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NEW RESULTS ABOUT HARDY-TYPE INEQUALITY

KRISTINA KRULI¢C HIMMELREICH, JOSIP PECARIC,
DORA POKAZ AND MARJAN PRALJAK

(Communicated by S. Varosanec)

Abstract. We give a Levinson type generalization of Hardy’s inequality with convex functions
replaced by 3-convex functions at a point. Several results and examples are provided, both one-
dimensional and multidimensional.

1. Introduction

The well known Hardy’s inequality (see [6, 7, 8] ) states

oo X p oo

1 P
[ [rwar ] ax< (1%) [rrwds p>1, (1)
0 0 0

where f is a non-negative function such that f € L?(R.). If R, is replaced by a finite
interval (0,b), then the following inequality holds

(%)p/}){l—(%)wﬂ)/p]fp(x)dx, .
0

for a non-negative f € L”(0,b) (see [3, 4]). Rewriting (1) with the function f replaced
with f1/7 and then letting p — o we obtain the limiting case of Hardy’s inequality

b

/ }C/xf(t)dt pdx
0

0

N

oo

/exp %/logf(t)dt dx<e/f(x)dx, )
0 0

0

which holds for all positive functions f € L' (R, ). This inequality is known as Pélya—
Knopp’s inequality (see [9]). Again, if we work on a finite interval (0,b) the following
inequality holds

0/bexp io/xlogf(t)dt dx<eo/b<1—%>f(x)dx
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for functions f € L'(0,b) (see [4]). If p > 1 and f is a non-negative function such that
feLlP(Ry), then

oo ) p

/ I e | ay< /f” )dy,
0

X+
0 Yy sm

and if, in addition, g € LY(R.) where %—i— 7= 1, then

//f(;cf)(})’) dxdy < é /fp(x)dx /gq(y)dy ' 3)
00 0 )

Inequality (3) is called Hilbert’s or Hardy-Hilbert’s inequality. In monograph [11]
one can find generalizations, refinements, and variants of the famous Hardy’s inequality.
On the other hand, Godunova [5] proved that the inequality

1 n dx d(f(x
1 xl .o .xn 1 xl xn -xn n 'xl ...xn

+

“)

holds for a non-negative function / : R, — R, such that

I(x)dx =1,
RY

a convex function @ : [0,e0) — [0,°0), and a non-negative function f on R’ such that
the function x — ®(f(x))/(x;---x,) is integrable on R, .

By using the result given in (4) Godunova obtained many general inequalities
which include Hardy’s (1), P6lya—Knopp’s (2) and Hardy—Hilbert’s inequality (3). For
more details see [12].

We also note that Hardy’s inequality (1) shows that the Hardy operator H , defined

by
1 X
= ;O/f(t)dt

maps L? into itself with operator norm p/(p — 1). The operator can be generalized by
adding a kernel

Arf(x) /w )
0

where

X) = /wk(xj)dt < oo,

Here k(x,y) is a general measurable and non-negative function.
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Further generalization include measure spaces (Q1,%1,U;), (2,2, U2), S0 Ag
from (5) can be generalized as follows:

Af (%) / k() f() dpa (), ©)

where f:Q; — R is a measurable functlon, k:Q; xQy — R is a measurable and
non-negative kernel and

)i= [ Kony)dua(y) <= xe . g
2
In this setting K. Kruli¢ et al. [10] proved the following Hardy-type inequality.

THEOREM 1. Let (Q,%1, 1) and (Q3,%5,Up) be measure spaces with positive
O -finite measures, u be a weight function on Q, k a non-negative measurable function
on Q) Xy, and K be defined on Q by (7).

Suppose that K (x) >0 for all x € Qy, that the function x — u(x) % is integrable
on Q) foreach fixed y € Qy, and that v is defined on Q; by

)= [ oS am () <

If @ is a convex function on an interval I C R, then the inequality

L, HOPAS ) dpr () < [ IR0 i) ®)

holds for all measurable functions f : Qy — I, where Ay is defined by (6).

Notice that in the case of a concave function @, the sign of inequality (8) would
be reversed.

In this paper we will make a further generalization of inequality (8) and obtain a
Hardy inequality of Levinson type. Instead of convex functions we will work with the
class of 3-convex functions at a point, following the idea of I. A. Baloch et al. [2] and
J. Pecari¢ et al. [13]. We will point out the dual class of functions and the corresponding
dual inequality. Particular applications of the main result will give us several examples
of one-dimensional and multidimensional inequalities of Levinson type.

CONVENTIONS. An interval I in R is any convex subset of R, while Int/ de-
notes its interior. By Ry we denote the set of all positive real numbers, i.e. Ry =
(0,00). A kth order divided difference of a function f : I — R, where I is an interval
in R, at distinct points xo,...,x; € I is defined recursively by

x]f=f(x), for i=0,....k

and

Xls-- 5 Xk f_ X0y - -5 Xk—1 f
[x07...,xk}f:[ ) [ ) .
Xk — X0
A function f: 1 — R is called k-convex if [xg,...,x¢]f = O for all choices of &+ 1
distinct points xg,...,x; € I. If the kth derivative f ®) of a k-convex function exists,
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then f® >0, but £ may not exist (for properties of divided differences and k-

convex functions see [12]). For w,v € R, uw = (u,u,...,uy), v=(v1,v2,...,Vn),
let

u uy up u

—=(—,—,...,= ) and u" =u]'u?--u).

v Vi v Vi

In particular, u! = [T, u;, u? = (I, ui)z, and u1 = ( T u,-)fl , where n = (n,n,
...,n). We write u < v if componentwise u; < v;, i = 1,...,n. Relations <, >, and
> are defined analogously. Finally, we denote (0,b) = {x € R”. : 0 <x < b} and
(b,oo) ={x € R : b <X < oo}.

2. Main results with applications

In the statements of our results we will replace convex functions with the following
class of functions (see [2], [13]).

DEFINITION 1. Let f:1 — R, where [ is an interval in R, be a function and
c €Intl. We say that f € J#°(I) (resp. f € J£(a,b)) if there exists a constant o
such that the function F(x) = f(x) — $x? is concave (resp. convex) on /N (—e,c] and
convex (resp. concave) on I N [c,).

The next two remarks give some properties of functions in JZ;°(I), i =1,2.

REMARK 1. If f € #“(I), i=1,2, and f”(c) exists, then f”(c) = c. Indeed,
let f € #(I). Due to the concavity and convexity of F, for every distinct points
xj €IN(—eo,c] and y; € IN[c,o0), j=1,2,3, we have

[x1,%2,%3]F = [X1,X2,X3}f—% SO [y,y2, 3] f = % = [v1,y2,y3]F.
Therefore, if f”(c) and f7(c) exist, letting x; /¢ and y; \, ¢, we get
() < a< £
Similarly, for f € (1), we have f/(c) < a < f(c).
REMARK 2. Function f:1 — R is 3-convex (resp. 3-concave) if and only if
fe () (resp. f e HF(I)) for every ¢ € Intl. In other words, a function is 3-

convex on an interval if and only if it is 3-convex at every point of its interior, so the
property from the definition of J#{°(I) can be described as “3-convexity at point ¢”.

We will often work with two sets of measure spaces and functions that satisfy the
assumptions of Theorem 1. Therefore, let us denote the operator

Arg() := ﬁ [ Fxngais) ©

[;) and (92,227 {l») are measure spaces, g : Q, — R is a measurable
x Qy — R is a measurable and non-negative kernel and

where (€2,
function, & :

R(0):= [ Kxy)diia(s) <= x€ . (10)
2
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Furthermore, for a weight function i on Ql let
k(x,y) .
P(y) = n(x)— dily(x) < oo.
0):= [, 20 g A )

Throughout the rest of the paper we assume that all the integrals are well defined and
finite. The following theorem is our main result.

THEOREM 2. Let spaces (917217[.11) (92,227[.12) andfunctlons u,k,K,v,A; be
as in Theorem 1. Furthermore, let (917217[.11) (92,227[.12), a,k,K,0,A be another
set of spaces and functions as in Theorem 1. If f:Qy — IN (—<><>7c] and g: Qr —
INJc,o0) are measurable functions satisfying

Ly 1A ()= [ V0 0) dray)

= [ a)(As ) dfa) = || 70)g0) dia), an
Q Q
then for every ® € J£°(I) the following inequality holds
Jy, WP A () din () [ 9@l ()

2

< [ u)OAs () dpn) — [ vOIO() dualy) (12
Q) Q

2

If ® € ZF(I) in the above setting, then (12) holds with the sign reversed.

Proof. From Definition 1 there exists a constant & such that F(x) = ®(x) — $x
is concave on 1N (—oo,c] so we can apply Theorem 1 on the function F and get

[ wF (s ) dpn () = [ vOIF () dpa(s) > 0
Q Q

2
By the definition of the function F we have

[ w0 [@es () = F(A4es (0] dyn o) |

Q Q)

V) [@(F0) = 320)] dpa(y) > 0.

Since integral is a linear functional we can write

L, @A @) dun ) [ 0IO(09) dpa()
> H [ s d- [ 0P0 dw}. A

For the same constant o the second part of Definition 1 gives us a convex function
F(x) = ®(x) — $x? on IN[c,es). Now, from Theorem 1 we have

[, #00F (eg(@) 4 ()= [ 50)F (8(5)) dRa(y) <0.
o) o)

2
Similarly as in the first part of the proof, we obtain

200 [@(Aes ) = 5 (Axg)?] i ()= [, 90) [@(500) — 5209 diy) <0
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and also
o, 2RAes () dia () — [ 50)0(5() dia(y)
o ~

< ) {/91 ﬁ(x)(Akg(x))z dfiy(x) —/th \7(y)g2(y) dﬁz(y)}, (14)

Due to assumption (11) the right hand sides of inequalities (13) and (14) are equal.
Hence, we obtain (12). In the case ® € J#5(I), the function F(x) = ®(x) — $x? is
convex on I N (—oe,c] and concave on 1N |c,eo). Following the idea of the first part of
the proof we get our statement. [

REMARK 3. The assumption of equality (11) in Theorem 1 can be weakened.
More concretely, if

(a) oo >0 and
L, AL ) = [ v0)0) das)
> [, #0)(Ae()? a0~ [ F0IL0) dal),a9)
or

(b) a <0 and

Ly #OAF) dpr() = [ V01 0) diay)

2

<[ (3) (A () dfs ()~ A 0)20) (), (16)

then (12) holds. Indeed, if we multiply (15) with § >0 we get

o

a { [ w0 )~ [ 0)0) du <y>}
>2 { 3 i) - [ 9010 dﬂz(y)} a7

so we can chain inequalities (13) and (14) to get (12). In the case when we multiply
(16) with % < 0 we again get (17) and the conclusion is the same. [

COROLLARY 1. Let spaces (Ql,Zl,ul) (Q2,2%, 1), (Qhﬁhul) (Q27227[.12)
and functions u,k,K,v,Ay, i, kR,D Ak7f7g be as in Theorem 2 and assume that (11)
holds. If ® is 3-convex on the interval 1, then (12) holds. If ® is 3-concave, then (12)
holds with the sign reversed.

Proof. If ® is 3-convex, then by Remark 2 it is also from J#{°(I) for every c €
Int/, so we can apply Theorem 2. If @ is 3-concave, then @ € J#°(I) for every
c € Intl, so we can again apply Theorem 2. [l



NEW RESULTS ABOUT HARDY-TYPE INEQUALITY 1265

EXAMPLE 1. Consider Theorem 2 with Q) = Q) = (0,00), I = (0,b) and k(x,y) =
L0 <y <x k(x,y) =0,y>x, dy (x) = dx, dpa(y) =dy and u(x) = 1. Then v(y) =
and condition (11) becomes

oo X 2 oo
1 dx 5, dy
/ ;/f(y)dy T [reT
0
= [, #)Ag ) diu )~ [ 9080 dial)
2
Since ®(u) =u? for p>2or p € (O, 1) is 3-convex, inequality (12) becomes

o, 20 (x)) dia () — [ 50)0(5()) o)

oo X P =
1 dx dy
<[|;[roar] S [ro? (18)
X X y
0 0 0
so we get our type of the original Hardy inequality. If, furthermore, Q; = Q, = (0,b)

and k(x,y) = 1,0 <y <x, k(x,y) =0,y > x, dfu (x) = dx, dfi2(y) = dy and (x) =

then ¥(y) = % — 1 and condition (11) becomes

oo X oo

(1 from) 2 e
0 0 0
b X b
=O/ %O/g(y)dy %—O/G—%) & (v)dy,

while inequality (19) becomes

/ /g ——j(i—%)g”(y)dy
< [ (L] %—/mf”(y)%
0 0 0

If ®(u) =uP, pe(1,2) or p <0, then ® is 3-concave and (18) holds with the sign
reversed. [

EXAMPLE 2. Let Q; = Q) = (0,0), replace d; (x) and dup(y) by the Lebesque

. ()~ 1/p
measures dx and dy, respectively, let k(x,y) = -2 ——PE R\ {1} and u(x) = +. Then
K(x)=K= and v(y) = 1 . If condition (11) holds, i. e. if
[} oo 2 [}
1 =1/p f(y) dx 5, dy
_ EACY) ot il
K2/ / x+y T /f 0) y
0 \0 0

= [ i) din @) - [, 10)80) dia().

Q (973

T
sin(m/p)
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then applying inequality (12) for ®(u) = u? with p € Ry \ [1,2] yields
[, 00(Ag(x) din )= [ 90)@(e())da(y)

1 2

oo

I p I
-p ~1/p fO) _ @Y
<K 0/ O/y Ty | dx O/f(y>y7 (19)

while for p € (—e0,0)U(1,2) inequality (19) holds with the sign reversed. Replace
f(t)r~V/P with f(r) and we get our type of inequality for Hilbert’s inequality. [J

In the previous examples we derived only inequalities over some subsets of R .
However, Theorem 1 and Theorem 2 cover much more general situations. We can apply
that result to n-dimensional cells in R’} and thus, in particular, obtain a generalization
of Godunova’s inequality.

Applying Theorem 1 with Q; = Q, =R’} , Lebesgue measures di;(x) = dx and
dir(y) = dy, and a kernel k : R%. x R? — R of the form k(x,y) =1 (}), where
[:R% — R is a non-negative measurable function, K. Kruli¢ et al [10] obtained the
following generalization of Godunova’s inequality.

COROLLARY 2. Let | and u be non-negative measurable functions on R', such

Yy
that 0 < L(x) =x! fR’i I(y)dy < oo for all x € R}, and that the function X — u(x) ZL((’;))

is integrable on R'. for each fixed y € R'}. Let the function v be defined on R', by

(%)
W(y) = /R ul) Ty 4

n
n
If © is a convex function on an interval I C R, then the inequality
1

/m u(x)® (m /Ril () f(y)dy> dx < /Rn+ V(y)D(f(y))dy

holds for all measurable functions f: R’} — I.

For fR’i I(t)dt =1 and u(x) =x1, Corollary 2 from [10] reduces to Godunova’s
inequality (4). This shkos that Corollary 2 is a genuine generalization of Godunova’s
inequality (4). Let [, 7, L,V be another set of functions as in Corollary 2, i. e. let / be a
non-negative measurable function on R” such that 0 < L(x) = x! Jr i(y)dy < o for
all x € R"! and for a weight function 7 on R’} let

B(y) = / ﬁ(x)i(’y?) dx
R e T

m
+

THEOREM 3. Let functions 1, u, L, v be as in Corollary 2 and let f,ﬁ,f,,ﬁ be
another set of functions as in Corollary 2. If f: R — IN(—oo,c| and g: R —
INJc,o0) are measurable functions satisfying

/R’j: #(x) (ﬁ /RT l(%) g(y>dy>2dx - /R'ﬁ 5(y)(g(y)) dy

N /m u(x) (ﬁ /m (3 (Y)dy) ax- /Rn+ v (f¥)dy  (20)
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then for every ® € J£°(I) the following inequality holds

e (1L () elyyay ) ax— [ {03y

< [ oo (g L1 (3) o) as— [ vwoiway. ey

If ® € (1) in the above setting, then (12) holds with the sign reversed.

COROLLARY 3. Letl, u, L, v, f, a, L, v, f, g be as in Theorem 3 and assume
that (20) holds. If @ is a 3-convex function on the interval 1, then (21) holds. If ® is
a 3-concave function, then (21) holds with the sign reversed.

EXAMPLE 3. Let n=1, I = (0,b), du; (x) =dx, dunr(y) =dy,
_ logy —logx /y\ ¢
20
- dk(x, :7<—) . ae(0,1).
) = and k(xy) = 22 EL (V) T ae 0.)
For all o € (0,1) we have

=3

1 —1
K(x) /ogy ogx /
y—x
0
°°tel o)t / ’ 71'2
= =Y (o)+¥Y(1—0a)= ,
/oo ef—l (a) ( ) sin® Tor

where W(x) = E-((x)) ,x >0, is the Digamma function and we used the identity ¥(1 —
x) =¥(x)+ mcotmx, x € (0,1) (for details on W see [1]). Now we have

2

sin“ T Nlogx—logy (y)"‘ —2a
- d.
v(y) = / Ty 1)y T

) -
sin“ wo logu _
y 20‘/—1u Ody =y 2%, (x = yu),

w2 u—
0

so condition (20) becomes

Sin;fa/ow<x /O logy—logx <§> ® pod ) x—/ow<%)2dy

ey 4= <ﬁ/ x dy>2d ¥)(g(y))*dy.

If this condition is fulfilled, then for ® € J#°(I) we can apply inequality (12) and
obtain

Lo (g [ 1(2) stay )ax— [ stwotstway
2

T sin” wo Nlo —logx —o _ T _
<o [PEE () T oy | w2 [y oe(s )y O
0

2
T y—x
0 0
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Further, by applying our result to the 3-convex function ®(x) = ¢* and making
some suitable variable transformations we can obtain Pélya—Knopp type inequalities.
We give the following example:

EXAMPLE 4. Let the assumptions in Theorem 2 be satisfied with functions f
and g replaced by log f” and logg?, respectively, i. e. the functions f and g sat-
isfy log f? < c¢ <logg” and

2

[ 10 (e eoes 7)) ) dun) -~ [ v0)1og? )il
2

= 36 (i, Btz 0)ata() ) ()= [ 905 7(0)da)

Q
Since the function ®(x) = ¢* is 3-convex on R, for every interval / C R and ¢ € Int/
we have @ € #°(I). Therefore, inequality (12) applied for @ yields

0 exe (57 oogetanat )| ai) - [ 50 0)dinty

< [, ut [exp (m . Ktoe0) du2<y>)]p ()= [ v0)P0)dis ().
(22)

In particular, if p =1,Q; =€, = (0,00),Q = Qy = (0,b), k(x,y) = k(x,y) =
1,0 <y <x, k(x,y) =k(x,y ) 0,y>x. (sothatle(x):l(( )—x) dfy (x ) duy (x) =
dx, dfb(y) = dpa (v) = dy, i(x) = u(x) = 1 (so that v(x) = 1, $(x) = L — 1) replacing
Sf(x)/x by f(x) and g(x)/x by g(x) after a simple calculation we find that (22) is equal

to
b X b
1 11
/GXP —/logg(y)dy dx—e/(——g) g(y)dy
0 xO 0 Y

< [ (L [togr0)as | dx—e [10)as
X
0 0

0
which is an inequality related to the classical P6lya—Knopp’s inequality. [J
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