Let ϕ be a convex function on an
interval I = [m,M] ⊂ R . Then for all g ∈ L such that g(E)⊂ I and ϕ(g) ∈ L, we have

ϕ (m+M−A(g))

� A(g)−m
M−m

ϕ(m)+
M−A(g)
M−m

ϕ(M)−
(

1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣)S2
ϕ(m,M)

� ϕ(m)+ ϕ(M)−A(ϕ(g))

−
[
1− 1

M−m

(∣∣∣∣A(g)− m+M
2

∣∣∣∣+A

(∣∣∣∣g− m+M
2

∣∣∣∣))]S2
ϕ(m,M). (3.7)

Proof. For each t ∈ E we have g(t) ∈ I .
Since interval I = [m,M] is 1-simplex with vertices m and M , then the barycentric

coordinates have the special form:

λ1(g(t)) =
M−g(t)
M−m

and λ2(g(t)) =
g(t)−m
M−m

.

Applying functional A we have

A(λ1(g)) =
M−A(g)
M−m

and A(λ2(g)) =
A(g)−m
M−m

. (3.8)

Choosing n = 2, p1 = p2 = 1, x1 = m , x2 = M from (3.5) it follows

ϕ (m+M−A(g))

� ϕ(m)+ ϕ(M)−
[
M−A(g)
M−m

ϕ(m)+
A(g)−m
M−m

ϕ(M)
]

−
(

1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣)[ϕ(m)+ ϕ(M)−2ϕ
(

m+M
2

)]
=

A(g)−m
M−m

ϕ(m)+
M−A(g)
M−m

ϕ(M)−
(

1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣)S2
ϕ(m,M)

� ϕ(m)+ ϕ(M)−A(ϕ(g))

−
[
1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣+A

(
1
2
− 1

M−m

∣∣∣∣g− m+M
2

∣∣∣∣)]S2
ϕ(m,M)

= ϕ(m)+ ϕ(M)−A(ϕ(g))

−
[
1− 1

M−m

(∣∣∣∣A(g)− m+M
2

∣∣∣∣+A

(∣∣∣∣g− m+M
2

∣∣∣∣))]S2
ϕ(m,M). �

REMARK 2. The inequalities in (3.7) are also improvements of the inequalities
obtained in [3].

THEOREM 5. Let L satisfy properties L1, L2, L3 on a nonempty set E , A be a
positive linear functional on L and Ã defined as in (3.2). Let xxxx1, . . . ,xxxxn ∈ R

k and
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K = co({xxxx1, . . . ,xxxxn}) . Let ϕ be a convex function on K and λ1, . . . ,λn barycentric
coordinates over K . Then for all gggg ∈ Lk such that gggg(E)⊂ K and ϕ(gggg),λi(gggg) ∈ L, i =
1, . . . ,n and positive real numbers p1, . . . , pn satisfying the conditions Pn −A(1) > 0 ,
where Pn = ∑n

i=1 pi , and

∑n
i=1 pixxxxi − Ã(gggg)

Pn−A(1111)
∈ K, (3.9)

we have

ϕ

(
∑n

i=1 pixxxxi − Ã(gggg)
Pn−A(1)

)
�

Pnϕ
(

1
Pn

∑n
i=1 pixxxxi

)
−A(1)ϕ

(
1

A(1) Ã(gggg)
)

Pn−A(1)

�
Pnϕ
(

1
Pn

∑n
i=1 pixxxxi

)
−∑n

i=1 A(λi(gggg))ϕ (xxxxi)+mini {A(λi(gggg))}Sn
ϕ(xxxx1, . . . ,xxxxn)

Pn−A(1)
.

(3.10)

Proof. For each t ∈ E we have gggg(t) ∈ K . Using barycentric coordinates we have
λi(gggg(t)) � 0, i = 1, . . . ,n , ∑n

i=1 λi(gggg(t)) = 1 and

gggg(t) =
n

∑
i=1

λi(gggg(t))xxxxi.

Also we have

Ã(gggg) =
n

∑
i=1

A(λi(gggg))xxxxi.

We can easily see that

1
A(1)

Ã(gggg) =
1

A(1)

n

∑
i=1

A(λi(gggg))xxxxi ∈ K,

since
1

A(1)

n

∑
i=1

A(λi(gggg)) = 1 and
1

A(1)
A(λi(gggg)) � 0, i = 1, . . . ,n.

Since ϕ is convex on K , then using Lemma 1

ϕ
(

1
A(1)

Ã(gggg)
)

� 1
A(1)

n

∑
i=1

A(λi(gggg))ϕ(xxxxi)−min
i

{
A(λi(gggg))

A(1)

}
Sn

ϕ(xxxx1, . . . ,xxxxn).

(3.11)
Using Theorem B and (3.11) we have

ϕ

⎛⎝Pn

(
1
Pn

∑n
i=1 pixxxxi

)
−A(1)

(
1

A(1) Ã(gggg)
)

Pn−A(1)

⎞⎠�
Pnϕ
(

1
Pn

∑n
i=1 pixxxxi

)
−A(1)ϕ

(
1

A(1) Ã(gggg)
)

Pn−A(1)

�
Pnϕ
(

1
Pn

∑n
i=1 pixxxxi

)
−A(1) 1

A(1) ∑n
i=1 A(λi(gggg))ϕ (xxxxi)+mini {A(λi(gggg))}Sn

ϕ(xxxx1, . . . ,xxxxn)

Pn−A(1)
.

�
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REMARK 3. If positive real numbers p1, . . . , pn satisfy condition (3.4) , then con-
dition (3.9) is also satisfied since K is convex set. Hence (3.5) can be extended as
follows

Pnϕ
(

1
Pn

∑n
i=1 pixxxxi

)
−∑n

i=1 A(λi(gggg))ϕ (xxxxi)+mini {A(λi(gggg))}Sn
ϕ(xxxx1, . . . ,xxxxn)

Pn−A(1)

�
Pnϕ
(

1
Pn

∑n
i=1 pixxxxi

)
−A(1)ϕ

(
1

A(1) Ã(gggg)
)

Pn−A(1)

� ϕ

(
∑n

i=1 pixxxxi − Ã(gggg)
Pn−A(1)

)

�
∑n

i=1 piϕ (xxxxi)−∑n
i=1 A(λi(gggg))ϕ (xxxxi)−mini {pi−A(λi(gggg))}Sn

ϕ(xxxx1, . . . ,xxxxn)
Pn−A(1)

�
∑n

i=1 piϕ (xxxxi)−A(ϕ(gggg))−Sn
ϕ(xxxx1, . . . ,xxxxn) [mini {pi −A(λi(gggg))}+A(mini {λi(gggg)})]

Pn−A(1)
.

COROLLARY 3. Let L satisfy properties L1, L2, L3 on a nonempty set E and A
be a positive normalized linear functional on L. Let ϕ be a convex function on an
interval I = [m,M] ⊂ R. Then for all g ∈ L such that g(E)⊂ I and ϕ(g) ∈ L, we have

ϕ (m+M−A(g)) � 2ϕ
(

m+M
2

)
−ϕ (A(g))

� 2ϕ
(

m+M
2

)
−
[
M−A(g)
M−m

ϕ(m)+
A(g)−m
M−m

ϕ(M)
]

+
(

1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣)S2
ϕ(m,M). (3.12)

Proof. Choosing n = 2, x1 = m, x2 = M, p1 = p2 = 1 and using (3.8) , the
inequalities in (3.12) easily follow from (3.10) . �

Next we give generalizations of Corollary 2 and Corollary 3 for convex functions
defined on k -simplices in R

k .
Let S be a k -simplex in R

k with vertices vvvv1,vvvv2, . . . ,vvvvk+1 ∈ R
k . The barycen-

tric coordinates λ1, . . .λk+1 over S are nonnegative linear polynomials which satisfy
Lagrange’s property

λi(vvvv j) = δi j =
{

1, i = j
0, i 
= j.

It is known (see [2]) that for each xxxx∈ S barycentric coordinates λ1(xxxx), . . . ,λk+1(xxxx)
have the form

λ1(xxxx) =
Volk ([xxxx,vvvv2, . . . ,vvvvk+1])

Volk(S)
,
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λ2(xxxx) =
Volk ([vvvv1,xxxx,vvvv3, . . . ,vvvvk+1])

Volk(S)
,

...

λk+1(xxxx) =
Volk ([vvvv1, . . . ,vvvvk,xxxx])

Volk(S)
, (3.13)

where Volk(F) denotes the k -dimensional Lebesgue measure of a measurable set F ⊂
R

k . Here, for example, [vvvv1,xxxx, . . . ,vvvvk+1] denotes the subsimplex obtained by replacing
vvvv2 by xxxx , i.e., the subsimplex opposite to vvvv2 , when adding xxxx as a new vertex.

COROLLARY 4. Let L satisfy properties L1, L2, L3 on a nonempty set E , A be
a positive normalized linear functional on L and Ã defined as in (3.2). Let ϕ be a
convex function on k -simplex S = [vvvv1,vvvv2, . . . ,vvvvk+1] in R

k and λ1, . . . ,λk+1 barycentric
coordinates over S . Then for all gggg ∈ Lk such that gggg(E) ⊂ S and ϕ(gggg) ∈ L we have

(k+1)ϕ
( 1

k+1 ∑k+1
i=1 vvvvi

)−∑k+1
i=1 λi(Ã(gggg))ϕ (vvvvi)+mini

{
λi(Ã(gggg))

}
Sk+1

ϕ (vvvv1, . . . ,vvvvk+1)

k

�
(k+1)ϕ

(
1

k+1 ∑k+1
i=1 vvvvi

)−ϕ(Ã(gggg))
k

� ϕ

(
∑k+1

i=1 vvvvi − Ã(gggg)
k

)

�
∑k+1

i=1 ϕ (vvvvi)−∑k+1
i=1 λi(Ã(gggg))ϕ (vvvvi)−mini

{
1−λi(Ã(gggg))

}
Sk+1

ϕ (vvvv1, . . . ,vvvvk+1)

k

�
∑k+1

i=1 ϕ (vvvvi)−A(ϕ(gggg))−Sk+1
ϕ (vvvv1, . . . ,vvvvk+1)

[
mini

{
1−λi(Ã(gggg))

}
+A(mini {λi(gggg)})

]
k

.

(3.14)

Proof. Since barycentric coordinates λ1, . . . ,λk+1 over k -simplex S in R
k are

nonnegative linear polynomials, then A(λi(gggg)) = λi(Ã(gggg)) for all i = 1, . . . ,k+1.
Choosing xxxxi = vvvvi for all i = 1, . . . ,k + 1 and p1 = p2 = . . . = pk+1 = 1, the in-

equalities in (3.14) easily follow from (3.5) and (3.10) . �

REMARK 4. As a special case of Corollary 4 for k = 1 and if we take p and q

nonnegative real numbers such that A(g) =
pm+qM

p+q
we get right hand side of the

inequality (2.3) in [7].

REMARK 5. Using the same technique and the same special case as in Example
1 and Remark 8 in [13], from (3.14) we get the same results, that is, the k -dimensional
version of the Hammer-Bullen inequality, namely

1
|S|
∫

S
f (t)dt − f (vvvv∗) � k

k+1

k+1

∑
i=1

f (vvvvi)− k
|S|
∫

S
f (t)dt,
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and, as a special case in one dimension, an improvement of classical Hermite-Hadamard
inequality

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
− 1

4
S2

f (a,b).

4. n -exponential convexity and exponential convexity of the Jessen-Mercer
differences, applications to Stolarsky type means

Motivated by Theorems 1 and 2, we define two functionals Φi : Lf → R , i = 1,2,
by

Φ1(ϕ) = ϕ (m)+ ϕ (M)−ϕ (m+M−A( f ))−A(ϕ ( f ))

−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]δϕ (4.1)

and

Φ2(ϕ) = ϕ (m)+ ϕ (M)−ϕ (m+M−A( f ))−A(ϕ( f ))

−
[
1− 1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣m+M

2
−A( f )

∣∣∣∣)]δϕ , (4.2)

where A, f and δϕ are as in Theorem 1, Lf = {ϕ : I → R : ϕ( f ),ϕ(m+M− f ) ∈ L} ,
[m,M] ⊆ I . Obviously, Φ1 and Φ2 are linear.

If ϕ is additionally continuous and convex then Theorems 1 and 2 imply Φi( f ) �
0, i = 1,2.

In the following with ϕ0 we denote the function defined by ϕ0 (x) = x2 on what-
ever domain we need.

Now, we give Lagrange and Cauchy mean value type theorems for the functionals
Φi , i = 1,2.

THEOREM 6. Let L satisfy L1 , L2 and L3 on a nonempty set E and let A be a
positive normalized linear functional on L. Let f ∈ L be such that ϕ0 ∈ Lf , f (E) ∈
[m,M] , [m,M] ⊆ I and let ϕ ∈ C2(I) be such that ϕ ∈ Lf . If Φ1 and Φ2 are linear
functionals defined as in (4.1) and (4.2) then there exist ξi ∈ [m,M] , i = 1,2 such that

Φi(ϕ) =
ϕ ′′ (ξi)

2
Φi(ϕ0), i = 1,2.

Proof. We give a proof for the functional Φ1 . Since ϕ ∈ C2(I) there exist real
numbers a = min

x∈[m,M]
ϕ ′′(x) and b = max

x∈[m,M]
ϕ ′′(x) . It is easy to show that the functions

ϕ1,ϕ2 defined by

ϕ1(x) =
b
2
x2−ϕ(x), ϕ2(x) = f (x)− a

2
x2
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are continuous and convex, therefore Φ1(ϕ1) � 0, Φ1(ϕ2) � 0. This implies

a
2

Φ1(ϕ0) � Φ1(ϕ) � b
2

Φ1(ϕ0).

If Φ1(ϕ0) = 0, there is nothing to prove. Suppose Φ1(ϕ0) > 0. We have

a � 2Φ1(ϕ)
Φ1(ϕ0)

� b.

Hence, there exists ξ1 ∈ [m,M] such that

Φ1(ϕ) =
ϕ ′′(ξ1)

2
Φ1(ϕ0). �

THEOREM 7. Let L satisfy L1 , L2 and L3 on a non-empty set E and let A be a
positive normalized linear functional on L. Let f ∈ L be such that ϕ0 ∈ Lf , f (E) ∈
[m,M] , [m,M] ⊆ I and ϕ1,ϕ2 ∈C2(I) such that ϕ1,ϕ2 ∈ Lf . If Φ1 and Φ2 are linear
functionals defined as in (4.1) and (4.2) then there exist ξi ∈ [m,M] , i = 1,2 such that

Φi(ϕ1)
Φi(ϕ2)

=
ϕ ′′

1 (ξi)
ϕ ′′

2 (ξi)
, i = 1,2

provided that the denominators are non-zero.

Proof. We give a proof for the functional Φ1 . Define ϕ3 ∈C2([m,M]) by

ϕ3 = c1ϕ1 − c2ϕ2, where c1 = Φ1(ϕ2), c2 = Φ1(ϕ1).

Using Theorem 6 we get that there exists ξ1 ∈ [m,M] such that(
c1

ϕ ′′
1 (ξ1)
2

− c2
ϕ ′′

2 (ξ1)
2

)
Φ1(ϕ0) = 0.

Since Φ1(ϕ0) 
= 0, (otherwise we have a contradiction with Φ1(ϕ2) 
= 0, by Theorem
6), we obtain

Φ1(ϕ1)
Φ1(ϕ2)

=
ϕ ′′

1 (ξ1)
ϕ ′′

2 (ξ1)
. �

Next we introduce some function properties which are going to be explored here
and immediately after that we give some characterizations of these properties.

DEFINITION 1. A function ψ : I → R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξiξ jψ
(

xi + x j

2

)
� 0

holds for all choices ξi ∈ R and xi ∈ I , i = 1, . . . ,n .
A function ψ : I → R is n -exponentially convex if it is n -exponentially convex in

the Jensen sense and continuous on I .
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REMARK 6. It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact non-negative functions. Also, n -exponentially convex
functions in the Jensen sense are k -exponentially convex in the Jensen sense for every
k ∈ N , k � n .

By definition of positive semi-definite matrices and some basic linear algebra we
have the following proposition.

PROPOSITION 1. If ψ is an n-exponentially convex in the Jensen sense, then the

matrix

[
ψ
(

xi + x j

2

)]k
i, j=1

is positive semi-definite for all k ∈ N , k � n. Particularly,

det

[
ψ
(

xi + x j

2

)]k

i, j=1
� 0 for all k ∈ N , k � n.

DEFINITION 2. A function ψ : I →R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense for all n ∈ R .

A function ψ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 7. It is known (and easy to show) that a function ψ : I → R
+ is log-

convex in the Jensen sense if and only if

α2ψ(x)+2αβ ψ
(

x+ y
2

)
+ β 2ψ(y) � 0

holds for every α,β ∈ R and x,y ∈ I . It follows that a positive function is log-convex
in the Jensen-sense if and only if it is 2-exponentially convex in the Jensen sense. Also,
using basic convexity theory, it follows that a positive function is log-convex if and only
if it is 2-exponentially convex.

We will also need the following result (see for example [14]).

PROPOSITION 2. If Ψ is a convex function on I and if x1 � y1 , x2 � y2 , x1 
= x2 ,
y1 
= y2 then the following inequality is valid

Ψ(x2)−Ψ(x1)
x2 − x1

� Ψ(y2)−Ψ(y1)
y2− y1

. (4.3)

If Ψ is concave on I the inequality reverses.

When dealing with functions with different degree of smoothness divided differ-
ences are found to be very useful.

DEFINITION 3. The second order devided difference of a function f : I → R at
mutually different points y0,y1,y2 ∈ I is defined recursively by

[yi; f ] = f (yi), i = 0,1,2
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[yi,yi+1; f ] =
f (yi+1)− f (yi)

yi+1− yi
, i = 0,1

[y0,y1,y2; f ] =
[y1,y2; f ]− [y0,y1; f ]

y2− y0
. (4.4)

REMARK 8. The value [y0,y1,y2; f ] is independent of the order of the points
y0,y1 and y2 . This definition may be extended to include the case in which some
or all the points coincide. Namely, taking the limit y1 → y0 in (4.4), we get

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y2; f ] =
f (y2)− f (y0)− f ′(y0)(y2− y0)

(y2− y0)2 , y2 
= y0

provided that f ′ exists, and furthermore, taking the limits yi → y0 , i = 1,2 in (4.4), we
get

lim
y2→y0

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y0; f ] =
f ′′(y0)

2

provided that f ′′ exists.

We use an idea from [5] to give an elegant method of producing an n -exponentially
convex and exponentially convex functions applying the functionals Φ1 and Φ2 to a
given family of functions with the same property.

THEOREM 8. Let Φi , i = 1,2, be linear functionals defined as in (4.1) and (4.2).
Let ϒ = {ϕs : s ∈ J} , where J is an interval in R , be a family of functions defined
on an open interval I such that ϒ ⊆ Lf and that the function s → [y0,y1,y2;ϕs] is n-
exponentially convex in the Jensen sense on J for every three mutually different points
y0,y1,y2 ∈ I . Then s → Φi(ϕs) is an n-exponentially convex function in the Jensen
sense on J . If the function s →Φi(ϕs) is also continuous on J then it is n-exponentially
convex on J .

Proof. For ξi ∈ R , i = 1, . . . ,n and si ∈ J , i = 1, . . . ,n , we define the function
χ : I → R by

χ(y) =
n

∑
i, j=1

ξiξ jϕ si+s j
2

(y).

Using the assumption that the function s → [y0,y1,y2;ϕs] is n -exponentially convex in
the Jensen sense we obtain

[y0,y1,y2;χ ] =
n

∑
i, j=1

ξiξ j[y0,y1,y2;ϕ si+s j
2

] � 0,

which in turn implies that χ is a convex (and continuous) function on I , therefore
Φi(χ) � 0, i = 1,2. Hence

n

∑
i, j=1

ξiξ jΦi(ϕ si+s j
2

) � 0.
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We conclude that the function s →Φi(ϕs) is n -exponentially convex on J in the Jensen
sense. If the function s → Φi(ϕs) is also continuous on J , then s → Φi(ϕs) is n -
exponentially convex by definition. �

The following corollary is an immediate consequence of Theorem 8.

COROLLARY 5. Let Φi , i = 1,2, be linear functionals defined as in (4.1) and
(4.2). Let ϒ = {ϕs : s ∈ J} , where J is an interval in R , be a family of functions
defined on an open interval I such that ϒ ⊆ Lf and that the function s → [y0,y1,y2;ϕs]
is exponentially convex in the Jensen sense on J for every three mutually different points
y0,y1,y2 ∈ I . Then s → Φi(ϕs) is an exponentially convex function in the Jensen sense
on J . If the function s → Φi(ϕs) is continuous on J then it is exponentially convex on
J .

COROLLARY 6. Let Φi , i = 1,2, be linear functionals defined as in (4.1) and
(4.2). Let Ω = {ϕs : s ∈ J} , where J is an interval in R , be a family of functions
defined on an open interval I such that Ω ⊆ Lf and that the function s → [y0,y1,y2;ϕs]
is 2 -exponentially convex in the Jensen sense on J for every three mutually different
points y0,y1,y2 ∈ I . Then the following statements hold:

(i) If the function s → Φi(ϕs) is continuous on J then it is 2 -exponentially convex
function on J . If s → Φi(ϕs) is additionally strictly positive than it is also log-
convex on J .

(ii) If the function s → Φi(ϕs) is strictly positive and differentiable on J then for
every s,q,u,v ∈ J , such that s � u and q � v, we have

μs,q(Φi,Ω) � μu,v(Φi,Ω), i = 1,2, (4.5)

where

μs,q(Φi,Ω) =

⎧⎪⎪⎨⎪⎪⎩
(

Φi(ϕs)
Φi(ϕq)

) 1
s−q

, s 
= q,

exp

(
d
ds Φi(ϕs)
Φi(ϕs)

)
, s = q.

(4.6)

for ϕs,ϕq ∈ Ω (μs,q(Φi,Ω), i = 1,2 are the Stolarsky type means).

Proof. (i) This is an immediate consequence of Theorem 8 and Remark 7.
(ii) Since by (i) the function s → Φi(ϕs) is log-convex on J , that is, the function

s → logΦi(ϕs) is convex on J . Applying Proposition 2 we get

logΦi(ϕs)− logΦi(ϕq)
s−q

� logΦi(ϕu)− logΦi(ϕv)
u− v

(4.7)

for s � u,q � v,s 
= q,u 
= v , and therefrom conclude that

μs,q(Φi,Ω) � μu,v(Φi,Ω), i = 1,2.

Cases s = q and u = v follow from (4.7) as limit cases. �
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REMARK 9. Note that the results from Theorem 8, Corollary 5, Corollary 6 still
hold when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0 , for a family of dif-
ferentiable functions ϕs such that the function s → [y0,y1,y2;ϕs] is n -exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense), and furthermore, they still hold when all three points coincide for a fam-
ily of twice differentiable functions with the same property. The proofs are obtained by
recalling Remark 8 and suitable characterization of convexity.

Now, we present several families of functions which fulfil the conditions of The-
orem 8, Corollary 5 and Corollary 6 (and Remark 9). This enables us to construct a
large family of functions which are exponentially convex. For a discussion related to
this problem see [4].

In the rest of the section we consider only Φ1 and Φ2 defined as in (4.1) and (4.2)
with A which is continuous and f such that compositions with any function from the
chosen familly Ωi as well as with other functions which appear as arguments of Φ1

and Φ2 remain in L .

EXAMPLE 1. Consider a family of functions

Ω1 = {gs : R → [0,∞) : s ∈ R}
defined by

gs(x) =

{
1
s2

esx, s 
= 0,

1
2 x2, s = 0.

We have d2gs
dx2 (x) = esx > 0 which shows that gs is convex on R for every s ∈ R

and s → d2gs
dx2 (x) is exponentially convex by definition. Using analogous arguing as in

the proof of Theorem 8 we also have that s → [y0,y1,y2;gs] is exponentially convex
(and so exponentially convex in the Jensen sense). Using Theorem 5 we conclude that
s → Φi(gs) , i = 1,2, are exponentially convex in the Jensen sense. It is easy to verify
that these mappings are continuous (although mapping s → gs is not continuous for
s = 0), so they are exponentially convex.

For this family of functions, μs,q(Φi,Ω1) , i = 1,2, from (4.6) become

μs,q(Φi,Ω1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Φi(gs)
Φi(gq)

) 1
s−q

, s 
= q,

exp
(

Φi(id·gs)
Φi(gs)

− 2
s

)
, s = q 
= 0,

exp
(

Φi(id·g0)
3Φi(g0)

)
, s = q = 0,

and using (4.5) they are monotonous functions in parameters s and q .
Using Theorem 7 it follows that for i = 1,2

Ms,q(Φi,Ω1) = logμs,q(Φi,Ω1)

satisfy m � Ms,q(Φi,Ω1) � M , which shows that Ms,q(Φi,Ω1) are means (of a function
g ). Notice that by (4.5) they are monotonous.
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EXAMPLE 2. Consider a family of functions

Ω2 = { fs : (0,∞) → R : s ∈ R}
defined by

fs(x) =

⎧⎪⎨⎪⎩
xs

s(s−1) , s 
= 0,1,

− logx, s = 0,
x logx, s = 1.

Here, d2 fs
dx2 (x) = xs−2 = e(s−2) lnx > 0 which shows that fs is convex for x > 0 and

s → d2 fs
dx2 (x) is exponentially convex by definition. Arguing as in Example 1 we get that

the mappings s → Φi(gs) , i = 1,2 are exponentially convex. Functions (4.6) in this
case are equal to:

μs,q(Φi,Ω2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Φi( fs)
Φi( fq)

) 1
s−q

, s 
= q,

exp
(

1−2s
s(s−1) − Φi( fs f0)

Φi( fs)

)
, s = q 
= 0,1,

exp
(
1− Φi( f 2

0 )
2Φi( f0)

)
, s = q = 0,

exp
(
−1− Φi( f0 f1)

2Φi( f1)

)
, s = q = 1.

If Φi is positive, then Theorem 7 applied for f = fs ∈ Ω2 and g = fq ∈ Ω2 yields that
there exists ξ ∈ [m,M] such that

ξ s−q =
Φi( fs)
Φi( fq)

.

Since the function ξ → ξ s−q is invertible for s 
= q , we then have

m �
(

Φi( fs)
Φi( fq)

) 1
s−q

� M, (4.8)

which together with the fact that μs,q(Φi,Ω2) is continuous, symmetric and monotonous
(by (4.5)), shows that μs,q(Φi,Ω2) is a mean (of a function f ).

EXAMPLE 3. Consider a family of functions

Ω3 = {hs : (0,∞) → (0,∞) : s ∈ (0,∞)}
defined by

hs(x) =

⎧⎨⎩
s−x

ln2 s
, s 
= 1,

x2

2 , s = 1.

Since s → d2hs
dx2 (x) = s−x is the Laplace transform of a non-negative function (see [15])

it is exponentially convex. Obviously hs are convex functions for every s > 0.
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For this family of functions, μs,q(Φi,Ω3) , from (4.6) becomes

μs,q(Φi,Ω3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Φi(hs)
Φi(hq)

) 1
s−q

, s 
= q,

exp
(
−Φi(id·hs)

sΦi(hs)
− 2

s lns

)
, s = q 
= 1,

exp
(
− 2Φi(id·h1)

3Φi(h1)

)
, s = q = 1,

and it is monotonous in parameters s and q by (4.5).
Using Theorem 7, it follows that

Ms,q (Φi,Ω3) = −L(s,q) logμs,q(Φi,Ω3),

satisfies m � Ms,q(Φi,Ω3) � M , which shows that Ms,q(Φi,Ω3) is a mean (of a function
h ). L(s,q) is the logarithmic mean defined by L(s,q) = s−q

log s−logq , s 
= q , L(s,s) = s .

EXAMPLE 4. Consider a family of functions

Ω4 = {ks : (0,∞) → (0,∞) : s ∈ (0,∞)}
defined by

ks(x) =
e−x

√
s

s
.

Since s → d2ks
dx2 (x) = e−x

√
s is the Laplace transform of a non-negative function (see

[15]) it is exponentially convex. Obviously ks are convex functions for every s > 0.
For this family of functions, μs,q(Φi,Ω4) from (4.6) becomes

μs,q(Φi,Ω4) =

⎧⎪⎨⎪⎩
(

Φi(ks)
Φi(kq)

) 1
s−q

, s 
= q,

exp
(
− Φi(id·ks)

2
√

sΦi(ks)
− 1

s

)
, s = q,

and it is monotonous function in parameters s and q by (4.5).
Using Theorem 7, it follows that

Ms,q(Φi,Ω4) = −(√s+
√

q
)
logμs,q(Φi,Ω4)

satisfies m � Ms,q(Φi,Ω4) � M , which shows that Ms,q(Φi,Ω4) is a mean (of a function
k ).
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