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INFINITE REFINEMENTS OF THE DISCRETE

JENSEN’S INEQUALITY DEFINED BY RECURSION

LÁSZLÓ HORVÁTH

(Communicated by I. Perić)

Abstract. In this paper we give very general refinements of the discrete Jensen’s inequality for
convex and mid-convex functions defined by recursion. Conditions are given for strict inequality
which is rare in this topic. In some cases explicit formulas are obtained. The results contain and
generalize earlier statements. As an application we define some new quasi-arithmetic means and
study their (strict) monotonicity.

1. Introduction

The main purpose of this paper is to give a new refinement of the famous discrete
Jensen’s inequality which says that

THEOREM A. (see [1]) Let C be a convex subset of a real vector space X , and
{x1, . . . ,xn} be a finite subset of C , where n ∈ N+ is fixed. Let p1, . . . , pn be nonnega-

tive numbers with
n

∑
j=1

p j = 1 .

(a) If f : C → R is either a convex or a mid-convex function and in the latter case
the numbers p j (1 � j � n) are rational, then

f

(
n

∑
j=1

p jx j

)
�

n

∑
j=1

p j f (x j). (1)

(b) If n � 2 , there are at least two different elements between the vectors x1, . . . ,xn ,
the weights p1, . . . , pn are all positive, and f is strictly convex, then strict inequality
holds in (1).

The function f : C → R is called convex if

f (αx+(1−α)y) � α f (x)+ (1−α) f (y), x,y ∈C, 0 � α � 1, (2)
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and mid-convex or Jensen-convex if

f

(
x+ y

2

)
� 1

2
f (x)+

1
2

f (y), x,y ∈C.

f is strictly convex if the inequality in (2) becomes strict inequality for x �= y and
0 < α < 1.

The set of nonnegative integers and positive integers will be denoted by N and
N+ , respectively.

We say that p1, . . . , pn generate a discrete distribution if they are nonnegative num-

bers with
n

∑
j=1

p j = 1.

Many papers dealing with various refinements of the above inequality have ap-
peared in the literature: see, for example, the recent book [5] and the references therein.
We recall two results concerning special refinements proved recently in [4] and [3],
respectively.

The first assertion gives the weighted version of Theorem 1 in [6].

THEOREM B. (see [4, Theorem 1]) Let C be a convex subset of a real vector
space X , and {x1, . . . ,xn} be a finite subset of C , where n∈ N+ is fixed. Let p1, . . . , pn

generate a discrete distribution. Assume f : C → R is either a convex or a mid-convex
function and in the latter case the numbers p j (1 � j � n) are rational. Define

Gk = Gk,n(x1, . . . ,xn; p1, . . . , pn)

:=
1(n+k−1

k−1

) ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

(
n

∑
j=1

i j p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

i j p jx j

n

∑
j=1

i j p j

⎞
⎟⎟⎟⎠ , k ∈ N+. (3)

Then

f

(
n

∑
j=1

p jx j

)
= G1 � . . . � Gk � Gk+1 � . . . �

n

∑
j=1

p j f (x j) .

The second result is a parameter dependent refinement of the discrete Jensen’s
inequality. We state a variant of Theorem 1 (a) in [3], suitable for our purposes.

THEOREM C. Let C be a convex subset of a real vector space X , and {x1, . . . ,xn}
be a finite subset of C , where n ∈ N+ is fixed. Let p1, . . . , pn generate a discrete
distribution, and let λi > 1 (1 � i � n) . Suppose f : C → R is either a convex or
a mid-convex function and in the latter case the numbers pi and λi (1 � i � n) are
rational.

Introduce

d (λ ) = d (λ1, . . . ,λn) :=
n

∑
j=1

1
λ j −1

, (4)
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and for k ∈ N+ define

Dk (λ ) = Dk,n(x1, . . . ,xn; p1, . . . , pn;λ1, . . . ,λn)

:=
1

(d (λ )+1)k−1 ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

(k−1)!
(i1 −1)! . . .(in −1)!

×
n

∏
j=1

1

(λ j −1)i j−1

(
n

∑
j=1

λ i j−1
j p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

λ i j−1
j p jx j

n

∑
j=1

λ i j−1
j p j

⎞
⎟⎟⎟⎠ . (5)

Then

f

(
n

∑
j=1

p jx j

)
= D1(λ ) � . . . � Dk(λ ) � Dk+1(λ ) � . . . �

n

∑
j=1

p j f (x j). (6)

It can be seen that there are essential similarities between Theorem B and Theo-
rem C:

(i) Both of them are infinite refinements of the discrete Jensen’s inequality;
(ii) Gk and Dk(λ ) are sums over the same set

Sk :=

{
(i1, . . . , in) ∈ N

n
+ |

n

∑
j=1

i j = n+ k−1

}
, k ∈ N+; (7)

(iii) Gk and Dk(λ ) are special cases of the general expression

Tk = Tk,n(x1, . . . ,xn; p1, . . . , pn;g1, . . . ,gn)

:= ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

uk (i1, . . . , in)

(
n

∑
j=1

g j (i j) p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j

n

∑
j=1

g j (i j) p j

⎞
⎟⎟⎟⎠ , (8)

where
(g j (m))m∈N+

, 1 � j � n

are real sequences and

uk (i1, . . . , in) , (i1, . . . , in) ∈ Sk, k ∈ N+

are real numbers.
Considering Gk,n and Dk,n(λ ) , we have the sequences

g j (m) := m, m ∈ N+, 1 � j � n (9)

and
g j (m) := λ m−1

j , m ∈ N+, 1 � j � n, (10)
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respectively. Common properties of these two sequences are the next: they are strictly
increasing positive sequences for which

g1 (1) = . . . = gn (1) . (11)

In this paper, among others, we shall show that for arbitrarily choosen increasing
positive sequences (g j (m))m∈N+

(1 � j � n) satisfying (11) there exist finite positive
sequences

(uk (i1, . . . , in))(i1,...,in)∈Sk
, k ∈ N+ (12)

such that (Tk)k∈N+
defined in (8) gives a refinement of the discrete Jensen’s inequality.

Regarding Gk,n and Dk,n(λ ) , the finite sequences above are

uk (i1, . . . , in) :=
1(n+k−1

k−1

) , (i1, . . . , in) ∈ Sk, k ∈ N+ (13)

and

uk (i1, . . . , in) :=
1

(d (λ )+1)k−1 · (k−1)!
(i1 −1)! . . .(in −1)!

(14)

×
n

∏
j=1

1

(λ j −1)i j−1 , (i1, . . . , in) ∈ Sk, k ∈ N+,

respectively, that is they are defined explicitly. This is hardly to be expected in the
general case. Really, we shall be able to give the finite sequences (12) by recursive
definition.

Our first main result is the following:

THEOREM 1. Let n ∈ N+ be fixed, and let

(g j (m))m∈N+
, 1 � j � n (15)

be strictly increasing sequences such that

α := g1 (1) = . . . = gn (1) > 0. (16)

Define the finite sequences

(uk (i1, . . . , in))(i1,...,in)∈Sk
, k ∈ N+ (17)

recursively by

u1 (1, . . . ,1) :=
1
α

, (18)

and for every (i1, . . . , in) ∈ Sk+1 (see (7))

uk+1 (i1, . . . , in) := ∑
{l∈{1,...,n}|il �=1}

1

1+ gl(il−1)
gl(il)−gl(il−1) +

n

∑
j=1
j �=l

g j(i j)
g j(i j+1)−g j(i j)

× gl (il −1)
gl (il)−gl (il −1)

uk (i1, . . . , il−1, il −1, il+1, . . . , in) . (19)
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Let C be a convex subset of a real vector space X , and {x1, . . . ,xn} be a finite
subset of C . Let p1, . . . , pn generate a discrete distribution. If f : C → R is either a
convex or a mid-convex function and in the latter case the numbers pi (1 � i � n) and
the sequences (15) are rational, then

f

(
n

∑
j=1

p jx j

)
= T1 � . . . � Tk � Tk+1 � . . . �

n

∑
j=1

p j f (x j), (20)

where Tk is introduced in (8).

Some conditions under which all inequalities in (20) become strict are given in
the next statement. The most important situations are covered. Similar results are quite
rare in this topic.

THEOREM 2. Suppose the conditions of Theorem 1 are satisfied, and suppose that
f : C → R is strictly convex. If n � 2 , there are at least two different elements between
the vectors x1, . . . ,xn , and p1, . . . , pn are all positive, then

f

(
n

∑
j=1

p jx j

)
= T1 < .. . < Tk < Tk+1 < .. . <

n

∑
j=1

p j f (x j).

Now we consider a special case of Theorem 1, in which the sequences (17) can be
given explicitly.

In the further part of the paper we use the following notational convention: the
empty product is equal to 1.

THEOREM 3. Let n ∈ N+ be fixed, and let

(g j (m))m∈N+
, 1 � j � n

be strictly increasing sequences such that

α := g1 (1) = . . . = gn (1) > 0,

and for every k ∈ N+ the numbers
n

∑
j=1

g j (i j)
g j (i j +1)−g j (i j)

, (i1, . . . , in) ∈ Sk

depend only on k , that is

c(k) :=
n

∑
j=1

g j (i j)
g j (i j +1)−g j (i j)

, (i1, . . . , in) ∈ Sk. (21)

If p1, . . . , pn generate a discrete distribution, then for every k ∈ N+

uk (i1, . . . , in) =
1
α

k−1

∏
j=1

1
1+ c( j)

·
n

∏
j=1

(
i j−1

∏
m=1

g j (m)
g j (m+1)−g j (m)

)

× (k−1)!
(i1−1)! . . .(in−1)!

, (i1, . . . , in) ∈ Sk, (22)
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where uk (i1, . . . , in) is defined by (18) and (19).

2. Discussion and applications

Theorem 1 contains Theorem B and Theorem C, as the following example shows.
Moreover, we obtain a common generalization of these results.

EXAMPLE 1. Suppose n∈N+ is fixed, and suppose p1, . . . , pn generate a discrete
distribution. Let α > 0, a � 0 and b j ∈ R (1 � j � n) such that the numbers a+ b j

are all positive. Define the sequences (g j (m))m∈N+
by

g j (m) := α
m−1

∏
i=1

(
1+

1
ai+b j

)
, m ∈ N+, 1 � j � n.

Then these sequences are strictly increasing,

α = g1 (1) = . . . = gn (1) > 0,

and for every k ∈ N+

c(k) :=
n

∑
j=1

g j (i j)
g j (i j +1)−g j (i j)

= a(n+ k−1)+
n

∑
j=1

b j, (i1, . . . , in) ∈ Sk.

Thus they satisfy all the hypotheses of Theorem 3, according to which for every
k ∈ N+

uk (i1, . . . , in) =
1
α

k−1

∏
j=1

1

1+a(n+ j−1)+
n

∑
l=1

bl

·
n

∏
j=1

(
i j−1

∏
m=1

(am+b j)

)

× (k−1)!
(i1 −1)! . . .(in −1)!

, (i1, . . . , in) ∈ Sk. (23)

By choosing α = a = 1 and b j = 0 (1 � j � n) , we have the sequences (9), and
(23) gives (13).

By taking α = 1, a = 0 and b j = 1
λ j−1 (1 � j � n) , where λ j > 1 (1 � j � n) ,

we have the sequences (10), and (23) gives (14).

The considerations in the previous example and Theorem 1 lead to a common
generalization of Theorem B and Theorem C:

COROLLARY 1. Let C be a convex subset of a real vector space X , and {x1, . . . ,xn}
be a finite subset of C , where n ∈ N+ is fixed. Let p1, . . . , pn generate a discrete dis-
tribution. Let α > 0 , a � 0 and b j ∈ R (1 � j � n) such that the numbers a+b j are
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all positive. If Tk (k ∈ N+) is defined by

Tk :=

⎛
⎜⎜⎜⎝

k−1

∏
j=1

1

1+a(n+ j−1)+
n

∑
l=1

bl

⎞
⎟⎟⎟⎠ · ∑

i1+...+in=n+k−1
i j∈N+ ; 1� j�n

⎛
⎜⎜⎜⎜⎜⎝

n

∏
j=1

(
i j−1

∏
l=1

(al +b j)

)

× (k−1)!
(i1 −1)! . . .(in −1)!

(
n

∑
j=1

i j−1

∏
l=1

(
1+

1
al +b j

)
p j

)
· f

⎛
⎜⎜⎜⎜⎜⎝

n

∑
j=1

i j−1

∏
l=1

(
1+ 1

al+b j

)
p jx j

n

∑
j=1

i j−1

∏
l=1

(
1+ 1

al+b j

)
p j

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

and f : C → R is either a convex or a mid-convex function and in the latter case the
numbers pi (1 � i � n) , α , a and b j ∈ R (1 � j � n) are all rational, then

f

(
n

∑
j=1

p jx j

)
= T1 � . . . � Tk � Tk+1 � . . . �

n

∑
j=1

p j f (x j). (24)

By applying Theorem 2, conditions for strict inequality in (24) can be obtained.
According to (20), the sequence (Tk)k∈N+

is increasing and bounded, hence it tends to
a finite limit, which is known for the special sequences (Gk)k∈N+

and (Dk (λ ))k∈N+
. In

[3] probability theoretical method is applied to determine lim
k→∞

Dk (λ ) , if X is a normed

space and f is a continuous convex function. In [4] a totally different argument gives
lim
k→∞

Gk , if f is a convex function.

PROBLEM 1. Find the limit of the sequence (Tk)k∈N+
.

As an application we introduce some new quasi-arithmetic means and study their
monotonicity.

DEFINITION 1. Let n � 2 be a fixed integer, and let

(g j (m))m∈N+
, 1 � j � n

be strictly increasing sequences such that

α := g1 (1) = . . . = gn (1) > 0.

Let I ⊂ R be an interval, x j ∈ I (1 � j � n) , let p1, . . . , pn generate a discrete
distribution, and let ϕ , ψ : I → R be continuous and strictly monotone functions. We
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define the quasi-arithmetic means with respect to the sequence (Tk)k∈N+
by

Mg
ψ,ϕ (k) := ψ−1

⎛
⎜⎜⎝ ∑

i1+...+in=n+k−1
i j∈N+ ; 1� j�n

uk (i1, . . . , in)

(
n

∑
j=1

g j (i j) p j

)
(25)

×(ψ ◦ϕ−1)

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jϕ (x j)

n

∑
j=1

g j (i j) p j

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ , k ∈ N+.

REMARK 1. Mg
ψ,ϕ(k) really defines a mean, since as we shall see in (38)

n

∑
j=1

⎛
⎜⎜⎝ ∑

i1+...+in=n+k−1
i j∈N+ ; 1� j�n

uk (i1, . . . , in)g j (i j) p j

⎞
⎟⎟⎠= 1, k ∈ N+,

where the members are positive.

Another well known mean is also needed.

DEFINITION 2. Let n � 2 be a fixed integer, let I ⊂ R be an interval, x j ∈ I (1 �
j � n) , and let p1, . . . , pn generate a discrete distribution. For a continuous and strictly
monotone function z : I → R we introduce the following weighted quasi-arithmetic
mean

Mz := z−1

(
n

∑
j=1

p jz(x j)

)
. (26)

We now study the monotonicity of the means (25).

COROLLARY 2. Let n � 2 be a fixed integer, and let

(g j (m))m∈N+
, 1 � j � n

be strictly increasing sequences such that

α := g1 (1) = . . . = gn (1) > 0.

Let I ⊂ R be an interval, x j ∈ I (1 � j � n) , let p1, . . . , pn generate a discrete
distribution, and let ϕ , ψ : I →R be continuous and strictly monotone functions. Then

(a)

Mϕ = Mg
ψ,ϕ(1) � . . . � Mg

ψ,ϕ(k) � Mg
ψ,ϕ(k+1) � . . . � Mψ , k ∈ N+, (27)

if either ψ ◦ϕ−1 is convex and ψ is increasing or ψ ◦ϕ−1 is concave and ψ is de-
creasing.
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(b)

Mϕ = Mg
ψ,ϕ(1) � . . . � Mg

ψ,ϕ(k) � Mg
ψ,ϕ(k+1) � . . . � Mψ , k ∈ N+, (28)

if either ψ ◦ ϕ−1 is convex and ψ is decreasing or ψ ◦ ϕ−1 is concave and ψ is
increasing.

(c) If ψ ◦ϕ−1 is strictly convex (strictly concave) in (a) and (b), there are at least
two different elements between the numbers x1, . . . ,xn , and p1, . . . , pn are all positive,
then all inequalities in (27) and (28) become strict.

Proof. Theorem 1 can be applied to the function ψ ◦ϕ−1 , if it is convex (−ψ ◦
ϕ−1 , if it is concave) and the n -tuples (ϕ(x1), . . . ,ϕ(xn)) , then upon taking ψ−1 , we
get (a) and (b). Theorem 2 implies (c). �

3. Preliminary results and the proofs

LEMMA 1. Let k ∈ N+ be an integer, and (i1, . . . , in) ∈ Sk+1 be fixed. Then

∑
{l∈{1,...,n}|il �=1}

(k−1)!
(i1 −1)! . . .(il−1 −1)!(il −2)!(il+1 −1)! . . .(in −1)!

=
k!

(i1 −1)! . . . (in −1)!
.

Proof. The lowest common denominator is (i1 −1)! . . . (in −1)! . Combined with
n

∑
j=1

i j = n+ k the result follows. �

The next two lemmas will be used in the proof of Theorem 2.

LEMMA 2. Let n ∈ N+ is fixed, and let

(g j (m))m∈N+
, 1 � j � n

be strictly increasing sequences such that

α := g1 (1) = . . . = gn (1) > 0.

Then the finite sequences (uk (i1, . . . , in))(i1,...,in)∈Sk
(k ∈ N+) defined by (18) and

(19) are all positive.

Proof. The case k = 1 follows from (18), and the proof is completed by induction
on k , using an easy argument. �
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LEMMA 3. Let n � 2 be an integer. If α > 0 and ai > α (1 � i � n) , then

det

⎛
⎜⎜⎜⎝

a1 α . . . α
α a2 . . . α
...

...
. . .

...
α α . . . an

⎞
⎟⎟⎟⎠> 0. (29)

Proof. We prove by induction on n . The result is true for n = 2, since

det

(
a1 α
α a2

)
= a1a2−α2 > 0.

Let n � 2 be an integer such that the result holds for every possible parameters, and let
α > 0 and ai > α (1 � i � n+1) . Now we study

det

⎛
⎜⎜⎜⎝

a1 α . . . α
α a2 . . . α
...

...
. . .

...
α α . . . an+1

⎞
⎟⎟⎟⎠ . (30)

Substracting the second row from the first row, and then expanding (30) along the first
row we have that it is

(a1−α)det

⎛
⎜⎜⎜⎝

a2 α . . . α
α a3 . . . α
...

...
. . .

...
α α . . . an+1

⎞
⎟⎟⎟⎠

+(a2−α)det

⎛
⎜⎜⎜⎝

α α . . . α
α a3 . . . α
...

...
. . .

...
α α . . . an+1

⎞
⎟⎟⎟⎠ .

The induction hypothesis together with a1 > α imply that the first member in the previ-
ous sum is positive. Thus it is enough to show that the second member is also positive.
Since a2 > α , this follows from

det

⎛
⎜⎜⎜⎝

α α . . . α
α a3 . . . α
...

...
. . .

...
α α . . . an+1

⎞
⎟⎟⎟⎠> 0. (31)

To compute this determinant, we substract the first row from all the other rows, and
then expand it along the first column, we have that it is

α (a3−α) . . . (an+1−α) ,

which is positive by the assumptions. The proof is complete. �
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REMARK 2. In fact, we have proved that the matrix in (29) is positive definite.

Proof of Theorem 1. We proceed in three steps.

(i) By using the definition of T1 , (16) and (18), we have

T1 = uk (1, . . . ,1)

(
n

∑
j=1

g j (1) p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (1) p jx j

n

∑
j=1

g j (1) p j

⎞
⎟⎟⎟⎠

=
1
α

α

(
n

∑
j=1

p j

)
f

⎛
⎜⎜⎜⎝

α
n

∑
j=1

p jx j

α
n

∑
j=1

p j

⎞
⎟⎟⎟⎠= f

(
n

∑
j=1

p jx j

)
.

(ii) Next, we show that Tk � Tk+1 (k ∈ N+) . Fix k ∈ N+ . It is easy to check that
for every (i1, . . . , in) ∈ Sk

n

∑
j=1

g j (i j) p jx j

n

∑
j=1

g j (i j) p j

=
1

1+
n

∑
j=1

g j(i j)
g j(i j+1)−g j(i j)

·
n

∑
l=1

⎛
⎜⎜⎜⎝ gl (il)

gl (il +1)−gl (il)

×

n

∑
j=1

g j (i j) p jx j +(gl (il +1)−gl (il)) plxl

n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

n

∑
j=1

g j (i j) p j

⎞
⎟⎟⎟⎠
(32)

Since the sequences (g j (m))m∈N+
(1 � j � n) are strictly increasing and positive, for

every l = 1, . . . ,n the numbers

1

1+
n

∑
j=1

g j(i j)
g j(i j+1)−g j(i j)

· gl (il)
gl (il +1)−gl (il)

·

n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

n

∑
j=1

g j (i j) p j

(33)
are positive. It can be obtained by an easy calculation that the sum of these numbers is
equal to 1. Therefore, since f is convex on C , Theorem A shows that
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f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j

n

∑
j=1

g j (i j) p j

⎞
⎟⎟⎟⎠� 1

1+
n

∑
j=1

g j(i j)
g j(i j+1)−g j(i j)

·
n

∑
l=1

⎛
⎜⎜⎜⎝ gl (il)

gl (il +1)−gl (il)
(34)

×

n

∑
j=1

g j (i j) p j+(gl (il+1)−gl (il)) pl

n

∑
j=1

g j (i j) p j

f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j+(gl (il+1)−gl (il)) plxl

n

∑
j=1

g j (i j) p j+(gl (il+1)−gl (il)) pl

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ ,

and thus

Tk = ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

uk (i1, . . . , in)

(
n

∑
j=1

g j (i j) p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j

n

∑
j=1

g j (i j) p j

⎞
⎟⎟⎟⎠

� ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

⎛
⎜⎜⎜⎝uk (i1, . . . , in)

1

1+
n

∑
j=1

g j(i j)
g j(i j+1)−g j(i j)

(35)

×
n

∑
l=1

gl (il)
gl (il +1)−gl (il)

·
(

n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

)

× f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j +(gl (il +1)−gl (il)) plxl

n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ .

By interchanging the order of summation on the right hand side, we have

Tk �
n

∑
l=1

⎛
⎜⎜⎜⎝ ∑

i1+...il−1+(il+1)+il+1+...+in=n+k
i j∈N+ ; 1� j�n

uk (i1, . . . , in) · 1

1+
n

∑
j=1

g j(i j)
g j(i j+1)−g j(i j)

× gl (il)
gl (il +1)−gl (il)

·
(

n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

)
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× f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j +(gl (il +1)−gl (il)) plxl

n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

=
n

∑
l=1

⎛
⎜⎜⎝ ∑

i1+...+in=n+k
i j∈N+ ; 1� j�n; il �=1

uk (i1, . . . , il−1, il −1, il+1, . . . , in)

× 1

1+ gl(il−1)
gl(il)−gl(il−1) +

n

∑
j=1
j �=l

g j(i j)
g j(i j+1)−g j(i j)

· gl (il −1)
gl (il)−gl (il −1)

(36)

×
(

n

∑
j=1

g j (i j) p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j

n

∑
j=1

g j (i j) p j

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ .

In the previous expression the multiplicity of an element (i1, . . . , in) ∈ Sk+1 is the car-
dinality of the set {l ∈ {1, . . . ,n} | il �= 1} , and therefore (36) can be written as

∑
i1+...+in=n+k
i j∈N+ ; 1� j�n;

(
∑

{l∈{1,...,n}|il �=1}

1

1+ gl(il−1)
gl(il)−gl(il−1) +

n

∑
j=1
j �=l

g j(i j)
g j(i j+1)−g j(i j)

× gl (il −1)
gl (il)−gl (il −1)

uk (i1, . . . , il−1, il −1, il+1, . . . , in)

)

×
(

n

∑
j=1

g j (i j) p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j

n

∑
j=1

g j (i j) p j

⎞
⎟⎟⎟⎠ ,

from which, in view of (19),

Tk � ∑
i1+...+in=n+k
i j∈N+ ; 1� j�n;

uk+1 (i1, . . . , in)

(
n

∑
j=1

g j (i j) p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j

n

∑
j=1

g j (i j) p j

⎞
⎟⎟⎟⎠= Tk+1.

(iii) Finally, we show that

Tk �
n

∑
j=1

p j f (x j), k ∈ N+.
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It follows from Theorem A that

Tk = ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

uk (i1, . . . , in)

(
n

∑
j=1

g j (i j) p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

g j (i j) p jx j

n

∑
j=1

g j (i j) p j

⎞
⎟⎟⎟⎠

� ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

(
uk (i1, . . . , in)

n

∑
j=1

g j (i j) p j f (x j)

)
, k ∈ N+. (37)

and this tells us that it is enough to observe that for any j = 1, . . . ,n

∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

uk (i1, . . . , in)g j (i j) = 1, k ∈ N+. (38)

For a fixed j ∈ {1, . . . ,n} , we prove this by induction on k . We can obviously suppose
that j = 1. By (16) and (18)

u1 (1, . . . ,1)g1 (1) = 1,

thus (38) is true for k = 1. Suppose then that k is a positive integer for which (38)
holds. Then

∑
i1+...+in=n+k
i j∈N+ ; 1� j�n

uk+1 (i1, . . . , in)g1 (i1) = uk+1 (k+1,1, . . . ,1)g1 (k+1)

+ ∑
i1+...+in=n+k

i j∈N+ ; 1� j�n; i1�k

uk+1 (i1, . . . , in)g1 (i1) .

With the help of (19) this yields

∑
i1+...+in=n+k
i j∈N+ ; 1� j�n

uk+1 (i1, . . . , in)g1 (i1)

= ∑
i1+...+in=n+k
i j∈N+ ; 1� j�n

(
∑

{l∈{1,...,n}|il �=1}

1

1+ gl(il−1)
gl(il)−gl(il−1) +

n

∑
j=1
j �=l

g j(i j)
g j(i j+1)−g j(i j)

× gl (il −1)
gl (il)−gl (il −1)

uk (i1, . . . , il−1, il −1, il+1, . . . , in)

)
g1 (i1) .
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A simple calculation confirms that the previous sum can be rearranged in the following
form

∑
i1+...+in=n+k
i j∈N+ ; 1� j�n

uk+1 (i1, . . . , in)g1 (i1)

= ∑
i1+...+in=n+k
i j∈N+ ; 1� j�n

−1

(
uk (i1, . . . , in) · 1

1+
n

∑
j=1

g j(i j)
g j(i j+1)−g j(i j)

g1 (i1)

×
(

g1 (i1 +1)
g1 (i1 +1)−g1 (i1)

+
n

∑
j=2

g j (i j)
g j (i j +1)−g j (i j)

))
.

Combined with

g1 (i1 +1)
g1 (i1 +1)−g1 (i1)

= 1+
g1 (i1)

g1 (i1 +1)−g1 (i1)

this gives

∑
i1+...+in=n+k
i j∈N+ ; 1� j�n

uk+1 (i1, . . . , in)g1 (i1) = ∑
i1+...+in=n+k−1

i j∈N+ ; 1� j�n

uk (i1, . . . , in)g1 (i1) ,

and hence we can apply the induction hypothesis. The proof is complete. �

Proof of Theorem 3. Since (1, . . . ,1) is the only element of S1 , we have from (22)
that

u1 (1, . . . ,1) =
1
α

,

which is exactly (18). We make the inductive assumption that (22) holds for some
k ∈ N+ . Then, by (19)

uk+1 (i1, . . . , in) = ∑
{l∈{1,...,n}|il �=1}

(
1

1+ gl(il−1)
gl(il)−gl(il−1) +

n

∑
j=1
j �=l

g j(i j)
g j(i j+1)−g j(i j)

× gl (il −1)
gl (il)−gl (il −1)

1
α

k−1

∏
j=1

1
1+ c( j)

× (k−1)!
(i1 −1)! . . . (il−1−1)!(il −2)!(il+1 −1)! . . . (in −1)!

×
il−2

∏
l=1

gl (m)
gl (m+1)−gl (m)

·
n

∏
j=1
j �=l

(
i j−1

∏
m=1

g j (m)
g j (m+1)−g j (m)

))
,
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and therefore (21) and Lemma 1 insure that

uk+1 (i1, . . . , in) =
1
α

k

∏
j=1

1
1+ c( j)

·
n

∏
j=1

(
i j−1

∏
m=1

g j (m)
g j (m+1)−g j (m)

)

× ∑
{l∈{1,...,n}|il �=1}

(
(k−1)!

(i1−1)! . . . (il−1−1)!(il−2)!(il+1−1)! . . .(in−1)!

=
1
α

k

∏
j=1

1
1+ c( j)

·
n

∏
j=1

(
i j−1

∏
m=1

g j (m)
g j (m+1)−g j (m)

)

× k!
(i1−1)! . . . (in−1)!

, (i1, . . . , in) ∈ Sk+1.

The proof is completed. �

Proof of Theorem 2. We prove first that

Tk < Tk+1, k ∈ N+. (39)

Fix k ∈ N+ . By Lemma 2

uk (i1, . . . , in)

(
n

∑
j=1

g j (i j) p j

)
> 0, (i1, . . . , in) ∈ Sk,

and therefore the estimate of Tk in (35) leads to the next: it is enough to prove that there
exists a fix (i1, . . . , in) ∈ Sk for which strict inequality holds in (34). Since the numbers
(33) are all positive, it follows from Theorem A (b) and (32) that we will be ready, if
for some (i1, . . . , in) ∈ Sk there are at least two different between the vectors

n

∑
j=1

g j (i j) p jx j +(gl (il +1)−gl (il)) plxl

n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

, 1 � l � n. (40)

To this end, assume that the vectors (40) are all equal for a fixed (i1, . . . , in) ∈ Sk , that
is

n

∑
j=1

g j (i j) p jx j +(gl (il +1)−gl (il)) plxl

n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

= a, 1 � l � n. (41)

It is easy to see that x1 = . . . = xn = a is a solution of this linear system, hence we have
a contradiction if there is only one solution. Thus we have to prove that the matrix of
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(41) is invertible, or equivalently, the determinant of this matrix

n

∏
l=1

pl

n

∏
l=1

(
n

∑
j=1

g j (i j) p j +(gl (il +1)−gl (il)) pl

)

×det

⎛
⎜⎜⎜⎝

g1 (i1 +1) g2 (i2) . . . gn (in)
g1 (i1) g2 (i2 +1) . . . gn (in)

...
...

. . .
...

g1 (i1) g2 (i2) . . . gn (in +1)

⎞
⎟⎟⎟⎠

is not zero. We show this for
(k,1, . . . ,1) ∈ Sk,

thus we study the determinant

det

⎛
⎜⎜⎜⎝

g1 (k+1) g2 (1) . . . gn (1)
g1 (k) g2 (2) . . . gn (1)

...
...

. . .
...

g1 (k) g2 (1) . . . gn (2)

⎞
⎟⎟⎟⎠ . (42)

If n = 2, then

det

(
g1 (k+1) g2 (1)

g1 (k) g2 (2)

)
= g1 (k+1)g2 (2)−g1 (k)g2 (1) ,

which is positive, since g1 and g2 are strictly increasing. Suppose n � 3. We have
from the properties of determinants that (42) is

det

⎛
⎜⎜⎜⎝

g1 (k) α . . . α
g1 (k) g2 (2) . . . α

...
...

. . .
...

g1 (k) α . . . gn (2)

⎞
⎟⎟⎟⎠

+det

⎛
⎜⎜⎜⎝

g1 (k+1)−g1 (k) α . . . α
0 g2 (2) . . . α
...

...
. . .

...
0 α . . . gn (2)

⎞
⎟⎟⎟⎠

The second determinant has the value

(g1 (k+1)−g1 (k))det

⎛
⎜⎜⎜⎝

g2 (2) α . . . α
α g3 (2) . . . α
...

...
. . .

...
α α . . . gn (2)

⎞
⎟⎟⎟⎠ ,
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which is positive by Lemma 3, and by g1 (k+1) > g1 (k) . Further, a repetition of
the argument applied to the computation of the determinant (31) shows that the first
determinant has the value

g1 (k) (g2 (2)−α) . . .(gn (2)−α) ,

which is also positive. (39) has now been proved. The last thing to be shown is that

Tk <
n

∑
j=1

p j f (x j), k ∈ N+.

This comes from (37) by applying Theorem A (b) and Lemma 2. The proof is com-
plete. �
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