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FUNCTIONALS RELATED TO THE DEC INEQUALITY

LUDMILA NIKOLOVA AND SANJA VAROŠANEC

(Communicated by N. Elezović)

Abstract. We consider the so-called DEC inequality via theory of isotonic linear functionals.
The DEC inequality is a refinement of the well-known Cauchy inequality and its well-known
particular cases are the Milne and the Callebaut inequalities. We also investigate properties of
some functionals which are arised from the DEC inequality.

1. Introduction

Let us consider the following refinements of the Cauchy inequality: the Milne
inequality and the Callebaut inequality. The Callebaut inequality is obtained at 1965
and it states that for positive ai,bi > 0 (i = 1, . . . ,n) and for x ∈ [0,1] the following
inequality holds, [4]:
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The Milne inequality is the following inequality (see in [8])
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where ai,bi > 0.
As we can see, the both inequalities are refinements of the well-known Cauchy

inequality (
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and have a similar form. In sixties Daykin, Eliezer proposed and Carlitz solved the
problem what properties must have a positive function ϕ which satisfies the general-
ization of the above-mentioned refinements. Here we give a slightly modified result
from [5]. Namely, if ϕ : (0,∞)× (0,∞) → (0,∞) is a function with properties
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(D1) ϕ(ka,kb) = k2ϕ(a,b) for any a,b,k > 0
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In the honour of the above-mentionedmathematicians inequality (1.3) is called the
DEC inequality.

Using (D1) we can write a variant of (D2) like:

(D2’)
bϕ(1,a)
aϕ(1,b)

+
aϕ(1,b)
bϕ(1,a)

� a
b

+
b
a
.

Indeed, the first summand in (D2) can be written like
ba2ϕ(1, 1

a )

ab2ϕ(1, 1
b )

. Replacing a

with 1
a and b with 1

b we get the first summand in (D2’).
Let us consider some other natural conditions, given here as (D3), (D4) and (D4’).
(D3) The function ϕ is increasing on the both arguments.
(D4) For a < b

ϕ(a,1)
ϕ(b,1)

� 1,
ϕ(1,b)
ϕ(1,a)

� 1.

(D4’) For a < b
ϕ(1,a)
ϕ(1,b)

� 1,
ϕ(b,1)
ϕ(a,1)

� 1.

LEMMA 1.1. For a function ϕ : (0,∞)× (0,∞) → (0,∞) we have
D(1) and D(2) ⇔ D(1) and D(3).

Proof. Let 0 < a < b . Since for p > 0 the inequality ϕ(a, p) � ϕ(b, p) is equiv-

alent to ϕ
(

a
p ,1
)

� ϕ
(

b
p ,1
)

, it is enough to show that ϕ(a,1) is increasing on the

argument a . Denote c = a
b , x = ϕ(a,1)

ϕ(b,1) . Then (D2) looks like

x
c

+
c
x

� c+
1
c

or x2 − (c2 +1)x+ c2 � 0 or c2 � x � 1.

The inequality x � 1 means monotonicity on the first argument. The inequality c2 � x
can be written like

1 � b2ϕ(a,1)
a2ϕ(b,1)

=
ϕ(ab,b)
ϕ(ab,b)

=
ϕ(1,1/a)
ϕ(1,1/b)

which means monotonicity on the second argument. �

REMARK 1.2. In a similar manner we can prove that D(1) and D(2) ⇔ D(1) and
D(4), (D 1) and D(2’) ⇔ D(1) and D(4’) (which also gives D(1) and D(4) ⇔ D(1) and
D(4’)). The idea of the proof is similar with Lemma 1.1.
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REMARK 1.3. In fact we have a little bit weaker condition for positivity. The
condition (D2) must be valid for all non-negative a and b , but after looking at the
original proof from Monthly, we only need that (D2) holds for elements of n tuples.

As a consequence of Lemma 1.1 and known results from [5] we get the following
result.

COROLLARY 1.4. If ϕ : (0,∞)× (0,∞) → (0,∞) is a positive homogeneous of
order 2 function, increasing on every argument, then the DEC inequality (1.3) follows.
In particular, it holds if ϕ(a,b) = M2(a,b) , where M(a,b) is a positive homogeneous
and increasing on every argument mean.

REMARK 1.5. Another situation, where DEC inequality appears is if ϕ(a,b) = 1.
In that case (D1) fails, but we still have the validity in the DEC inequality, of course,
under the condition that (a2

i )i and (b2
i )i are oppositely ordered, i.e.
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for all i, j = 1, . . . ,n . In this case, inequality (1.3) becomes
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The first inequality follows from the Cauchy inequality, while the second inequality is
a consequence of the classical Chebyshev inequality.

REMARK 1.6. (The weighted DEC inequality) Putting in (1.3)
√

piai instead of
ai ,

√
pibi instead of bi , where pi > 0, i = 1,2, . . . ,n , and under the assumption that ϕ

is positive homogeneous of order 2, we obtain the weighted DEC inequality:
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In the further text we assume that weights (pi) are non-negative.

After this introductory section we follow with results about the DEC inequality
in the language of isotonic linear functionals and connecting it with various kinds of
means. The third section is devoted to investigation of functionals DECL and DECR

in variable p which arise from the DEC inequality. Also, a composite functional is
considered. In the fourth section we return to discrete version of the DEC inequality,
while the short fifth section contains results for the DEC functional which variable is
an index set. In the last section some interesting Hölder type inequalities are given.
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2. Functional version of the DEC inequality

In [13] Sitnik investigated a discrete refinement of the Cauchy inequality (1.3) and
an integral refinement of the Cauchy inequality is given as

(∫ b

a
f (x)g(x)dx

)2

�
∫ b

a
Φ( f (x),g(x))dx

∫ b

a

f 2(x)g2(x)
Φ( f (x),g(x))

dx (2.1)

�
∫ b

a
f 2(x)dx

∫ b

a
g2(x)dx

for different choices of function Φ . It is natural to consider more general situation in
which summation and integration are replaced with an arbitrary linear isotonic func-
tional.

Let E be a non-empty set and L be a class of real-valued functions on E having
the properties:

L1. If f ,g ∈ L , then (a f +bg) ∈ L for all a,b ∈ R ;
L2. The function 1 belongs to L . (1(t) = 1 for t ∈ E ).

A functional A : L → R is called an isotonic linear functional if
A1. A(a f +bg) = aA( f )+bA(g) for f ,g ∈ L , a,b ∈ R ;
A2. f ∈ L , f (t) � 0 on E implies A( f ) � 0.
A lot of results involving isotonic linear functional are given in monograph [12].

The following theorem contains results which are generalization of refinements given
in (1.3) and (2.1).

THEOREM 2.1. Let A be an isotonic linear functional defined on L. Let ϕ be a
positive real function of two variables and p, f and g be functions such that functions

p f 2 , pg2 , pϕ( f ,g) , p f 2g2

ϕ( f ,g) belong to L.

(i) Then

A2(p f g) � A(pϕ( f ,g))A
(

p
f 2g2

ϕ( f ,g)

)
. (2.2)

(ii) If functions
f 2

ϕ( f ,g)
,

g2

ϕ( f ,g)
are oppositely ordered, then the following re-

finement of the Cauchy inequality holds

A2(p f g) � A(pϕ( f ,g))A
(

p
f 2g2

ϕ( f ,g)

)
� A(p f 2)A(pg2). (2.3)

(iii) If functions
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ϕ( f ,g)
,

g2

ϕ( f ,g)
are similarly ordered, then

A(pϕ( f ,g))A
(

p
f 2g2

ϕ( f ,g)

)
� A(p f 2)A(pg2). (2.4)
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Proof. (i) Let us mention a functional version of the Cauchy inequality, [12, p.
113]. If p is a non-negative weight and u,v functions such that pu2, pv2, puv ∈ L , then

A2(puv) � A(pu2)A(pv2). (2.5)

Putting u =
√

ϕ( f ,g) , v = f g√
ϕ( f ,g)

we get (2.2) which is a functional version of the

first DEC inequality given in (1.3).
(ii) The proof is based on the functional version of the Chebyshev inequality.

Namely, if p is a non-negative weight and functions u and v are oppositely ordered
functions such that p, pu, pv, puv ∈ L , then

A(p)A(puv) � A(pu)A(pv). (2.6)

Putting in the above-mentioned Chebyshev inequality pϕ( f ,g) instead of p , u =
f 2

ϕ( f ,g) , v = g2

ϕ( f ,g) we get the second inequality in (2.3). The first inequality is proved
in (i). Let us point out that (2.3) is a functional version of the DEC inequality (1.3).

(iii) If u and v are similarly ordered, then in the Chebyshev inequality (2.6) an
opposite sign is valid and using same substitutions as in (ii) we conclude the statement
of (iii). �

REMARK 2.2. As we have already noted, in [13], Sitnik investigated an integral
DEC inequality for some choices of function Φ . Some of the considered functions were
means. By a mean he called a function M : [0,∞)× [0,∞)→ [0,∞) with properties:

1) M(x,x) = x for all x � 0.
2) M(λx,λy) = λM(x,y) for λ > 0 and x,y ∈ [0,∞) , (positive homogenity).
3) If x1 < x2 , then M(x1,y) < M(x2,y) and if y1 < y2 , then M(x,y1) < M(x,y2) ,

(monotonicity on both arguments).
4) M(x,y) = M(y,x) for all x,y � 0 (symmetricity).
He stated that inequality (2.1) holds for Φ = M2 where M is a mean (not nec-

cessary symmetric). Let us show that: if a function M is positive homogeneous and

increasing on both arguments, then functions
f 2

M2( f ,g)
,

g2

M2( f ,g)
are oppositely or-

dered, i.e. an assumption of Theorem 2.1(ii) holds.

Consider for instance the case g(y)
f (y) < g(x)

f (x) . Since we consider positive f and g ,

we have f (y)
g(y) > f (x)

g(x) and monotonicity of the function M gives

M

(
1,

g(y)
f (y)

)
< M

(
1,

g(x)
f (x)

)
and M

(
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g(y)

,1

)
> M

(
f (x)
g(x)

,1

)

which together with nonnegativity of the mean gives[
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1,
g(x)
f (x)

)
−M2
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g(y)
f (y)

)][
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(
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g(x)

,1
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)]
� 0.
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Since M is homogeneous, after multiplying with f 2(x) f 2(y)g2(x)g2(y) we get(
f 2(y)M2( f (x),g(x))− f 2(x)M2( f (y),g(y))

)

×
(
g2(y)M2( f (x),g(x))−g2(x)M2( f (y),g(y))

)
� 0

i.e. functions
f 2

M2( f ,g)
,

g2

M2( f ,g)
are oppositely ordered.

So, if ϕ = M2 where M is a positive homogeneous and increasing on both argu-
ments function, then a functional version of the DEC inequality holds. Let us point out
that we do not use the first property of mean (M(x,x) = x ), only the second and the
third properties. If M(1,1) = C by considering M̃(x,y) = M(x,y)/C we have the first
property for M̃(x,y). On the other hand, note that inequalities, which we get using the
mean M(x,y) and the mean M̃(x,y) are the same.

EXAMPLE 2.3. As it was mentioned in [13], examples of means for which the
DEC inequality holds are power means and the Rado means defined as

Mα(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
xα +yα

2

) 1
α

, −∞ < α < ∞,α �= 0

√
xy, α = 0

min(x,y), α = −∞

max(x,y), α = ∞

the power mean,

Rβ (x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xβ+1+yβ+1

(β+1)(x−y)

) 1
β

, −∞ < β < ∞,β �= 0,−1

y−x
logy−logx , β = −1

1
e

(
yy

xx

) 1
y−x

, β = 0

min(x,y), β = −∞
max(x,y), β = ∞

the Rado mean.

Besides these examples we mention another type of means for which the DEC inequal-
ity holds. Consider now Seiffert type means defined by

M(x,y) =
|x− y|

2 f ( |x−y|
x+y )

with limz→0
f (z)
z = 1. Recently, Witkowski, [15], proved that M(x,y) is increasing

on every argument if and only if the function (1+z) f (z)
z increases and the function

(1−z) f (z)
z decreases on z ∈ (0,1]. It is checked that functions f (z) = sinz , f (z) = tanz ,

f (z) = sinhz , f (z) = tanhz , f (z) = log(1+z) , f (z) = arcsinz , f (z) = arctanz , f (z) =
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arsinhz , f (z) = artanhz satisfy this condition and so we get examples of means which
are homogeneous, increasing on every argument (and even symmetric as Witkowski
showed). If f (z) = arcsinz this is the mean P(x,y) , and if f (z) = arctanz this is the
mean T (x,y) , introduced by Seiffert in 1987 and 1995 respectively. In 2003 Neuman
and Sándor, ([10]), considered the case of the inverse hyperbolic functions arcsinh and
arctanh – means M(x,y) and logarithmic mean L(x,y) respectively. There are Seiffert
means which are not monotone increasing on both arguments, for instance the contra-

harmonic mean C(x,y) = x2+y2

x+y .

EXAMPLE 2.4. Let us consider some other examples when ϕ is not increasing
on both arguments, but the DEC inequality still holds. Let A be a functional defined
as: A( f ) =

∫ 1
0 f (x)dx. Let ϕ(x,y) = (x− y)2 + 1, f (x) = x , g(x) = x− 1. Then,

d
dxϕ(x,y) = 2(x−y) , d

dy ϕ(x,y) =−2(x−y) and ϕ is not increasing in any arguments.

Since f 2(x)
ϕ( f (x),g(x)) = x2/2 which is increasing on [0,1] and g2(x)

ϕ( f (x),g(x)) = (x− 1)2/2

which is decreasing on [0,1] , the assumption of Theorem 2.1 (ii) holds and the DEC
inequality holds for this choice of functions f ,g,ϕ .

3. Functionals related to the DEC inequality

Let A be an isotonic linear functional, functions f and g from L , and let ϕ be a
positive function of two variables. By C we denote a cone of weights

C = C(A, f ,g,ϕ) =
{

p ∈ L : p � 0, p f 2, pg2, p f g, pϕ( f ,g), p
f 2g2

ϕ( f ,g)
∈ L

}
.

Let us define functionals DECR and DECL on C as:

DECR(p) = A(p f 2)A(pg2)−A(pϕ( f ,g))A
(

p
f 2g2

ϕ( f ,g)

)
,

DECL(p) = A(pϕ( f ,g))A
(

p
f 2g2

ϕ( f ,g)

)
−A2(p f g).

THEOREM 3.1. Let assumptions of Theorem 2.1 be satisfied.

(i) If functions
f 2

ϕ( f ,g)
,

g2

ϕ( f ,g)
are oppositely ordered, then the functional DECR

is superadditive. If those functions are similarly ordered, then DECR is subadditive.
(ii) The functional DECL is superadditive on C.

Proof. (i) Let p and q be two weights from C and let
f 2

ϕ( f ,g)
,

g2

ϕ( f ,g)
be oppo-
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sitely ordered. Then we have

DECR(p+q)−DECR(p)−DECR(q)

= A((p+q) f 2)A((p+q)g2)−A((p+q)ϕ( f ,g))A
(

(p+q)
f 2g2

ϕ( f ,g)

)

−A(p f 2)A(pg2)+A(pϕ( f ,g))A
(

p
f 2g2

ϕ( f ,g)

)

−A(q f 2)A(qg2)+A(qϕ( f ,g))A
(

q
f 2g2

ϕ( f ,g)

)

= A(p f 2)A(qg2)+A(q f 2)A(pg2)−A(pϕ( f ,g))A
(

q
f 2g2

ϕ( f ,g)

)

−A(qϕ( f ,g))A
(

p
f 2g2

ϕ( f ,g)

)
.

Functions
f 2

ϕ( f ,g)
,

g2

ϕ( f ,g)
are oppositely ordered, i.e.

(
f 2(y)

ϕ( f (y),g(y))
− f 2(x)

ϕ( f (x),g(x))

)(
g2(y)

ϕ( f (y),g(y))
− g2(x)

ϕ( f (x),g(x))

)
� 0.

Multiplying with ϕ( f (x),g(x))ϕ( f (y),g(y)) we get(
f 2(y)ϕ( f (x),g(x))− f 2(x)ϕ( f (y),g(y))

)

×
(

g2(y)
ϕ( f (y),g(y))

− g2(x)
ϕ( f (x),g(x))

)
� 0

ϕ( f (x),g(x))
f 2(y)g2(y)

ϕ( f (y),g(y))
+ ϕ( f (y),g(y))

f 2(x)g2(x)
ϕ( f (x),g(x))

− f 2(x)g2(y)− f 2(y)g2(x) � 0.

Multiplying the above inequality with p(x)q(y) and acting on it by functional A
with respect to x and then, by functional A with respect to y we obtain

A(p f 2)A(qg2)+A(q f 2)A(pg2)−A(pϕ( f ,g))A
(

q
f 2g2

ϕ( f ,g)

)

−A(qϕ( f ,g))A
(

p
f 2g2

ϕ( f ,g)

)
� 0

and the proof is established. If the above-mentioned functions are similarly ordered,
then sign of inequality is reversed in all above inequalities and we get that functional
DECR is subadditive.



DEC INEQUALITY 1235

(ii) Again, we consider the difference DECL(p+q)−DECL(p)−DECL(q) .

DECL(p+q)−DECL(p)−DECL(q)

= A(pϕ( f ,g))A
(

q
f 2g2

ϕ( f ,g)

)
+A(qϕ( f ,g))A

(
p

f 2g2

ϕ( f ,g)

)
−2A(p f g)A(q f g).

For any x,y we have

(
f (y)g(y)

√
ϕ( f (x),g(x))
ϕ( f (y),g(y))

− f (x)g(x)

√
ϕ( f (y),g(y))
ϕ( f (x),g(x))

)2

� 0.

Multiplying with p(x)q(y) and acting on it by a functional A with respect to x , and
then, by functional A with respect to y we obtain that

A(pϕ( f ,g))A
(

q
f 2g2

ϕ( f ,g)

)
+A(qϕ( f ,g))A

(
p

f 2g2

ϕ( f ,g)

)
−2A(p f g)A(q f g) � 0

and the proof is established. �

Functionals DECL and DECR are non-negative and superadditive under certain
conditions and they are homogeneous of order 2. So, we can use results from [11] to
generate new functional. Let us describe some non-classical concepts which we use in
the mentioned results.

DEFINITION 3.2. ([14]) Let I and J be intervals in R , (0,1)⊆ J and let h : J →
R be a non-negative function, h �≡ 0. We say that f : I →R is an h-convex function, if
f is non-negative and for all x,y ∈ I , α ∈ (0,1) we have

f (αx+(1−α)y) � h(α) f (x)+h(1−α) f (y).

If the inequality is reversed, f is called an h-concave function.

It is evident that this notion generalizes the concepts: of classical convexity (for
h(t) = t ); of s-convexity in the second sense (for h(t) = ts , s ∈ (0,1)), [2]; of P-
functions (for h(t) = 1) and of Godunova-Levin functions (for h(t) = t−1 ).

It is known, ([14]), that the function f (x) = xλ is s-convex in the second sense if

(λ ∈ (−∞,0]∪ [1,∞), s � 1) or (λ ∈ (0,1), s � λ ).

The function f (x) = xλ is s-concave in the second sense if

(λ ∈ (0,1), s � 1) or (λ > 1, s � λ ).

Examples of a function Φ , non-decreasing on (0,∞) , h -concave, but not concave,
where h(x) = xs , s > 1 are for instance

Φ(x) = arctan(xs), Φ(x) = tanh(xs), Φ(x) =
xs

1+ xs .
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Let us mention also

f (x) =

{
xs, x ∈ [0,1]
x, x ∈ (1,b]

which is non-decreasing, convex on (0,1] , s-concave in the second sense on [0,∞) ,
[11]. More examples of h -concave functions are given in [11].

THEOREM 3.3. (i) Let h be a non-negative, submultiplicative function, and Φ :
[0,∞) → [0,∞) be h-concave and non-decreasing. If assumptions of Theorem 2.1 are

satisfied and if functions
f 2

ϕ( f ,g)
,

g2

ϕ( f ,g)
are oppositely ordered, then the functional

η defined on C1 = {w ∈C : A(w) > 0} by

η(w) = h(A2(w))Φ
(

DECR(w)
A2(w)

)
.

is superadditive.
(ii) Furthermore, if h is positive homogeneous of order k and if w,v ∈ C1 and

M � m > 0 such that w−mv,Mv−w∈C1 ,

M2kh(A2(v))Φ
(

DECR(v)
A2(v)

)
� h(A2(w))Φ

(
DECR(w)

A2(w)

)

� m2kh(A2(v))Φ
(

DECR(v)
A2(v)

)
. (3.1)

(iii) If functions
f 2

ϕ( f ,g)
,

g2

ϕ( f ,g)
are similarly ordered, then the above statements

(i) and (ii) are valid with DECR →−DECR .
(iv) The above statements (i) and (ii) are valid with DECR → DECL .

Proof. We use a result from [11] which states that the functional η(x) = h(v(x))
Φ
(

g(x)
v(x)

)
is superadditive on a convex cone if h is non-negative submultiplicative, g is

superadditive and Φ is h -concave non-decreasing. If functions
f 2

ϕ( f ,g)
,

g2

ϕ( f ,g)
are

oppositely ordered, we define v and g as v(w) = A2(w) and g(w) = DECR(w) . Since
the function x 
→ x2 is superadditive, we have that w 
→ A2(w) is also superadditive.
By Theorem 3.1(i), g is also non-negative, superadditive and positive homogeneous of
order 2. By Theorem 9 in [11] we have that η is superadditive, and by Corollary 10 in
[11] for the functional η we obtain the inequality which can be transformed to (3.1).
Other parts of Theorem 3.3 are proved in similar manner. �

REMARK 3.4. Let us consider a very simple situation if Φ(x) = x , i.e. h(t) = t ,

k = 1. If functions
f 2

ϕ( f ,g)
,

g2

ϕ( f ,g)
are oppositely ordered, then for w,v ∈ C1 and

M � m > 0 such that w−mv,Mv−w ∈C1 ,

M2DECR(v) � DECR(w) � m2DECR(v).
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In particular, if M = 1, then we obtain a monotonicity property of DECR :

DECR(v) � DECR(w) if v−w ∈C1.

If functions
f 2

ϕ( f ,g)
,

g2

ϕ( f ,g)
are similarly ordered, then the above inequalities

are true in the opposite direction.

EXAMPLE 3.5. These results with an isotonic linear functional A are allowing us
to work with different examples of functionals. The simplest examples are summation
and integration. But there are existing some exotic examples too. For instance, in [13] a
refinement of the Cauchy inequality is given with substitution: integral −→ the Jackson
q -integral which is defined as:

∫ 1

0
f (t)dqt = (1−q)

∞

∑
k=0

f (qk)qk, 0 < q < 1.

Furthermore, recently a theory of time scale measure spaces is developed ([3]) and
integral over time scale set i.e.

∫
E f (t)dμΔ is also an isotonic linear functional. So, all

results from two previous sections are valid in such particular cases.
In last few decades we are witnesses of a great development of fractional calculus

theory, [7]. A lot of operators are investigated and some of them are isotonic linear. Let
us mention here the Riemann-Liouville fractional integral operator defined as

Jα f (t) =
1

Γ(α)

∫ t

0
(t−σ)α−1 f (σ)dσ , α > 0,

which is an isotonic linear functional for fixed t > 0. Or, let us mention even more
general operator, the so-called fractional hypergeometric operator, ([1]), defined as:

Iα ,β ,η,μ
t { f (t)}=

t−α−β−2μ

Γ(α)

∫ t

0
σ μ(1−σ)α−1

2F1

(
α + β + μ ,−ν,α;1− σ

t

)
f (σ)dσ

where the function 2F1(a,b,c,t) is the Gaussian hypergeometric function and (a)n

is the Pochhammer symbol: (a)n = a(a + 1) . . .(a + n− 1) , (a)0 = 1, t > 0, α >
max{0,−β − μ} , μ > −1, β −1 < η < 0.

4. Discrete case

The begining point of this paper is the DEC inequality given in the discrete form.
So, it is instructive to write results from the previous sections in discrete form. By
S+(n) we denote the convex cone of such non-negative p = (p1, p2, . . . , pn) . For a
function a : {1,2, . . . ,n} → R , i 
→ ai , an isotonic linear functional A is defined as
A(a) = ∑n

i=1 ai . Let (a1, . . . ,an) and (b1, . . . ,bn) be two positive n -tuples and ϕ be a
positive function of two variables.
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Now, functionals DECR and DECL have the following formulae:

DECR(p) =
n

∑
i=1

pia
2
i

n

∑
i=1

pib
2
i −

n

∑
i=1

piϕ(ai,bi)
n

∑
i=1

pi
a2

i b
2
i

ϕ(ai,bi)
,

DECL(p) =
n

∑
i=1

piϕ(ai,bi)
n

∑
i=1

pi
a2

i b
2
i

ϕ(ai,bi)
−
(

n

∑
i=1

piaibi

)2

.

As a consequence of Theorem 2.1 and Theorem 3.1 a functional DECL is non-negative

and superadditive. If n -tuples ( a2
i

ϕ(ai,bi)
)i and ( b2

i
ϕ(ai,bi)

)i are oppositely ordered n -tuples,
then DECR is a non-negative superadditive functional, while if the above n -tuples are
similarly ordered, then −DECR is non-negative superadditive.

Even those results are consequences of the more general situation, here we show
one another proof of superadditivity of DECR .

Let us suppose that ( a2
i

ϕ(ai,bi)
)i and ( b2

i
ϕ(ai,bi)

)i are oppositely ordered n -tuples. The

difference DEC(p+q)−DEC(p)−DEC(q) is equal to

n

∑
i=1

pia
2
i

n

∑
i=1

qib
2
i +

n

∑
i=1

qia
2
i

n

∑
i=1

pib
2
i −

n

∑
i=1

piϕi

n

∑
i=1

qi
a2

i b
2
i

ϕi
−

n

∑
i=1

qiϕi

n

∑
i=1

pi
a2

i b
2
i

ϕi
= Ln,

where ϕi = ϕ(ai,bi) . Transform the difference Ln −Ln−1 such that in the first bracket
we put terms with factor pn and in the second we put terms with the factor qn . We get

Ln −Ln−1 = pn

(
a2

n

n−1

∑
i=1

qib
2
i +bn

n−1

∑
i=1

qia
2
i −ϕn

n−1

∑
i=1

qi
a2

i b
2
i

ϕi
− a2

nb
2
n

ϕn

n−1

∑
i=1

qiϕi

)

+qn

(
b2

n

n−1

∑
i=1

pia
2
i +a2

n

n−1

∑
i=1

pib
2
i −

a2
nb

2
n

ϕn

n−1

∑
i=1

piϕi −ϕn

n−1

∑
i=1

pi
a2

i b
2
i

ϕi

)

=
pn

ϕn

n−1

∑
i=1

qi

ϕi
(a2

nb
2
i ϕnϕi +a2

i b
2
nϕnϕi−a2

i b
2
i ϕ2

n −a2
nb

2
nϕ2

i )

+
qn

ϕn

n−1

∑
i=1

pi

ϕi
(a2

nb
2
i ϕnϕi +a2

i b
2
nϕnϕi −a2

i b
2
i ϕ2

n −a2
nb

2
nϕ2

i )

=
pn

ϕn

n−1

∑
i=1

qi

ϕi
(b2

i ϕn−b2
nϕi)(a2

nϕi −a2
i ϕn)

+
qn

ϕn

n−1

∑
i=1

pi

ϕi
(b2

i ϕn−b2
nϕi)(a2

nϕi −a2
i ϕn) � 0

where the last inequality holds since ( a2
i

ϕ(ai,bi)
)i and ( b2

i
ϕ(ai,bi)

)i are oppositely ordered
n -tuples, namely the following holds(

a2
i

ϕi
− a2

n

ϕn

)(
b2

i

ϕi
− b2

n

ϕn

)
� 0.
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After multiplying with −ϕ2
i ϕ2

n we get

(a2
nϕi −a2

i ϕn)(b2
i ϕn−b2

nϕi) � 0

what is used in the last inequality. So, we have Ln � Ln−1 � . . . � L1 = 0 and DEC(p+
q)−DEC(p)−DEC(q) � 0.

REMARK 4.1. We have different cases of fulfilment of condition “( a2
i

ϕ(ai,bi)
)i and

( b2
i

ϕ(ai,bi)
)i are oppositely ordered n -tuples”.

(i) Suppose that (D1) and (D2) are fulfilled. We put a = ai
bi

, b = a j
b j

. Having in

mind that ϕi = ϕ(ai,bi) = b2
i ϕ( ai

bi
,1) = b2

i ϕ(a,1) and ϕ j = ϕ(ai,bi) = b2
jϕ(b,1) we

get
b
a

ϕ(a,1)
ϕ(b,1)

=
a jb jb2

i ϕ(a,1)
aibib2

jϕ(b,1)
=

a jb j

aibi

ϕi

ϕ j
.

Since
aib j
a jbi

= a
b we get that (D2) get the form

a jb j

aibi

ϕi

ϕ j
+

aibi

a jb j

ϕ j

ϕi
� aib j

a jbi
+

a jbi

aib j
.

This can be written like
a2

i b
2
i

ϕ2
i

+
a2

j b
2
j

ϕ2
j

�
a2

i b
2
j

ϕiϕ j
+

a2
jb

2
i

ϕ jϕi
,

namely the following holds

(
a2

i

ϕi
− a2

j

ϕ j
)(

b2
i

ϕi
− b2

j

ϕ j
) � 0.

This means that ( a2
i

ϕ(ai,bi)
)i and ( b2

i
ϕ(ai,bi)

)i are oppositely ordered n -tuples.

(i’) If ϕ(x,y) is a positive function satisfying (D1) and (D3) then ( a2
i

ϕ(ai,bi)
)i and

( b2
i

ϕ(ai,bi)
)i are oppositely ordered for any positive n -tuples (a1, . . . ,an) and (b1, . . . ,bn).

This follows from Lemma 1.1 and (i), but the direct proof is shorter than the above proof
from (i).

(ii) Suppose that ϕ(a,b) = 1. Then property (D1) is not valid. Then ϕi = ϕ j = 1

and the “( a2
i

ϕ(ai,bi)
)i and ( b2

i
ϕ(ai,bi)

)i are oppositely ordered” corresponds to: “(a2
i )i,(b2

i )i

are oppositely ordered” which corresponds to a form of the Chebyshev inequality.
So, in these two cases we have that the functional DECR is non-negative superad-

ditive.

As a consequence of Theorem 3.3 we have that if h and Φ satisfy assumptions of

Theorem 3.3, and if ( a2
i

ϕ(ai,bi)
)i and ( b2

i
ϕ(ai,bi)

)i are oppositely ordered, then the functional

η(p) = h(P2
n )Φ

(
DECR(p)

P2
n

)
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is superadditive, where Pn = ∑n
i=1 pi > 0, and if h is positive homogeneous of order k ,

p,q ∈ S+(n) , Pn,Qn > 0, and M � m > 0 are such that Mp � q � mp , then

M2kh(P2
n )Φ

(
DEC(p)

P2
n

)
� h(Q2

n)Φ
(

DEC(q)
Q2

n

)
(4.1)

� m2kh(P2
n )Φ

(
DEC(p)

P2
n

)
.

The following theorem is an refinement of the second inequality in (1.3).

THEOREM 4.2. Let ai,bi > 0 , ϕ(ai,bi) > 0 , (i = 1,2, . . . ,n) . Let p ∈ S+(n) and

p0 = min{p1, . . . , pn} . If ( a2
i

ϕ(ai,bi)
)i and ( b2

i
ϕ(ai,bi)

)i are oppositely ordered, then

n

∑
i=1

pia
2
i

n

∑
i=1

pib
2
i �

n

∑
i=1

piϕ(ai,bi)
n

∑
i=1

pi
a2

i b
2
i

ϕ(ai,bi)

+p0

(
n

∑
i=1

a2
i

n

∑
i=1

b2
i −

n

∑
i=1

ϕ(ai,bi)
n

∑
i=1

a2
i b

2
i

ϕ(ai,bi)

)

�
n

∑
i=1

piϕ(ai,bi)
n

∑
i=1

pi
a2

i b
2
i

ϕ(ai,bi)
.

Proof. If Φ(x) = x and M = 1, then inequality (4.1) gives

DECR(p) � DECR(q)

for p � q . After substitution qi = p0 for any i = 1,2, . . . ,n and simple transformation
we get the first inequality.

The second inequality is valid because

DECR(q) = p0

(
n

∑
i=1

a2
i

n

∑
i=1

b2
i −

n

∑
i=1

ϕ(ai,bi)
n

∑
i=1

a2
i b

2
i

ϕ(ai,bi)

)

is non-negative. �

5. The DEC functional for index sets

Let I ⊆ N . Let ϕ be a positive function of two variables and let pi,ai,bi � 0,
ϕ(ai,bi) > 0, (i ∈ I) . Let us define the index set function DECi(I) by

DECi(I) = ∑
i∈I

pia
2
i ∑

i∈I

pib
2
i −∑

i∈I

piϕ(ai,bi)∑
i∈I

pi
a2

i b
2
i

ϕ(ai,bi)

if all above sums exist.
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THEOREM 5.1. Let I,J ⊂ N be sets such that I ∩ J = /0 . Let ϕ be a positive
function of two variables and let pi � 0 , ai,bi,ϕi = ϕ(ai,bi) > 0 , (i ∈ I ∪ J) . If

( a2
i

ϕ(ai,bi)
)i∈I∪J and ( b2

i
ϕ(ai,bi)

)i∈I∪J are oppositely ordered, then

DECi(I∪ J) � DECi(I)+DECi(J). (5.1)

Proof. We use a discrete functional A defined as: A( f ) = ∑i∈I∪J fi , where f (i) =
fi and adjointed functional DECR . Let p = (pi)i∈I∪J . Let us define two sequences r
and q as following

ri =
{

pi if i ∈ I
0 if i ∈ J

and qi =
{

0 if i ∈ I
pi if i ∈ J.

Since ri + qi = pi for i ∈ I∪ J , DECR(r) = DECi(I) , DECR(q) = DECi(J) and
DECR(p) = DECi(I∪ J) , inequality (5.1) holds by Theorem 3.1. �

A simple consequence of the above theorem is the following chain of refinements.

COROLLARY 5.2. Suppose that (ai),(bi),(pi) and ϕ satisfy assumptions of The-
orem 5.1. Let Ik = {1,2, . . . ,k} , k ∈ N . Then

DECi(Ik) � DECi(Ik−1) � . . . � DECi(I2) � 0.

Especially,

DECi(Ik) � max{DECi(J) : where J ⊆ I,card(J) = 2}.

6. Means again

Let us consider a function

F(r) =

(∫ b
a Kr(x)dx∫ b
a Gr(x)dx

)1/r

, r �= 0, F(0) = exp

(∫ b
a log(K(x)/G(x))dx

b−a

)
,

where K and G are positive functions. By Theorem 7.30 from [12], if G and K/G are
oppositely ordered then F(r) is decreasing on R .

Let f ,g and ϕ be such that f
ϕ( f ,g) and g

ϕ( f ,g) are oppositely ordered and define
functions K and G as:

G(x) =
g(x)

ϕ( f (x),g(x))
, K(x) =

f (x)g(x)
ϕ2( f (x),g(x))

.

Then a function F is decreasing on R where

F(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
∫ b
a

f r(x)gr(x)
ϕ2r( f (x),g(x)) dx∫ b

a
gr(x)

ϕr( f (x),g(x)) dx

⎞
⎠

1/r

, r �= 0,

exp

⎛
⎝∫ b

a log f (x)
ϕ( f (x),g(x)) dx

b−a

⎞
⎠ , r = 0.
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In the similar manner we get that F1(r) is decreasing on R where

F1(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
∫ b
a

f r(x)gr(x)
ϕ2r( f (x),g(x)) dx∫ b

a
f r(x)

ϕr( f (x),g(x)) dx

⎞
⎠

1/r

, r �= 0,

exp

⎛
⎝∫ b

a log g(x)
ϕ( f (x),g(x)) dx

b−a

⎞
⎠ , r = 0.

From the inequality F(1)F1(1) � F(0)F1(0) we get(∫ b

a

f (x)g(x)
ϕ2( f (x),g(x))

dx

)2

�
∫ b

a

f (x)
ϕ( f (x),g(x))

dx
∫ b

a

g(x)
ϕ( f (x),g(x))

dx

×exp

⎛
⎝
∫ b
a log f (x)g(x)

ϕ2( f (x),g(x))dx

b−a

⎞
⎠ . (6.1)

Consider the particular case of a nonsymmetric mean ϕ( f ,g) = f αg1−α , 0 � α �
1, α �= 1

2 .

Then f g
ϕ2( f ,g) =

(
f
g

)1−2α
, f

ϕ( f ,g) =
(

f
g

)1−α
, g

ϕ( f ,g) =
(

f
g

)−α
.

Putting s =
(

f
g

)1−2α
we get

(
f
g

)1−α
= s

1−α
1−2α ,

(
f
g

)−α
= s

−α
1−2α . Denote p =

1−2α
1−α . Then 1/p+1/q = 1 for q = 1−2α

−α and inequality (6.1) becomes

(∫ b

a
s(x)dx

)2

�
∫ b

a
s

1
p (x)dx

∫ b

a
s

1
q (x)dx · exp

(∫ b
a logs(x)dx

b−a

)
.

We have α = (p−1)/(p−2) and note that

α ∈
(

0,
1
2

)
iff 0 < p < 1, q < 0 and α ∈

(
1
2
,1

)
iff p < 0, 0 < q < 1.

The above inequality is true when 0 < p < 1, q < 0 or p < 0, 0 < q < 1.

If ϕ(x,y) =
√

xy we get by replacing s(x) =
√

f (x)
g(x) the Hölder type inequality

(∫ b

a
dx

)2

�
∫ b

a
s(x)dx

∫ b

a
s−1(x)dx.

Another interesting inequality we get for ϕ(x,y) = (x2 + y2)
1
2 :(∫ b

a

f (x)g(x)dx
f 2(x)+g2(x)

)2

�
∫ b

a

f (x)dx√
f 2(x)+g2(x)

∫ b

a

g(x)dx√
f 2(x)+g2(x)

×exp

⎛
⎝
∫ b
a log

(
f (x)g(x)

f 2(x)+g2(x)

)
dx

b−a

⎞
⎠ .
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