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A REMARK ON SCHUR–CONVEXITY OF

THE MEAN OF A CONVEX FUNCTION

VERA ČULJAK

(Communicated by N. Elezović)

Abstract. In this note the new result and some remarks have been made about proving convexity
and Schur-convexity of the mean of a convex function L : [0,1] → R associated with the Hermit-
Hadamard inequality which is considered in literature [4] and [5]:

L(t) :=
1

2(b−a)

∫ b

a
[ f (ta+(1− t)x)+ f (tb+(1− t)x)]dx,

where f : I ⊆ R → R and a,b ∈ I, a < b .

1. Introduction

Let I be an interval with a non-empty interior. Let x = (x1,x2, ..,xn) and y =
(y1,y2, ..,yn) in In be two n-tuples such that x ≺ y, i.e.

k

∑
i=1

x[i] �
k

∑
i=1

y[i], k = 1, ...,n−1

n

∑
i=1

x[i] =
n

∑
i=1

y[i],

where x[i] denotes the i th largest component in x .

DEFINITION 1. Function F : In → R is Schur-convex on In if

F(x1,x2, ..,xn) � F(y1,y2, ..,yn)

for each two n-tuples x and y such that it holds x ≺ y on In .
Function F is Schur-concave on In if and only if −F is Schur-convex.

The next lemma gives us a necessary and sufficient condition for verifying the
Schur-convexity property of F as a function of two variables ( [6, p.57], see also [8, p.
333] ):
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LEMMA A 1. Let F : I2 → R be a continuous function on I2 and differentiable
in interior of I2. Then F is Schur-convex if and only if it is symmetric and it holds(∂F

∂y
− ∂F

∂x

)
(y− x) � 0 (1)

for all x,y ∈ I , x �= y .

M. Merkle in [7] was inspired by inequalities concerning gamma Γ and digamma
Ψ functions and proved the following theorem

THEOREM A 1. The function (x,y) → F(x,y) defined by

F(x,y) =

{
logΓ(x)−logΓ(y)

x−y , a,b ∈ I,x �= y
Ψ(x), x = y

is strictly Schur–concave on x > 0, y > 0.

N. Elezović and J. Pečarić in [3] generalized this result to the case of integral
arithmetic mean by using the Hermit-Hadamard inequality.

THEOREM A 2. Let I ⊆ R be an interval with a non-empty interior and let f be
a continuous function on I . Then

F(a,b) =
{

1
b−a

∫ b
a f (x)dx, a,b ∈ I,a �= b
f (a), a = b

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I .

Dragomir in [2] (see also [1, p.108] and [1, p.113]) considered mappings L :
[0,1]→ R and J : [0,1]→ R associated with the Hermit-Hadamard inequality:

L(t) :=
1

2(b−a)

∫ b

a
[ f (ta+(1− t)x)+ f (tb+(1− t)x)]dx, (2)

J(t) := L(1− t), (3)

where f : I ⊆ R → R and a,b ∈ I with a < b . He showed convexity (concavity) of L
and J if f is convex (concave) function on I and t ∈ [0,1] : (see also [4])

L(t) � (�)L(1) =
f (a)+ f (b)

2
, (4)

J(t) � (�)J(0) =
f (a)+ f (b)

2
. (5)

Yang in [9] (see also [1, p.147] ) considered a similar function G(t) : [0,1] → R

G(t) :=
1

2(b−a)

∫ b

a

[
f
(1+ t

2
a+

1− t
2

x
)

+ f
(1+ t

2
b+

1− t
2

x
)]

dx, (6)
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where f : I ⊆R→R and a,b∈ I with a < b. He showed convexity of G if f is convex
function on I.

Huan-Nan Shi in [4] found a similar result as N. Elezović and J. Pečarić’s Theorem
A2 for the function L :

THEOREM A 3. Let I ⊆R be an interval with a non-empty interior and let f be
a continuous function on I . For function PL(a,b) defined on I2 as

PL(a,b) =
{

L(t), a,b ∈ I,a �= b,
f (a), a = b,

the following holds
(i) for 1

2 � t � 1, if f is convex on I, then PL is Schur-convex on I2 ;
(ii) for 0 � t � 1

2 , if f is concave on I, then PL is Schur-concave on I2.

Huan-Nan Shi, Li and Gu in [5] gave a similar result for properties of function PG

defined by function G .

THEOREM A 4. Let I ⊆ R be an interval with a non-empty interior and let f
be a continuous function on I . A function PG(a,b) is defined on I2 as

PG(a,b) =
{

G(t), a,b ∈ I,a �= b,
f (a), a = b.

Then, for any 0 � t � 1, if f is convex (concave) on I, then PG is Schur-convex
(Schur-concave) on I2 .

In this note our primary aims are to prove a similar result as in Theorem A2 and
to point out that this result implies Theorem A4. Also, we will remark that Theorem
A3 is not correct. As the applications of the main result the Schur-convexity of the new
defined logarithmic mean will be done.

2. Results

We will consider the possibility of further generalization in the companion map-
pings.

Let α : [0,1]→ [0,1] be a monotonic nondecreasing continuous function on [0,1].
Let Lα : [0,1]→ R and Jα : [0,1]→ R be functions defined by

Lα(t) :=
1

2(b−a)

∫ b

a
[ f (α(t)a+(1−α(t))x)+ f (α(t)b+(1−α(t))x)]dx. (7)

and
Jα(t) := L(1−α(t)). (8)

where f : I ⊆ R → R and a,b ∈ I with a < b .
We use the fact that Lα(t) = L(α(t)) and Jα(t) := J(α(t)) to derive the following

lemma.
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LEMMA 1. Suppose that f , L , J , α , Lα , Jα are as above. If f is convex
(concave) then

(i) Lα is convex (concave) if α is a linear function;
(ii) The following inequality holds for all t ∈ [0,1]

Lα(t) � (�)
f (a)+ f (b)

2
(9)

and

Jα(t) � (�)
f (a)+ f (b)

2
. (10)

Proof. (i) It is obvious by convexity of L and linearity of α. We note that if f is
convex and g is linear, then the composition f ◦ g is convex.

(ii) By the convexity (concavity) of f one has:

Lα(t) � (�)
1−α(t)
(b−a)

∫ b

a
f (x)dx+ α(t)

f (a)+ f (b)
2

� (�),
f (a)+ f (b)

2
(11)

Jα(t) � (�)
α(t)

(b−a)

∫ b

a
f (x)dx+(1−α(t))

f (a)+ f (b)
2

� (�)
f (a)+ f (b)

2
. (12)

REMARK 1. In papers [2] and [9] convexity of functions L and G were consid-
ered.

Moreover, it is well known that if f : I → R is convex, and α(t) = At +B, A > 0,
(A < 0) then Lα is convex (concave) on [0,1]. Convexity of L implies convexity of
Lα by fact that Lα(t) = L(α(t)).

Since α(t) = t+1
2 is increasing on [0,1] Yang’s result for convexity of G in [9] is

consequence of Dragomir’s result in [2] for convexity of L .

Our main result is the next theorem which is similar as N. Elezović and J. Pečarić’s
Theorem A2 for functions Pα and P̃α .

THEOREM 1. Let I ⊆ R be an interval with a non-empty interior. Let f be a
continuous functions on I and α : [0,1]→ [0,1] be a monotonic nondecreasing contin-
uous function on [0,1].

For a function Pα(a,b) defined on I2 as

Pα(a,b) =
{

Lα(t), a,b ∈ I,a �= b,
f (a), a = b,

and for a function P̃α(a,b) defined on I2 as

P̃α(a,b) =
{

Jα(t), a,b ∈ I,a �= b,
f (a), a = b,

the following holds



SCHUR-CONVEXITY OF THE MEAN OF A CONVEX FUNCTION 1137

(i) for α such that mint∈[0,1] α(t) � 1
2 , maxt∈[0,1] α(t) � 1, if f is convex (con-

cave) on I, then Pα is Schur-convex (Schur-concave) on I2;
(ii) for α such that mint∈[0,1] α(t) � 0, maxt∈[0,1] α(t) � 1

2 , if f is convex (con-

cave) on I, then P̃α is Schur-convex (Schur-concave) on I2.

Proof. The property of Schur-convexity of function Pα(a,b) is considered with
(a,b) in I2. Applying Lemma A1 we find out that holds a �= b

(b−a)(
∂Pα(a,b)

∂b
− ∂Pα(a,b)

∂a
)

= −2Lα(t)

+
1

2(1−α(t))
{(1−2α(t))[ f (α(t)a+(1−α(t))b)+ f (α(t)b+(1−α(t))a)]

+ f (a)+ f (b)}
and analogue

(b−a)(
∂ P̃α(a,b)

∂b
− ∂ P̃α(a,b)

∂a
)

= −2Jα(t)

+
1

2α(t)
{(2α(t)−1)[ f ((1−α(t))a+ α(t)b)+ f ((1−α(t))b+α(t)a)]

+ f (a)+ f (b)}.
(i) Let α such that mint∈[0,1] α(t) � 1

2 , maxt∈[0,1] α(t) � 1, then (1−2α(t)) � 0
for all t ∈ [0,1].

According (9) in Lemma 1 if f is convex (concave) function then it holds

(b−a)(
∂Pα(a,b)

∂b
− ∂Pα(a,b)

∂a
)

� (�)−2Lα(t)+ f (a)+ f (b)
� (�)0

and Pα is Schur-convex (Schur-concave) on I2;
(ii) For α such that mint∈I α(t) � 0, maxt∈[0,1] α(t) � 1

2 , then (1− 2α(t)) � 0
for all t ∈ [0,1].

According (10) in Lemma 1 if f is convex (concave) function then

(b−a)(
∂ P̃α(a,b)

∂b
− ∂ P̃α(a,b)

∂a
)

� (�)−2Lα(t)+ f (a)+ f (b)
� (�)0

and P̃α is Schur-convex (Schur-concave) on I2;
So, for α(t) = t the corrected Huan-Nan’s result is as in following corollary:
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COROLLARY 1. Let I ⊆R be an interval with a non-empty interior and let f be
a continuous function on I . For function PL(a,b) defined on I2 as

PL(a,b) =
{

L(t), a,b ∈ I,a �= b,
f (a), a = b,

and for function P̃L(a,b) defined on I2 as

P̃L(a,b) =
{

J(t), a,b ∈ I,a �= b,
f (a), a = b,

the following holds
(i) for 1

2 � t � 1, if f is convex (concave) on I, then PL is Schur-convex (Schur-
concave) on I2;

(ii) for 0 � t � 1
2 , if f is convex (concave) on I, then P̃L is Schur-convex (Schur-

concave) on I2.

REMARK 2. So, the result in Theorem A4 is also consequence of Theorem 1.
Function G(t) = L(α(t)) where α(t) = t+1

2 is function such that case (i) is satisfied.

3. Application

N. Elezović and J. Pečarić in [3], applied TheoremA2 to logarithmicmean Lr(a,b) :

COROLLARY A 1. The generalized logarithmic mean defined as follows

Lr(a,b) =
[

br −ar

r(b−a)

] 1
r−1

, a,b > 0, (13)

L1 =
1
e

[
aa

bb

] 1
a−b

,

L0 =
b−a

logb− loga
,

L(a,a) = a, (14)

is Schur-convex for r > 2 and Schur-concave for r < 2.

As a application of the Theorem 1 is the following result for the means:

THEOREM 2. Let α : [0,1] → [0,1) be a monotonic nondecreasing continuous
function, such that mint∈[0,1] α(t) � 1

2 , maxt∈[0,1) α(t) < 1. The logarithmic means are
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defined by

Lr(a,b;α) =
[
(br −ar)− (ur

α − vr
α)

2(b−a)r(1−α(t))

] 1
r−1

, a,b > 0, a �= b,

Lr(a,b;α) = a, a = b,

L0(a,b;α) =
[
logb− loga− (loguα − logvα)

2(1−α(t))(b−a)

]−1

, a,b > 0, a �= b,

L0(a,b;α) = a, a = b,

where uα = α(t)b+(1−α(t))a and vα = α(t)a+(1−α(t))b.
(i) If r > 2 then Lr(a,b;α) is Schur-convex on R

2
+;

(ii) If r < 2 then Lr(a,b;α) is Schur-concave on R
2
+.

Proof. Applying Theorem 1 for function f (x) = xr−1,r �= 0, then for a �= b , we
have

Lα(t) :=
1

2(b−a)

∫ b

a
[(α(t)a+(1−α(t))x)r−1 +(α(t)b+(1−α(t))x)r−1]dx

=
1

2(b−a)
· 1
r(1−α(t))

[(α(t)a+(1−α(t))x)r

∣∣∣∣b
a
+(α(t)b+(1−α(t))x)r

∣∣∣∣b
a
]

=
(br −ar)+ [(α(t)a+(1−α(t))b)r− (α(t)b+(1−α(t))a)r]

2(b−a)r(1−α(t))

=
(br −ar)− (ur

α − vr
α)

2(b−a)r(1−α(t))
.

For f (x) = x−1, then for a �= b , we have

Lα(t) :=
1

2(b−a)

∫ b

a
[(α(t)a+(1−α(t))x)−1 +(α(t)b+(1−α(t))x)−1]dx

=
1

2(b−a)(1−α(t))
[log(α(t)a+(1−α(t))x)

∣∣∣∣b
a
+ log(α(t)b+(1−α(t))x)

∣∣∣∣b
a
]

=
(logb− loga)+ [log(α(t)a+(1−α(t))b)− log(α(t)b+(1−α(t))a)]

2(b−a)(1−α(t))

=
(logb− loga)− (loguα − logvα)

2(b−a)(1−α(t))
.

We use results of Marshall and Olkin in [6, p.61] (see also ([8, p.334],) for proper-
ties of compositions of Schur-convex and Schur-concave function of the form ψ(x) =
h(φ(x)) :

(a) if φ is Schur-convex and h is increasing (decreasing) then ψ is Schur-convex
(Schur-concave);

(b) if φ is Schur-concave and h is increasing (decreasing) then ψ is Schur-
concave (Schur-convex).
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If r > 2 then f is convex function on R+, and from Theorem 1 we have Pα(a,b;α)
is Schur-convex on R

2
+. Since h(x) = x

1
r−1 is increasing on R+, then applying (a)

Lr(a,b;α) = [Pα(a,b)]
1

r−1 is Schur-convex on R
2
+;

If r < 1, then f is convex function on R+, and from Theorem 1 we have Pα(a,b;α)
is Schur-convex on R

2
+. Since h(x) = x

1
r−1 is decreasing on R+, then applying (a)

Lr(a,b;α) = [Pα(a,b)]
1

r−1 is Schur-concave on R
2
+;

If 1 < r < 2 then f is concave function on R+, and from Theorem 1 we have

Pα(a,b;α) is Schur-concave on R
2
+. Since h(x) = x

1
r−1 is increasing on R+, then

applying (b) Lr(a,b;α) = [Pα(a,b)]
1

r−1 is Schur-concave on R
2
+.

Setting r → 1, it is deduced that Lr(a,b;α) is still Schur-concave on R
2
+.

Analoguous theorem holds for the mean L̃r(a,b;α) :

THEOREM 3. Let α : [0,1] → (0,1] be a monotonic nondecreasing continuous
function, such that mint∈[0,1] α(t) > 0, maxt∈[0,1] α(t) � 1

2 . For a,b ∈ [0,∞), the log-
arithmic means are defined by

L̃r(a,b;α) =
[
(br −ar)− (vr

α −ur
α)

2(b−a)rα(t)

] 1
r−1

, a,b > 0, a �= b,

L̃r(a,b;α) = a, a = b,

L̃0(a,b;α) =
[
logb− loga− (logvα − loguα)

2α(t)(b−a)

]−1

, a,b > 0, a �= b,

L̃0(a,b;α) = a, a = b,

where uα = (α(t)b+(1−α(t))a and vα = α(t)a+(1−α(t))b.
(i) If r > 2 then L̃r(a,b;α) is Schur-convex on R

2
+;

(ii) If r < 2 then L̃r(a,b;α) is Schur-concave on R
2
+.

REMARK 3. For α(t) = 1+t
2 , we obtain the same result for Schur-convexity of

the means Lr(a,b;α) as Huan-Nan Shi and all in [5].

REMARK 4. For α(t) = t,t ∈ [ 1
2 ,1) we obtain result for Schur-convexity of the

means Lr(a,b, t). Huan- Nan Shi in [4] gave the similar result for Lr(a,b,t) but this
result is not correct as a consequence of Theorem 3.

COROLLARY 2. Let t ∈ [ 1
2 ,1), and let

Lr(a,b; t) =
[
(br −ar)− (ur − vr)
2(b−a)r(1− t))

] 1
r−1

, a,b > 0, a �= b,

Lr(a,b; t) = a, a = b,

L0(a,b; t) =
[
logb− loga− (logu− logv)

2(1− t)(b−a)

]−1

, a,b > 0, a �= b,

L0(a,b; t) = a, a = b,
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where u = tb+(1− t)a and v = ta+(1− t)b. Then
(i) if r > 2 then Lr(a,b;t) is Schur-convex on R

2
+;

(ii) if r < 2 then Lr(a,b;t) is Schur-concave on R
2
+.

COROLLARY 3. Let α : [0,1]→ [0,1) be a monotonic nondecreasing continuous
function, such that mint∈[0,1] α(t) � 1

2 , maxt∈[0,1) α(t) < 1.
(i) If r > 2 then

a+b
2

� Lr(a,b;α) � (a+b)
[
(α(t))r − (1−α(t))r−1

r(α(t)−1)

] 1
r−1

;

(ii) If r < 2 then

a+b
2

� Lr(a,b;α) � (a+b)
[
(α(t))r − (1−α(t))r−1

r(α(t)−1)

] 1
r−1

.

Proof. For 2-tuples ( a+b
2 , a+b

2 ), (a,b), (a+b,0) hold the relation of majorization:

(
a+b

2
,
a+b

2
) ≺ (a,b) ≺ (a+b,0).

Using Theorem 2 (i) we have

Lr(
a+b

2
,
a+b

2
;α) � Lr(a,b;α) � Lr(a+b,0;α).

REMARK 5. For t0 such that α(t0) = 1
2 , we obtain result for Schur-convexity of

the generalize logarithmic mean

Lr(a,b,t0) = Lr(a,b)

as in Corollary A1 [3] (see also [7]).

REMARK 6. According Corollary 3 for t = t0 such that α(t0) = 1
2 we got the

known inequalities

a+b
2

�
[

br −ar

(b−a)r

] 1
r−1

� (a+b)
[

1
r

] 1
r−1

, r > 2,

a+b
2

�
[

br −ar

(b−a)r

] 1
r−1

� (a+b)
[

1
r

] 1
r−1

, r < 2,

a+b
2

� b−a
logb− loga

� a+b
log(a+b)

.
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