lournal of
athematical
nequalities
Volume 9, Number 4 (2015), 1207-1225

doi:10.7153/jmi-09-93

CAUCHY’S ERROR REPRESENTATION OF LIDSTONE
INTERPOLATING POLYNOMIAL AND RELATED RESULTS

G. ARAS-GAZI¢, V. CULJAK, J. PECARIC AND A. VUKELIC

(Communicated by M. Matic)

Abstract. In this paper we consider the Cauchy’s error representation of Lidstone interpolating
polynomial and as a consequence the results concerning to the Hermite-Hadamard inequalities.
Using these inequalities, we produce new exponentially convex functions. Also, we give several
examples of the families of functions for which the obtained results can be applied.

1. Introduction
Lidstone series is generalization of Taylor’s series. It approximates to a given

function in the neighborhood of two points (instead of one). Such series have been
studied by G. J. Lidstone (1929), H. Poritsky (1932), J. M. Wittaker (1934) and others.

DEFINITION 1. Let f € C([0,1]), then Lidstone series has the form

3 (/P OA )+ 7 DAL

k=0

where A, is a polynomial of degree 2n + 1 defined by the relations
(1.1)
Another explicit representations of Lidstone polynomial are given by [1] and [10],

; 2 oo (_1)k+l ]
Ay(2) = (—1) gy 2T sinkrt,
k=1
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6t2n+1 t2n—l
n ) = — _
®) 6{(2?1-1—1)! (2n—1)!]
n-2 2(22k+3_ 1) £2n—2k=3
- =1,2,...
& k4 A an—k—3)r T T
22n+1 1+l
An(t) = manH (T)7 n=12...,

where By is the (2k+4)-th Bernoulli number and B,,1 (14%) is a Bernoulli poly-
nomial.
In [11], Widder proved the fundamental lemma:

LEMMA 1. If f € C?"((0,1]), then

n—1

f(t)=2[f( D0)A(1—1)+ 201 /G (0,9 f (s)ds,  (1.2)

k=0

where

Gl(r,s)=G(t,s>:{(t_1>s’ y st (1.3)

(s—De, if t<s

42 .
is the homogeneous Green’s function of the differential operator d_2 on [0,1], and with
the successive iterates of G(t,s)

1
Gult:5) = [ GI6P)Gar(p5)dp,  n>2. (1.4)

Lidstone polynomial can be expressed, in terms of G,(z,s) as

1
= / Gy (t,s)sds.
0

DEFINITION 2. Let f be a real-valued function defined on the segment [a,b].
The divided difference of order n of the function f at distinct points xo, ..., x, € [a,b],
is defined recursively (see [2], [8]) by

f[x,-} :f(x,-), (iZO,...,n)

and

fxlv"'vx _fx()v"'vxnfl
flx0y. - x0] = [ i = /1 }
Xn — X0
The value flxo,...,x,] is independent of the order of the points xo, ..., x,.
The definition may be extended to include the case that some (or all) of the points

coincide. Assuming that fU~1(x) exists, we define

(-1
flx,...x] = f(]_il()x') (1.5)
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The notion of n-convexity goes back to Popoviciu ([9]). We follow the definition
given by Karlin ([5]):

DEFINITION 3. A function f: [0, B] — R is said to be n-convex on [et, ], n >0,
if for all choices of (n+ 1) distinct points in [e, 3], n-th order divided difference of f
satisfies

flxoy - yxa] = 0.

In fact, Popoviciu proved that each continuous n-convex function on [0, 1] is the
uniform limit of the sequence of corresponding Bernstein’s polynomials (see for ex-
ample [8, p. 293]). Also, Bernstein’s polynomials of continuous 7n-convex function are
also n-convex functions. Therefore, when stating our results for a continuous n-convex
function £, without any loss in generality we assume that f(") exists and is continuous.

Many related results, as well as some important inequalities due to Favard, Berwald
and Steffensen can be found in [6].

2. Cauchy’s error representation
In [1] the following theorem is proved:

THEOREM 1. If f € C?"([0,1]) then

1

[ Gt 5s = i Ea06), CaY
where & € (0,1).
For the Euler polynomials it is known that
(—1)"Ez(t) > 0. 2.2)

Euler polynomials can be expressed in terms of Bernoulli polynomials as

22n+1 1+t t
En(t) = mrl [anﬂ (T) —Bont1 (Eﬂ . (2.3)

For the Bernoulli polynomials it is known that

Bauir (1-5) = —Baus1 (5)- (2.4)

The Bernoulli polynomials B(#),k > 0 are uniquely determined by the following iden-
tities
Bi(t)=kBi_1(1), k>1:  Bo(t)=1 (2.5)
and
Bi(t41) —B(t) = kt* ! k> 0. (2.6)
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By Lemma 1 and Theorem 1 we can represent associated error of the Lidstone
interpolating polynomial of the function f € C*")([et, B]) in the form:

n—1
N — N2k | (20 B—x (2k) x—o
S0 S (B-o @ (B2 )4 rem (52 )]
_ 2n—1 X —
B (522 ) @),  lapl @)
Motivated by (2.7) we define functionals ®@;(f) by
n—1
— £l — N2k | (26 B—x (2k) xr—o
@) = /)~ 5, (8- ) @ (F2) e (32 )| es
COROLLARY 1. Forevery (4m)-convex function f : [o,B] — R holds
@,(f) = 0. (2.9)
Proof. For n=2m in (2.7) we have
(ﬁ B a)4m—l X—ao m
o) = P (522 ) e
(B — a)4m—l m X—o m
= W(—1)2 Eam (B—a)f(4 (&)

By (2.2) for the (4m)-convex function f : [or, 3] — R, (2.9) obviously holds. I

The following error estimates is proved in [1]:

THEOREM 2. If f € C?")([0,1]), then the following hold

n—1—i
f(2i) (x) _ Z [f(2k+2i) (O)Ak (1 —x) +f(2k+2i)(l)Ak (x)] ‘
k=0
(=" . (—=1)""Ep»; .
< WEM—%(X)MM < 22”_2i[(2n — 2i)!]2 oy, 0<i<n—1 (2.10)

and

k=0

n—1—i
O =3 [ (0)AL (1) + ()AL ()] ‘

_i [ 5 E2n—2i(x) Epp2i—1(x)
< (=) 2=/ 1—2x)——————| My,
(=1) [ n—2i T2 g iy M
n—i+1 2(22n—2i - l)

<D (2n —2i)!

Bon—2iMay, 0<i<n—1 (2.11)

where My, = maxo<,<1 | " (x)|.

REMARK 1. Inequalities (2.10) and (2.11) are the best possible, as throughout the

equality holds for the function f(x) = E(Zz’;(;c!) .
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3. Generalization of the Hermite-Hadamard inequality

The classical Hermite-Hadamard inequality states that for a convex function
f:la, B] — R the following estimation holds:

(=2)<,

As a consequences of our results given in Section 2, here we give the generalized
Hermite-Hadamard inequality.

)+f(B)

(3.1)

THEOREM 3. Let n=2m+ 1, m € Ny. Then for every (2n)-convex function
f e, B] — R holds

r(GB) 45 Gt [ s p)]

% &B 22+ p l
( % 2%+2+ 2k+1 <4>)
1 B
< ﬁ—a/ f(x)dx (32)

— 2k
<;lfa g B [19@+5™(B)] 2%~ D

N =

S

If n=2m or f is (2n)-concave, the inequalities are reversed.

Proof. The integration of the identity (2.7) on [o, B] gives

—/ﬁf(x)dx
e ol on () o )

m/ (B ) 1E2n<ﬁ:z>f(2n)(§)dx, £ elo.pl. (3.3)

We have
/3 X — ﬁ X
/a Ak( _Z) dx = /a A (ﬁ—z) dx = (B —a)[Apyy (1) = Apyy (0)]
22k+3 2
=B-0) 75— 2k+2)! 7 Bakr2,

/aﬁAk<g_—X> dx = /aﬁAZH (5_)6) dx= (B — o) [Apyy (1) = Apyy (0)]

22k+3 )
= — 7B
(B—o) 2k +2)! 2k+2
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and by (2.3) and (2.5) we have
B x—a 22n+4 4
Em|>—)dx=B—-0)—————— Bsy.».
/a 2 (ﬁ—a)dx e Py PR L

So, using the fact that (—1)"By,12 > 0 we have that for (2n)-convex function the
second inequality in (3.2) is valid when n =2m+ 1, m € Ny.
Using (2.7) for x = aziﬁ we get the following

f(a;rﬂ) —nil(ﬁ—a)zk |:f(2k)(a)Ak (%) +FOR(BYA (%)]

k=0

From (1.2) and (2.3) we get

f<a42rﬁ> _f(a);rf(ﬁ)

n—1 2k+1
+ 3 (8= 1@+ e (5)

2n+2

=—(B-ay"! B G) FeE). (3.4)

(2n+1

By subtracting the identities (3.3) and (3.4), we get that for (2n)-convex function the
first inequality in (3.2) is valid when
22n+2 1

1
B2+ 2" Boyi | - ] = 0. 35
2 ont2 + 2+1<4) (3.5)

Using the expansion of Bernoulli polynomials in Fourier series we have

1
Bopyy (Z) — (—l)k_1(2k+ 1)!2_2kn_2k_1(1 372kl 521 —.)

and
Bop = (— 1)1 2k)127 2 g2k (1 272k 372k ),

Now, for n =2m—+ 1, m € Ny in (3.5), we get
1 24m+4 1

24m+2B -

3\ 3 )T i a

_ 24m+2 (4m + 3) !2—4m—2n—4m—3(1 _ 3—4m—3 + 5—4m—3 . )
24m+4 _
 4m+4

> (dm43)\n " —n374m 3 _2) > 0.

B4m+4

(41’)’1 +4)!274m73n74m74(1 + 274m74 + 374m74 4. )

So, the first inequality also valid. [
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4. n-exponential convexity

Motivated by the results from Theorem 3, we define functionals @, (f) and ®3(f)

by
@) = 5 (%52 @
e Y| e )
and
@5(f) = 317(0) + £(B @2)

— 2k
2 gk +(X2? |: (2k) (a) +f(2k) (ﬁ):| (22k+3 _ 2)B2k+2.

THEOREM 4. Let f: o, B] — R, f & C® ([, B]), n € N. Then there exists
& € [o, B] such that

q)l(f) :f(zn)(é)q)i((p)7 i=1,2,3, 4.3)

where @(x) = enIE

Proof. Let us denote m = min f(*") and M = max f(?") . We first consider the fol-

lowing function ¢ (x) = ](‘glz)", — f(x). Then q)l(z")(x) =M—fP(x) >0, x € [a,B],

so @ is a (2n)-convex function. Similarly, a function ¢, (x) = f(x) — 7“2—;)", isa (2n)-

convex function. Now, we use inequalities from (2.9) and (3.2) for (2n)-convex func-
tions ¢; and ¢, . So, we can conclude that there exists & € [or, B] that we are looking
forin (4.3). O

COROLLARY 2. Let f,h: [ot, ] — R such that f,h € C?") ([, B]). Then there
exists & € o, B] such that

®(f) _ o8
(k) ~ WO (E)’

provided that the denominator of the left-hand side is non-zero.

i=1,2,3, 4.4)

Proof. We use the following standard technique: Let us define the linear functional
L(y) =®:(x), i=1,2,3. Next, we define y(r) = f(¢)L(h) — h(¢)L(f). According to
Theorems 4, applied on y, there exists & € [, B] so that

x2n
(2n)!’

L(x) = x*(&)®i(9), @(x)= i=1,23.
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From L(y) =0, it follows £ (E)L(h) — R (E)L(f) =0 and (4.4) is proved. [J
Now, let us recall some definitions and facts about exponentially convex functions
(see [4]):

DEFINITION 4. A function v : I — R is n-exponentially convex in the Jensen

sense on [ if .
Xi+X;j
ij=1
hold for all choices &1,...,&, € R and all choices xi,...,x, € I.

A function y : I — R is n-exponentially convex if it is n-exponentially convex in
the Jensen sense and continuous on /.

REMARK 2. It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact nonnegative functions. Also, n-exponentially convex
function in the Jensen sense are k-exponentially convex in the Jensen sense for every
keN, k<n.

By definition of positive semi-definite matrices and some basic linear algebra we
have the following proposition:

PROPOSITION 1. If v is an n-exponentially convex in the Jensen sense, then the

RNEY
matrix [W(%)} _ is positive semi-definite matrix for all k € N, k < n. Particu-

1L,]=

larly, det [w(@) ] k

' 12Oforallk6N,k<n.
i,j=

DEFINITION 5. A function y : I — R is exponentially convex in the Jensen sense
on [ if it is n-exponentially convex in the Jensen sense for all n € N.

A function ¥ : I — R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 3. Itis known (and easy to show) that v : I — R is a log-convex in the
Jensen sense if and only if

ay) + 20y (1) 4 B0 >0

holds for every o, B € R and x,y € I. It follows that a positive function is log-convex
in the Jensen sense if and only if it is 2-exponentially convex in the Jensen sense.
A positive function is log-convex if and only if it is 2-exponentially convex.

PROPOSITION 2. If f is a convex function on I and if x|y < y1, X2 < y2, X1 #
X2, V1 # Yo, then the following inequality is valid

fl2) = fla) _ fl2) = fOn)
X2 — X1 A Y2 =i .

If the function f is concave, the inequality is reversed.
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We use an idea from [4] to give an elegant method of producing an n-exponentially
convex functions and exponentially convex functions applying the above functionals on
a given family with the same property (see [7])

THEOREM 5. Let Y = {f;:s € J}, where J an interval in R, be a family of
Sfunctions defined on an interval o, B] in R, such that the function s fi[z0,...,22]
is n-exponentially convex in the Jensen sense on J for every (21 + 1) mutually different
points 2, ...,z € [0, B]. Let ®;(f), i =1,2,3 be linear functional defined as in (2.8),
(4.1) and (4.2). Then s — ®;(fs) is an n-exponentially convex function in the Jensen
sense on J. If the function s — @;(fs) is continuous on J, then it is n-exponentially
convex on J.

Proof. For &, eR,i=1,...,nand s; €J, i=1,...,n, we define the function

Y= 3 &y

i,j=1

Using the assumption that the function s — f[zo,...,22] is n-exponentially convex in
the Jensen sense, we have

hlzo,...,22] = 2 E&if sits) 20,---,22] =0,
i,j=1

which in turn implies that & is a (21)-convex function on J, so it is @y (h) >0, k =
1,2,3, hence

Z éléchk( Foits: ) >0.

ij=1
We conclude that the function s +— @y (f;) is n-exponentially convex on J in the Jensen
sense.
If the function s — @ (f;) is also continuous on J, then s +— @y (f;) is n-exponen-
tially convex by definition. [l

The following corollaries are an immediate consequences of the above theorem:

COROLLARY 3. Let Y ={f;:s € J}, where J an interval in R, be a family of
functions defined on an interval o, B] in R, such that the function s f|z0,...,2]
is exponentially convex in the Jensen sense on J for every (214 1) mutually different
points zo,...,20 € [0, B]. Let ®;(f), i=1,2,3 be linear functional defined as in (2.8),
(4.1) and (4.2). Then s — @;(f;) is an exponentially convex function in the Jensen sense

on J. If the function s — ®;(f;) is continuous on J, then it is exponentially convex on
J.

COROLLARY 4. Let Y ={f;:s €J}, where J an interval in R, be a family of
functions defined on an interval o, B] in R, such that the function s — f|z0,...,2]
is 2-exponentially convex in the Jensen sense on J for every (21 + 1) mutually different
points 2o,...,20 € [0, B]. Let ®;(f), i=1,2,3 be linear functional defined as in (2.8),
(4.1) and (4.2). Then the following statements hold:
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(i) If the function s — D@;(f;) is continuous on J, then it is 2-exponentially convex
function on J. If s +— ®;(f;) is additionally strictly positive, then it is also log-
convex on J. Furthermore, the following inequality holds true:

(@i (f)] " < (@il )] (@i /)] 4.5)
for every choice r,s,t € J, such that r < s <'t.

(ii) If the function s — @;(fy) is strictly positive and differentiable on J, then for
every s,q,u,v € J, such that s <u and q < v, we have

“S,q(q)iaY) < “M,V(q)iaY)a (4~6)
where
1
i(fs) ) 54

( fq)) s s#q,
e (@ cor 7

exp (B ) 5=

for fy. fy €Y.
Proof.

(i) This is an immediate consequence of Theorem 5 and Remark 3.

(ii) Since by (i) the function s +— ®;(f;), i = 1,2,3 is log-convex on J, that is, the
function s — log ®;(f) is convex on J. So, we get

logq)l(f\) _logq)l(fl]> < logq)l(fll) _logq)l(f") (4 8)
s—q b u—v ’

for s <u,q < v,s # q,u # v, and there form conclude that
“S,q(q)iaY) < umv(d),-,Y).

Cases s = ¢ and u = v follows from (4.8) as limit cases. []J

REMARK 4. Note that the results from above theorem and corollaries still hold
when two of the points zp,...,zy € [0, B] coincide, say z; = zp, for a family of dif-
ferentiable functions f; such that the function s — f[z,...,22] is n-exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense), and furthermore, they still hold when all (27 + 1) points coincide for a
family of 2/ differentiable functions with the same property. The proofs are obtained
by (1.5) and suitable characterization of convexity.
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5. Applications to Stolarsky type means

In this section, we present several families of functions which fulfil the conditions
of Theorem 5, Corollary 3, Corollary 4, and Remark 4. This enable us to construct a
large families of functions which are exponentially convex. For a discussion related to
this problem see [3].

EXAMPLE 1. Consider a family of functions

Q={l;:R—[0,):5 € R}

defined by
S, 570,
ls(x) = x2n
o $=0

We have & 2{; (x) = €™ > 0 which shows that [ is (2n)-convex on R for every s € R

and s +— ‘[lezln (x) is exponentially convex by definition. Using analogous arguing as in
the proof of Theorem 5 we also have that s — I[zo,...,22,] is exponentially convex
(and so exponentially convex in the Jensen sense). Using Corollary 3 we conclude that
s+— ®;(l5), i=1,2,3 are exponentially convex in the Jensen sense. It is easy to verify
that this mapping is continuous (although mapping s +— [; is not continuous for s =0),
so it is exponentially convex.

For this family of functions, p,(®;,Q;), i =1,2,3 from (4.7), becomes

(87 o

g (D1, Q) = exp(q)(lgl)) 2;1) s=q#0,

@, (id-lp)
eXP(2n+1 <I>((ZO;)>

Now, using (4.6) it is monotonous function in parameters s and g. For i = 1,2,3 we
have

P n—1 (b_a)2k b— Xx—a
(1) = @_%T}%zk {“’A,(b )—i—eSbA (b_a)]7

. xet* L (b—a)* b— P a
qnl(zd.z_\.)zﬁ_kgom[ (2k+as)Ak<b a) h(2k+bs)Ak<b aﬂ

2 on=l (2%
@ (lo) = X (b—a) [a2n2kAk<b x>+b2n 2N, (x a)]’

I

(2n)! A (2n—2k)! b— b—

X ' (b—a)* (2n+1) |:a2n—2k+lAk<b x)+b2n %tlp (x a)]

@ (id - Io) =
1(id 1) « " (2n—2k+1)! b—a b—a

(2n)! £

M \
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el —e

(b—a)s 2ntl 2n

n—1 b a)Zk (esb+esa) 22k+3 -2 1
B 22k+lB -
2k + 1)ls2 % ( %2 2%+2+ w1\ 7))o

Sa l

q)2(ls) =

. l 1 a+b (arb
D, (id - l) = —a) (beSb—aeS“— N <e”’—e“’>) T s(43)

n—1 2k
_2 (b a) |:aesa+besb+_<esb+esa>:|_
(2 s

k—|— 1)1 2n—2k
22k+3_2 1
B 22k+1B -
<7Zk+2 2%+2 + 2w+ | 7 )
p2ntl _ 2ntl 1 a+b 2n p—1 (b—a)2k (a2n72k+b2n72k)
@, (ly) = - _ .
2(lo) (b—a)2n+1)!  (2n)! ( 2 ) ,; (2k+ 1)1(2n — 2k)!
22k+3_2 1
B 22k+1B -
(72k+2 2%+2 + 2w+ | 7 )
b2n+2 _ a2n+2 1 Cl+b 2n+1
id - ly) = —
®2(id-bo) = G =G ) @mz( 2 )

i b a)Zk(2n+ l) (a2n—2k+l+b2n—2k+l)
Z 2k + 1)!(2n—2k+1)!

y 22k+3 _ ZB N 22k+lB 1
2k+2 2k+2 2k+1 4 )

_ b n—1 b—a 2k PRC + esb
q)3 (l\) — € € + 2 ( ) ( — )
(b—a)s?*1 & (2k+42)1s2n2

(223 —2) By,

. 1 sb sa 1 sb sa
@3(1d'l_\') = _m |:b€ —ae —; (e —é >:|

n—1 (b a)2k

2k 1 . ;
sa sb sa sb 2k+3
+§ BRI [ ae +be + = <e +e )} (2243 —2)Byisa,

a2n+1 _ b2n+1 — (b _ a)2k (a2n72k + b2n72k)
®s(lo) = (b—a)(2n+1)! +k§) (2k+2)!(2n— 2k)!
22 pant2
(b—a)(2n)!(2n+2)
n—1 b a)2k(2n + 1) (a2n72k+1 +b2n72k+1)
+Z 2k +2)!(2n—2k+1)!

(2243 —2) By,

@s(id - lo) =

(2213 —2)Byso.

(12}1]Y

1
q
We observe here that ( d ) (Inx) = x so using Corollary 2 it follows that:

2n[

d x2”

Mv,q(q)iagl) = ln.u.\',q(q)iygl)a i=1,2,3
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satisfy
o <M57q(q)i7gl) < ﬁ, i=1,2,3.

EXAMPLE 2. Consider a family of functions
Q ={f;:(0,00) =R:s€R}
defined by

m, S¢{0,1,...,2l’l—1},

(4)2%1{?1}?{62"717,-)!’ s=je{0,1,....2n—1}.

fs (x) =

Here, ‘flznz,f( ) = x%"2" = 520X > () which shows that f; is (2n)-convex for x > 0
2 fy

and s — d #2(x) is exponentially convex by definition. Arguing as in Example | we
get that the mappings s — ®;(f;), i = 1,2,3 are exponentially convex. In this case we
assume that [or, 8] € RT. Functions (4.7) now are equal to:

1

(3) s#4

foﬂ 2n— 1L _ _
.u.\',q(q)iag2): eXP( (2}’1 1) +2 k— s)’ s_qgé{O?l""?zn 1}7

i

o (—(2n—1>!‘§;‘1§f€,{3+z§#01 ﬁ),s:qe{o,l,...,zn_l}.

Fori=1,2,3 and s ¢ {0,1,...,2n— 1} we have

A

X
i) = (s—l) (s—2n+1)
N (b—a)** sk (D—x 52 (X4
2 (s—2Kk). (s—2n+l)[ A <b—a)+b Ak(mﬂ’
x*Inx
®ilfo-1s) = TG = DG =1).. =2+ 1)
—ni‘l(b— o as—Zk(lna—f—Zz.kH \é j_ﬁ_$>Ak(H)
P 12120 —1)(s —2K)...(s—2n+ 1)
b2 (Inb+ T4 7 — b — o) e (52)
T 2 - s—2nt 1) |
st1_ s+l ath\$
a(f) = r_—a ()

(b—a)(s+Ds(s—1)---(s—2n+1) s(s—1)---(s—2n+1)

il b a)zk( THHPTH) (2P0, g 1
(2k-+1)!(s—2k) -+ (s—2n+1) \| 2k+2 2%k+2 wit\ g ) )
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P ((s+1DInb—1)—a ' ((s+1)Ina—1)
q’z(fo'f‘):(b—a)(—1)2n—1(2n—1)'s(s—1) (s—2n+1)(s+1)?
(452)"In (42) < (b-a)
(=) 2n—1)!s(s—1)---(s—2n+1) g’ 2k+1)!

@ *na+b~* b+ (2?1:61 H; 5= \+—1 - ﬁ) (a*=2k 4 52K

(—1)2=12n —1)!(s —2k)--- (s —2n+1)

22k+3 ) 1
Z___ "B _ 22k+lB -
X < %12 2k+2 21| g )

n—1 b—a 2k S—2k bs—2k
®3(fs) = 2 (2k:— 2)! (>s —(Zk) J(rs - 2n)+ 1) (22k+3 - 2) LEEE

2k

X

bs+1 _as+1
T —a)(s+Ds(s—1)---(s—2n+1)’
n—1 (b_a)Zk
Pl ) = 2 + (2k+2)!
a’~ 2k1na+bs 2klnb+ <z2k+l o /_erLl_ﬁ) (as—2k+bs—2k)
X

()2 1 (2n—1)1(s—2k) - (s—2n+1)

s+1 DNnb—1) — s+1 Dina—1
(2995 2) g DD ) (1) na

Fors=je€{0,1,...,2n—1}:

x*Inx

®1(fs) = (—1)2T=5512n—1—5)! ,Zg)

s—2k Al 111 bx
a <lna+2j:0 s12-)  5H s+2)Ak( =)

X ()2 T5(s—2k)1(2n— L —s)!
Ss— 2k+1 1 1 —

b % (nb+ 325" A — b - ) A (32)
(—1)2n=1=s(s —2k)!(2n— 1 —s)! ’
¥ 1n? (x) - (b—a)**

O (fo- f;) =
i(fo-f5) (=1 (2n—1)1s!(2n—1—s) kE S(2n—1)1(s—2k)! (2n—1—s)!
S S— 1
x In*a+2 zz)s—i-Z s+l s+2 “ na

2k+12k+1 1 1 1 2k+1 1

2 > —2 - ) Yy ——

=5 (s+2—j)(s+2-1) s+l s+2) S s+2—
I£] :

(b—a)(—1)2=1(2n—1)!s(s—1)- - (s—2n+1)(s+1)2
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+2<<s+11>2+<s+1>1<s+2>+<s+12>2>>“s_2k ~ ()

2k+1 1 1 1
+ |6 FmPp+2( Y - — — b *Inb
= s+2—j s+1 s+2

2k+12k+1 l l 1 2k+1 1
+ : o+ —
Zg) Z(‘) (s+2—j)(s+2-1) <s+1 s+2) Z s+2—j
1]

Jj=0
1 1 1 o xX—a
+2<(s+1)2+(s—|—1)(s+2)+(s+2)2>>b B A"(b—a)}’
P ((s+1)Inb—1)—a* T ((s+1)Ina—1)

(b—a)(—1)> T5sl(2n— 1 —s)!(s+ 1)2
(anrh) ln(anrh) n—1 (b_a)Zk
(DT 2n—1—s)! A (2k+1)!

asf2k1na_|_bsf2k1nb+ (232-51 L1 L) (aS*2k+b.\'72k)

q)Z(fS) =

s+2—j s+1 542
(—1)2n=1=s(s—2k)!(2n — 1 —3)!

22k+3 ) 1
X <7sz+2 — 2% By (-)) ;
a +

2k+2 4
b ((s+1)210% b—2(s+1) Inb+2) —a*! ((s+1)%In? a—2(s+1) Ina+2)

(b—a)(—1)*(2n—1)!s!(2n—1—s)!(s+1)3

X

2k
' {bs—zk In’b+a**Ina

R 1 1 1 s—2k s—2k
+2 2s+2—j_s+l_s+2 (@ *1na+b"*Inb)
j=0

2k+12k+1 l 1 2k+1 1
>3 2t s) 2
== 0 (s+2—)) s—|—2—l) s+l s+2) & s+2—

1 1 1 s— s—
+2<(s—|—1)2 Ao (s+2)2)>(a Ftb 2k>}

1 22432 2k+1 1
Borsa+2%T1B -
1 1) (5—2k)! (2n—1—s)! ( 2k DAt 2 (4))

2% . o
bt @ inath Finb($H! - - o (@ )

®3(f) = k:EO @1 2) (C)2 T (5—28) 1 2n—1—)]

P ((s+1DInb—1)—a ((s+1)Ina—1)
X<22k+3_2>32k+2— (b—a)(—)2 T=5512n—1—5)I(s+ 1)2
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3(fo- fs) = Z E2k+;) { @ *n?a+b"*n?b

2k+1 1 1 ‘ ‘
+2 s+2 STyl 512 (a**Ina+ b 1nb)
Jj= 0

2k+12k+1 l l 1 2k+1 1
>3 24 s) 2
i (s+2—j)(s+2-1) s+l s+2) S s+2—

7

1 1 1 e
+2<(s—|—1)2+ GiDGT2) (s+z)2)>(“' Ftb 2k>}

(22443 _2) By
(1 2n—1)!(s—2k)! (2n—1—>)!
B ((s4+1)%In? b—2(s+1)Inb+2) —a**! ((s+1)*In* a—2(s+1) Ina+2)
a (b—a)(—1)*(2n—1)!s!(2n—1—s)!(s+1)3 '

1

_|_

X

a2y \ sa
We observe that ( d“if_;'q ) (x) =x,s0if ®; (i=1,2,3) are positive, then Corol-
dx2n
lary 2 yield that there exist some &; € [er, 8], i = 1,2,3 such that
s— q)t(fs) .
£ = . i=1,2,3.
q)i(f q)
Since the function & — &£°74 is invertible for s # ¢, we then have
(fs)>
o < <B. 2.3. (5.1)
(e

EXAMPLE 3. Consider a family of functions

Q3 = {hy:(0,00) = (0,00) : 5 € (0,00) }

defined by
S*X
Tz S# 1
hy(x) = { "
m7 s=1.
Since ‘5;2},’3 (x) = s~ is the Laplace transform of a non-negative function (see [12]) it

is exponentially convex. Obviously A are (2n)-convex functions for every s > 0. For
this family of functions, p,(®;,Q3), i = 1,2,3, in this case for [0, ] € RT, from
(4.7) becomes

(L )ﬁ s4q
Hs.q(Pi,€23) = exp( ) Si’;) ,S=q#1,
(). oo
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These are monotonous function in parameters s and g by (4.6). For i = 1,2,3 we have

s (b —a)* b—x xX—a
@y (hy) = — TN —— | +sTPA
) = Gy kgo TR M VY A Py b
Oy (id - hy) = xs* —ni‘l(b—a)zk (2k—alns) s~ Ay (22) + (2k—blns) s TPA; (2)
(lns)2n faur (-1HS)2n72k+l ?
D (hy) = @(ly), @ (id-hy) =D, (id - ly),
@ (I sh—ga 55
) = = T ()
n—1 (b _ a)2k (S—a + S_b) 22k+3 _ o 1
kg,l 2kt 1)1 (Ins) 2 % ( %2 242+ 2wt | 7
®s (id - hy) Ins (as’“ — bs’b) s 4—gb (a+b)s™ ("51’)
id - — —
A (b—a) (Ins)>"*2 2(Ins)>"
”ij (b—a)* | 2k(s™+s7") —Ins(as ™ +bs?)
= (2k—|— 1)! (_lns)2n72k+1
22k+3 ) 1
X (THBMH +2% By (Z)) )
Dy (hy) = Dy(lp), DPr(id-hy) =Dy(id 1),
n—1 (b _ a)Zk (S—a +S_b) S_b —5a
D3 (hy) = 223 —2)Borin —
3(hs) &) (2k+2)!(Ins)>"* ( B2 = G = gy
(b —a)®* | 2k (s +570) —Ins (as™ + bs )
@s3(id - hs) = (2% —2)By 2
s kgz) (2k+2)! (_lns)zn—2k+1 +

Ins (as‘“ — bs‘b) 454 —gb
(b—a)(Ins)*"
D3 (hy) = D3(lp), DP3(id-hy) =D3(id - 1p).

Using Corollary 2 it follows that
M4 (®;,Q3) = —L(s,q) In s 4(P;, Q3), i=1,2,3

satisfy
o < My (9;,Q3) < B,i=1,2,3.

L(s,q) is logarithmic mean defined by

S—q
L(s,q) = {log-Ylogq’ S#4q

s, s=q.

EXAMPLE 4. Consider a family of functions

Q4 = {ky : (0,00) — (0,00) : 5 € (0,00)}
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defined by
e Vs
ks(x) = .
5(x) o
Since [flz):z]ff (x) = eV is the Laplace transform of a non-negative function (see [12])

it is exponentially convex. Obviously &, are (2n)-convex functions for every s > 0.
For this family of functions, s 4(®;,Q4), i =1,2,3, in this case for [, f] € R, from

(4.7) becomes

s q)hg =
s,q( 4) O(idk) B
exp (—2\/@’_(]%) —2),s=q.

These are monotonous function in parameters s and g by (4.6). For i = 1,2,3 we have

oty = g O o (55 v (525)

s & sk b—a

xe XVs =l 2% (2k—+/sa) VS A, (II;%Z) + (2k—+/sb) e PViA (ﬁ)

@ (id - k) = —k;)(b—a) =
D, (ky) = e_bﬁ_e_ail—f%:ﬁ nil(b a)% e_gkg e_nbﬂ
(b=a)(=5) N NN
ooy - T G () et

(b - Ll) (—\/E)2n+1 25
oo 2 (e Ve ) = VB (ae Ve )
S o)l

22k+3 ) ki1 1
<ﬁ32k+2+2 Bopy1 (Z)) )

- (b—a) 2k A e OVs _gmavs
D3 (k) = 2 Pyl R (22k+3 = 2)Boio— 2n+17
= 2k+2)! | s § (b—a)(—/s)

n—1 (b—a)? 2k (e_“\/E + e‘b‘/g> —/s <ae‘“‘/§ + be‘b‘/g>
kgz) (2k+2)! (_\/§)2n72k+1

X

D3 (id - ks) =

be PVs — ge=avs 4 % (e’b\ﬁ — e’“‘ﬁ>
(b—a) (=v5)™"

x (277 = 2)Byyin —

Using Corollary 2 it follows that

M\',q(q)i794) = _(\/E+ \/‘;)ln.uS,q(q)iaQOa = 1a2a3

)
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satisfy

tian

[1]

[2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

[12]

00 < My y(@;,Q4) < B, i=1,2,3.
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