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NEW ESTIMATIONS OF THE REMAINDER IN

THREE–POINT QUADRATURE FORMULAE OF EULER TYPE

M. KLARIČIĆ BAKULA, J. PEČARIĆ, M. RIBIČIĆ PENAVA AND A. VUKELIĆ

(Communicated by M. Matić)

Abstract. We derive some new bounds for the general three-point quadrature formulae of Euler
type using some inequalities for the Chebyshev functional. As special cases, we provide some
new error estimates for Euler Simpson formula, dual Euler Simpson formula and Euler Maclaurin
formula. Also, applications for Euler Bullen-Simpson formula are obtained.

1. Introduction

The well known Chebyshev functional is defined by

T ( f ,g) =
1

b−a

∫ b

a
f (s)g(s)ds− 1

b−a

∫ b

a
f (s)ds · 1

b−a

∫ b

a
g(s)ds,

where f ,g : [a,b] → R are two real functions such that f ,g, f ·g ∈ L1 [a,b] .
Many researchers have investigated the Chebyshev functional and inequalities re-

lated to the Chebyshev functional (see [8], [9], [10] and the references cited therein).
In paper [4] P. Cerone and S. S. Dragomir proved the following Grüss type in-

equalities:

THEOREM 1. Let f ,g : [a,b]→R be two absolutely continuous functions on [a,b]
with

(·−a)(b−·)( f ′
)2

, (·−a)(b−·)(g′)2 ∈ L1 [a,b] ,

then

|T ( f ,g) | � 1√
2

[T ( f , f )]1/2 1√
b−a

[∫ b

a
(s−a)(b− s)

(
g′ (s)

)2
ds

]1/2

(1)

� 1
2(b−a)

[∫ b

a
(s−a)(b−s)

(
f ′ (s)

)2
ds

]1/2 [∫ b

a
(s−a)(b−s)

(
g′ (s)

)2
ds

]1/2

.

The constants 1/
√

2 and 1/2 are the best possible.
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1144 M. KLARIČIĆ BAKULA, J. PEČARIĆ, M. RIBIČIĆ PENAVA AND A. VUKELIĆ

THEOREM 2. Assume that g : [a,b] → R is monotonic nondecreasing on [a,b]
and f : [a,b] → R is absolutely continuous with f ′ ∈ L∞ [a,b] , then

|T ( f ,g) | � 1
2(b−a)

‖ f ′‖∞ ·
∫ b

a
(s−a)(b− s)dg(s) . (2)

The constant 1/2 is the best possible.

Here and hereafter the symbol Bk(s) denotes the Bernoulli polynomials, Bk =
Bk(0) the Bernoulli numbers, and B∗

k(s), k � 0, periodic functions of period 1 defined
by the condition

B∗
k(s+1) = B∗

k(s), s ∈ R,

and related to the Bernoulli polynomials as follow

B∗
k(s) = Bk(s), 0 � s < 1.

The Bernoulli polynomials Bk(s), k � 0, are uniquely determined by the following
identities

B′
k(s) = kBk−1(s), k � 1; B0(s) = 1, Bk(s+1)−Bk(s) = ksk−1, k � 0.

Further, B∗
0(s) = 1, B∗

1(s) is a discontinuous function with a jump of −1 at each integer
and for k � 2, B∗

k(s) are continuous functions. We get

B∗′
k (s) = kB∗

k−1(s), k � 1 (3)

for every s ∈ R when k � 3, and for every s ∈ R\Z when k = 1,2. Also, for k � 1
the following equations hold:

B2k

(
1
2

)
= −

(
1−21−2k

)
B2k

B2k

(
1
4

)
= −2−2k

(
1−21−2k

)
B2k

B2k

(
1
3

)
= −2−1

(
1−31−2k

)
B2k

B2k

(
1
6

)
= 2−1

(
1−21−2k

)(
1−31−2k

)
B2k

More about Bernoulli polynomials, Bernoulli numbers, and periodic functions B∗
k

can be found in [1].
In this paper we give some new bounds for the general three-point quadrature for-

mulae of Euler type using Theorem 1, Theorem 2 and the general three-point quadrature
formulae recently published in [5]. We use the above results to get the error estimates
for Euler Simpson formula, dual Euler Simpson formula and Euler Maclaurin formula.
Also, the corresponding error estimates for Euler Bullen-Simpson formula are derived.

More about quadrature formulae and error estimations (from the point of view of
inequality theory) can be found in monographs [2] and [6].
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2. Applications for the general three-point formulae of Euler type

Let x ∈ [0,1/2) and f : [0,1] → R be such that f (2n+1) is continuous function
of bounded variation on [0,1] for some n � 0. In paper [5] the authors proved the
following formula:∫ 1

0
f (s)ds−w(x) f (x)− (1−2w(x)) f

(
1
2

)
−w(x) f (1− x)+T2n(x)

=
1

(2n+2)!

∫ 1

0
F2n+2(x,s)d f (2n+1)(s), (4)

where

T2n(x) =
2n

∑
k=2

1
k!

Gk(x,0) [ f (k−1)(1)− f (k−1)(0)], (5)

Gk (x,s) = w(x) [B∗
k (x− s)+B∗

k (1− x− s)]+ (1−2w(x))B∗
k

(
1
2
− s

)
, k � 1

(6)

Fk (x,s) = Gk (x,s)−Gk (x,0) , k � 2 (7)

and s ∈ R .
Using the properties of Bernoulli polynomials, it is easy to see that

Gk (x,1− s) = (−1)k Gk (x,s) , s ∈ [0,1]

∂Gk (x,s)
∂ s

= −kGk−1 (x,s)

and G2k−1 (x,0) = 0, for k � 2 and for any choice of the weight w . In general
G2k (x,0) �= 0.

To obtain from (4) a quadrature formula with the maximum degree of exactness
(which is equal to 3) we have to impose a condition G2(x,0) = 0. This condition gives:

w(x) =
1

6(2x−1)2 , x ∈
[
0,

1
2

)
. (8)

Now, formula (4) becomes:∫ 1

0
f (s)ds−Q

(
x,

1
2
,1− x

)
+TQ3

2n (x) =
1

(2n+2)!

∫ 1

0
FQ3

2n+2(x,s)d f (2n+1)(s), (9)

where

Q

(
x,

1
2
,1− x

)
=

1

6(2x−1)2

[
f (x)+24B2 (x) f

(
1
2

)
+ f (1− x)

]
,

TQ3
2n (x) =

n

∑
k=2

1
(2k)!

GQ3
2k (x,0) [ f (2k−1)(1)− f (2k−1)(0)],

GQ3
k (x,s) =

1

6(2x−1)2

[
B∗

k (x− s)+24B2(x) ·B∗
k

(
1
2
− s

)
+B∗

k (1− x− s)
]
,

FQ3
k (x,s) = GQ3

k (x,s)−GQ3
k (x,0). (10)
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Assuming f (2n−1) is continuous function of bounded variation on [0,1] for some
n � 1, then the following identity holds:

∫ 1

0
f (s)ds−Q

(
x,

1
2
,1− x

)
+TQ3

2n (x) =
1

(2n)!

∫ 1

0
GQ3

2n (x,s)d f (2n−1)(s), (11)

while assuming f (2n) is continuous function of bounded variation on [0,1] for some
n � 0 the following representation holds:

∫ 1

0
f (s)ds−Q

(
x,

1
2
,1− x

)
+TQ3

2n (x) =
1

(2n+1)!

∫ 1

0
GQ3

2n+1(x,s)d f (2n)(s). (12)

I. Franjić, J. Pečarić and I. Perić [5] proved the following lemma:

LEMMA 1. For x ∈ {0}∪ [1/6,1/2) and k � 1 , GQ3
2k+1 (x,s) has no zeros in vari-

able s on the interval (0,1/2). The sign of this function is determined by

(−1)kGQ3
2k+1 (x,s) > 0, for x ∈ [1/6,1/2)

and
(−1)k+1GQ3

2k+1 (x,s) > 0, for x = 0.

Now, we obtain some new bounds for the remainders in the general three-point
formulae of Euler type.

THEOREM 3. Let f : [0,1]→ R be such that f (2n) is absolutely continuous func-

tion and
(

f (2n+1)
)2 ∈ L1 [0,1] for some n � 1 and x ∈ [0,1/2) . Then

∫ 1

0
f (s)ds−Q

(
x,

1
2
,1− x

)
+TQ3

2n (x) = KQ3
2n ( f ) (13)

and the remainder KQ3
2n ( f ) satisfies the estimation

|KQ3
2n ( f ) |

� 1

6(2x−1)2

[ −1
(4n)!

(
B4n +B4n (1−2x)+48B2 (x)B4n

(
x+

1
2

)
+288B2

2 (x)B4n

)]1/2

×
[∫ 1

0
s(1− s)

(
f (2n+1) (s)

)2
ds

]1/2

.

(14)

For f : [0,1] → R such that f (2n+1) is absolutely continuous function for some n � 0
and x ∈ [0,1/2), the following equality holds

∫ 1

0
f (s)ds−Q

(
x,

1
2
,1− x

)
+TQ3

2n (x) = KQ3
2n+1 ( f ) (15)
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and the remainder KQ3
2n+1 ( f ) satisfies the estimation

|KQ3
2n+1 ( f ) |

� 1

6(2x−1)2

[
1

(4n+2)!

(
B4n+2 +B4n+2 (1−2x)+48B2 (x)B4n+2

(
x+

1
2

)

+288B2
2 (x)B4n+2

)]1/2

·
[∫ 1

0
s(1− s)

(
f (2n+2) (s)

)2
ds

]1/2

.

(16)

Proof. Applying Theorem 1 with GQ3
k in place of f and f (k) in place of g we get∣∣∣∣

∫ 1

0
GQ3

k (x,s) f (k)(s)ds−
∫ 1

0
GQ3

k (x,s)ds ·
∫ 1

0
f (k)(s)ds

∣∣∣∣
� 1√

2

[
T

(
GQ3

k (x, ·) ,GQ3
k (x, ·)

)]1/2
[∫ 1

0
s(1− s)

(
f (k+1) (s)

)2
ds

]1/2

, (17)

where

T
(
GQ3

k (x, ·) ,GQ3
k (x, ·)

)
=

∫ 1

0

(
GQ3

k (x,s)
)2

ds−
(∫ 1

0
GQ3

k (x,s)ds

)2

.

By elementary calculations, using properties of Bernoulli polynomials Bk (s) and
periodic function B∗

k we obtain

∫ 1

0
GQ3

k (x,s)ds = 0. (18)

Using integration by parts we have

∫ 1

0

(
GQ3

k (x,s)
)2

ds

= (−1)k−1 k (k−1) · · ·2
(k+1)(k+2) · · · (2k−1)

[
− 1

2k
GQ3

2k (x,s)G1(x,s)
∣∣∣1
0
+

1
2k

∫ 1

0
GQ3

2k (x,s)dG1(x,s)
]

=
(−1)k−1 (k!)2

6(2x−1)2 (2k)!

[
−6(2x−1)2

∫ 1

0
GQ3

2k (x,s)ds

+GQ3
2k (x,x)+24B2 (x)GQ3

2k

(
x,

1
2

)
+GQ3

2k (x,1− x)
]

=
(−1)k−1 (k!)2

36(2x−1)4 (2k)!

[
2B2k +2B2k (1−2x)+96B2 (x)B2k

(
x+

1
2

)
+576B2

2 (x)B2k

]
.

If we put k = 2n using (11) and (17), we obtain representation (13) and bound (14).
For k = 2n+1 by (12) and (17), representation (15) and estimate (16) follow. �
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REMARK 1. Using (10) and (18) we obtain

∫ 1

0
FQ3

k (x,s)ds =
∫ 1

0
GQ3

k (x,s)ds−
∫ 1

0
GQ3

k (x,0)ds = −GQ3
k (x,0)

and

∫ 1

0

(
FQ3

k (x,s)
)2

ds =
∫ 1

0

(
GQ3

k (x,s)
)2

ds−2GQ3
k (x,0)

∫ 1

0
GQ3

k (x,s)ds+
(
GQ3

k (x,0)
)2

.

Further, if we put k = 2n + 2 in the proof of Theorem 3, using (9) similar as in (17)
(with n ↔ n+1), we get representation (13) and bound (14).

COROLLARY 1. Let f : [0,1] → R be such that f (2n+1) is absolutely contin-

uous for some n � 1 ,
(

f (2n+2)
)2 ∈ L1 [0,1] and f (2n+1) � 0 on [0,1] . Then for

x ∈ [1/6,1/2)

0 � (−1)n
{∫ 1

0
f (s)ds−Q

(
x,

1
2
,1− x

)
+TQ3

2n (x)
}

(19)

� 1

6(2x−1)2

[
1

(4n+2)!

(
B4n+2 +B4n+2 (1−2x)+48B2 (x)B4n+2

(
x+

1
2

)

+288B2
2 (x)B4n+2

)]1/2

·
[∫ 1

0
s(1− s)

(
f (2n+2)(t)

)2
ds

]1/2

,

and for x = 0

0 � (−1)n+1
{∫ 1

0
f (s)ds−Q

(
0,

1
2
,1

)
+TQ3

2n (0)
}

(20)

� 1
3

[
1+21−4n

2(4n+2)!
B4n+2

]1/2

·
[∫ 1

0
s(1− s)

(
f (2n+2)(s)

)2
ds

]1/2

,

where TQ3
0 (0) = TQ3

2 (0) = 0 and

TQ3
2n (0) =

n

∑
k=2

1
3(2k)!

(
22−2k −1

)
B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
. (21)

Proof. We use Lemma 1, representation (15) and inequality (16) to obtain inequal-
ities (19) and (20). �

As special cases of Theorem 3 for x = 0,1/4,1/6 we derive inequalities related
to Euler Simpson formula, dual Euler Simpson formula and Euler Maclaurin formula,
respectively.
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COROLLARY 2. Let f : [0,1]→ R be such that f (2n) is absolutely continuous for

some n � 1 and
(

f (2n+1)
)2 ∈ L1 [0,1] . Then the following inequality holds

∣∣∣∣
∫ 1

0
f (s)ds− 1

6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
+TQ3

2n (0)
∣∣∣∣ (22)

� 1
3

[
−1+23−4n

2(4n)!
B4n

]1/2

·
(∫ 1

0
s(1− s)

(
f (2n+1)(s)

)2
ds

)1/2

.

If f (2n+1) is absolutely continuous for some n � 0 and
(

f (2n+2)
)2 ∈ L1 [0,1] then

∣∣∣∣
∫ 1

0
f (s)ds− 1

6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
+TQ3

2n (0)
∣∣∣∣ (23)

� 1
3

[
1+21−4n

2(4n+2)!
B4n+2

]1/2

·
(∫ 1

0
s(1− s)

(
f (2n+2)(s)

)2
ds

)1/2

,

where TQ3
2n (0) is define as (21).

REMARK 2. Specially, if f ′ is absolutely continuous and ( f ′′)2 ∈ L1 [0,1] then
for n = 0 in Corollary 2 we obtain∣∣∣∣

∫ 1

0
f (s)ds− 1

6

[
f (0)+4 f

(
1
2

)
+ f (1)

]∣∣∣∣
� 1

6
√

2
·
(∫ 1

0
s(1− s)

(
f ′′(s)

)2
ds

)1/2

.

Further, if f ′′ is absolutely continuous and ( f ′′′)2 ∈ L1 [0,1] then for n = 1 in Corollary
2 we get ∣∣∣∣

∫ 1

0
f (s)ds− 1

6

[
f (0)+4 f

(
1
2

)
+ f (1)

]∣∣∣∣
� 1

24
√

15
·
(∫ 1

0
s(1− s)

(
f ′′′(s)

)2 ds

)1/2

.

COROLLARY 3. Let f : [0,1]→ R be such that f (2n) is absolutely continuous for

some n � 1 and
(

f (2n+1)
)2 ∈ L1 [0,1] . Then the following inequality holds

∣∣∣∣
∫ 1

0
f (s)ds− 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
+TQ3

2n

(
1
4

)∣∣∣∣ (24)

� 1
3

[
− 1

2(4n)!
(
1+3 ·23−4n−24−8n)B4n

]1/2

·
(∫ 1

0
s(1− s)

(
f (2n+1)(s)

)2
ds

)1/2

.
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If f (2n+1) is absolutely continuous for some n � 0 and
(

f (2n+2)
)2 ∈ L1 [0,1] then

∣∣∣∣
∫ 1

0
f (s)ds− 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
+TQ3

2n

(
1
4

)∣∣∣∣ (25)

� 1
3

[
1

2(4n+2)!
(
1+3 ·21−4n−2−8n)B4n+2

]1/2

·
(∫ 1

0
s(1− s)

(
f (2n+2)(s)

)2
ds

)1/2

,

where TQ3
0

( 1
4

)
= TQ3

2

( 1
4

)
= 0 and

TQ3
2n

(
1
4

)
=

n

∑
k=2

1
3(2k)!

(
23−4k −3 ·21−2k +1

)
B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

REMARK 3. If f ′ is absolutely continuous and ( f ′′)2 ∈ L1 [0,1] then for n = 0 in
Corollary 3 we obtain∣∣∣∣

∫ 1

0
f (s)ds− 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]∣∣∣∣
� 1

6
·
(∫ 1

0
s(1− s)

(
f ′′(s)

)2 ds

)1/2

.

If f ′′ is absolutely continuous and ( f ′′′)2 ∈ L1 [0,1] then∣∣∣∣
∫ 1

0
f (s)ds− 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]∣∣∣∣
� 1

48

√
13
30

·
(∫ 1

0
s(1− s)

(
f ′′′(s)

)2
ds

)1/2

.

COROLLARY 4. Let f : [0,1]→ R be such that f (2n) is absolutely continuous for

some n � 1 and
(

f (2n+1)
)2 ∈ L1 [0,1] . Then

∣∣∣∣
∫ 1

0
f (s)ds− 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]
+TQ3

2n

(
1
6

)∣∣∣∣ (26)

� 1
8

[
− 1

2(4n)!
(
1+7 ·32−4n)B4n

]1/2

·
(∫ 1

0
s(1− s)

(
f (2n+1)(s)

)2
ds

)1/2

.

If f (2n+1) is absolutely continuous for some n � 0 and
(

f (2n+2)
)2 ∈ L1 [0,1] then

∣∣∣∣
∫ 1

0
f (s)ds− 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]
+TQ3

2n

(
1
6

)∣∣∣∣ (27)

� 1
8

[
1

2(4n+2)!
(
1+7 ·3−4n)B4n+2

]1/2

·
(∫ 1

0
s(1− s)

(
f (2n+2)(s)

)2
ds

)1/2

,
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where TQ3
0

(
1
6

)
= TQ3

2

(
1
6

)
= 0 and

TQ3
2n

(
1
6

)
=

n

∑
k=2

1
8(2k)!

(
1−21−2k

)(
1−32−2k

)
B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

REMARK 4. If f ′ is absolutely continuous and ( f ′′)2 ∈ L1 [0,1] then for n = 0 in
Corollary 4 we deduce∣∣∣∣

∫ 1

0
f (s)ds− 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]∣∣∣∣
� 1

8
√

3
·
(∫ 1

0
s(1− s)

(
f ′′(s)

)2
ds

)1/2

.

Further, if f ′′ is absolutely continuous and ( f ′′′)2 ∈ L1 [0,1] then for n = 1 in Corollary
4 we obtain ∣∣∣∣

∫ 1

0
f (s)ds− 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]∣∣∣∣
� 1

72
√

10
·
(∫ 1

0
s(1− s)

(
f ′′′(s)

)2
ds

)1/2

.

In the next theorem we will use the following notation[
f (k);0,1

]
= f (k) (1)− f (k) (0) .

THEOREM 4. Let f : [0,1]→ R be such that f (2n) is absolutely continuous func-
tion for some n � 1 , f (2n+1) � 0 on [0,1] and x ∈ [0,1/2) . Then representation (13)
holds and the remainder KQ3

2n ( f ) satisfies the estimation

|KQ3
2n ( f ) | (28)

� 1
(2n−1)!

∥∥∥GQ3
2n−1 (x,s)

∥∥∥
∞

{
f (2n−1) (0)+ f (2n−1) (1)

2
−

[
f (2n−2);0,1

]}
.

If f (2n+1) is absolutely continuous function, for some n � 0 , f (2n+2) � 0 on [0,1] and
x ∈ [0,1/2) , then representation (15) holds and the remainder KQ3

2n+1 ( f ) satisfies the
estimation

|KQ3
2n+1 ( f ) | � 1

(2n)!

∥∥∥GQ3
2n (x,s)

∥∥∥
∞

{
f (2n) (0)+ f (2n) (1)

2
−

[
f (2n−1);0,1

]}
. (29)

Proof. Applying Theorem 2 with GQ3
2n in place of f and f (2n) in place of g we

deduce ∣∣∣∣
∫ 1

0
GQ3

2n (x,s) f (2n)(s)ds−
∫ 1

0
GQ3

2n (x,s)ds ·
∫ 1

0
f (2n)(s)ds

∣∣∣∣
� 2n

2

∥∥∥GQ3
2n−1 (x,s)

∥∥∥
∞

∫ 1

0
s(1− s) f (2n+1) (s)ds. (30)
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Further,

∫ 1

0
s(1− s) f (2n+1) (s)ds =

∫ 1

0
(2s−1) f (2n) (s)ds

= f (2n−1) (1)+ f (2n−1) (0)−2
[
f (2n−2) (1)− f (2n−2) (0)

]
.

Hence, using representation (13) and inequality (30), we get estimate (28). Similarly,
using identity (15) we obtain inequality (29). �

3. Applications for Euler Bullen-Simpson formula

P. S. Bullen in [3] proved that, if f : [0,1] → R is a 4-convex function, then the
dual Simpson quadrature rule is more accurate than the Simpson quadrature rule, that
is

0 �
∫ 1

0
f (s)ds− 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]

� 1
6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
−

∫ 1

0
f (s)ds. (31)

In [7] the authors established some generalizations of inequality (31) for a class of
(2r)-convex functions and obtained some estimates for the absolute value of difference
between the absolute value of error in the dual Simpson quadrature rule and the absolute
value of error in the Simpson quadrature rule. Let us define

D(0,1) =
1
12

[
f (0)+4 f

(
1
4

)
+2 f

(
1
2

)
+4 f

(
3
4

)
+ f (1)

]
.

It is suitable for our purposes to rewrite inequality (31) in the form

∫ 1

0
f (s)ds � D(0,1).

In literature this inequality is known as the Bullen-Simpson inequality.
We consider the sequences of functions (Gk(s))k�1 and (Fk(s))k�1 defined by

Gk(s) = B∗
k(1− s)+2B∗

k

(
1
4
− s

)
+B∗

k

(
1
2
− s

)
+2B∗

k

(
3
4
− s

)
, s ∈ R

and
Fk(s) = Gk(s)− B̃k, s ∈ R (32)

where

B̃k = Bk +2Bk

(
1
4

)
+Bk

(
1
2

)
+2Bk

(
3
4

)
.
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For any function f : [0,1] → R such that f (n−1) exists on [0,1] for some n � 1
we define T0( f ) = T1( f ) = 0 and for 2 � m � �n/2�

Tm( f ) =
1
3

m

∑
k=2

1
(2k)!

2−2k(1−22−2k)B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
. (33)

In the next lemma from [7] the authors established the Euler Bullen-Simpson for-
mulae.

LEMMA 2. Let f : [0,1] → R be such that f (n−1) is a continuous function of
bounded variation on [0,1], for some n � 1. Then

∫ 1

0
f (s)ds = D(0,1)+Tp( f )+Rn( f ), (34)

and ∫ 1

0
f (s)ds = D(0,1)+Tr( f )+ R̂n( f ), (35)

where

Rn( f ) =
1

6(n!)

∫ 1

0
Gn (s)d f (n−1)(s),

R̂n( f ) =
1

6(n!)

∫ 1

0
Fn (s)d f (n−1)(s),

p = �n/2� and r = �(n−1)/2� .

Using Theorem 1 for identity (34) we obtain the following representation of Euler
Bullen-Simpson formula and a related Grüss type inequality.

THEOREM 5. Let f : [0,1] → R be such that f (n) is absolutely continuous and(
f (n+1)

)2 ∈ L1 [0,1] for some n � 1 and p = �n/2� . Then

∫ 1

0
f (s)ds−D(0,1)−Tp( f ) = Kn( f ), (36)

and the remainder Kn( f ) satisfies the estimation

|Kn( f )| � 1
6

[
(−1)n−1

(2n)!
21−2n (

1+23−2n)B2n

]1/2

×
[∫ 1

0
s(1− s)

(
f (n+1)(s)

)2
ds

]1/2

. (37)
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Proof. Applying Theorem 1 for f → Gn, g → f (n) , we deduce∣∣∣∣
∫ 1

0
Gn (s) f (n)(s)ds−

∫ 1

0
Gn (s)ds ·

∫ 1

0
f (n)(s)ds

∣∣∣∣
� 1√

2
[T (Gn (·) ,Gn (·))]1/2 ·

[∫ 1

0
s(1− s)

(
f (n+1)(s)

)2
ds

]1/2

, (38)

where

T (Gn (·) ,Gn (·)) =
∫ 1

0
(Gn (s))2 ds−

[∫ 1

0
Gn (s)ds

]2

.

By elementary calculations we get
∫ 1
0 Gn (s)ds = 0 and using integration by parts we

obtain

∫ 1

0
(Gn (s))2 ds = (−1)n−1 n(n−1) . . .2

(n+1)(n+2) . . .(2n−1)

[∫ 1

0
G1(s)G2n−1(s)ds

]

= (−1)n−1 (n!)2

(2n)!

[
−6

∫ 1

0
G2n(s)ds+2G2n (0)+4G2n

(
1
4

)]

= (−1)n−1 (n!)2

(2n)!

[
10B2n +16B2n

(
1
4

)
+10B2n

(
1
2

)]
.

Using (34) and (38), we deduce representation (36) and bound (37). �

REMARK 5. Because of (32) we obtain

∫ 1

0
Fk (s)ds =

∫ 1

0
Gk (s)ds−

∫ 1

0
B̃kds = −B̃k,

and also

∫ 1

0
(Fk (s))2 ds =

∫ 1

0
(Gk (s))2 ds−2B̃k

∫ 1

0
Gk (s)ds+ B̃2

k.

So, using (35) similar as in (38), we deduce representation (36) and inequality (37), too.

The following Grüss type inequality also holds.

THEOREM 6. Let f : [0,1] → R be such that f (n) is absolutely continuous and
f (n+1) � 0 on [0,1] . Then representation (36) holds and the remainder Kn( f ) satisfies
the bound

|Kn( f )| � 1
6(n−1)!

||Gn−1 (s)||∞
{

f (n−1)(0)+ f (n−1)(1)
2

−
[
f (n−2);0,1

]}
. (39)
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Proof. Applying Theorem 2 for f → Gn, g → f (n) , we obtain

∣∣∣∣
∫ 1

0
Gn (s) f (n)(s)ds−

∫ 1

0
Gn (s)ds ·

∫ 1

0
f (n)(s)ds

∣∣∣∣
� n

2
||Gn−1 (s)||∞

(∫ 1

0
s(1− s) f (n+1)(s)ds

)
. (40)

So, similarly as in Theorem 4, using equality (36) and inequality (40), we deduce
(39). �
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