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NEW RESULTS ABOUT HARDY–TYPE INEQUALITY

KRISTINA KRULIĆ HIMMELREICH, JOSIP PEČARIĆ,
DORA POKAZ AND MARJAN PRALJAK

(Communicated by S. Varošanec)

Abstract. We give a Levinson type generalization of Hardy’s inequality with convex functions
replaced by 3-convex functions at a point. Several results and examples are provided, both one-
dimensional and multidimensional.

1. Introduction

The well known Hardy’s inequality (see [6, 7, 8] ) states

∞∫
0

⎛
⎝1

x

x∫
0

f (t)dt

⎞
⎠

p

dx �
(

p
p−1

)p ∞∫
0

f p(x)dx, p > 1, (1)

where f is a non-negative function such that f ∈ Lp(R+) . If R+ is replaced by a finite
interval (0,b) , then the following inequality holds
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for a non-negative f ∈ Lp(0,b) (see [3, 4]). Rewriting (1) with the function f replaced
with f 1/p and then letting p → ∞ we obtain the limiting case of Hardy’s inequality
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which holds for all positive functions f ∈ L1(R+) . This inequality is known as Pólya–
Knopp’s inequality (see [9]). Again, if we work on a finite interval (0,b) the following
inequality holds
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for functions f ∈ L1(0,b) (see [4]). If p > 1 and f is a non-negative function such that
f ∈ Lp(R+) , then
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and if, in addition, g ∈ Lq(R+) where 1
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q = 1, then
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Inequality (3) is called Hilbert’s or Hardy-Hilbert’s inequality. In monograph [11]
one can find generalizations, refinements, and variants of the famous Hardy’s inequality.

On the other hand, Godunova [5] proved that the inequality
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holds for a non-negative function l : R

n
+ → R+ , such that

∫
Rn

+

l(x)dx = 1,

a convex function Φ : [0,∞) → [0,∞) , and a non-negative function f on R
n
+ such that

the function x �→ Φ( f (x))/(x1 · · ·xn) is integrable on R
n
+ .

By using the result given in (4) Godunova obtained many general inequalities
which include Hardy’s (1), Pólya–Knopp’s (2) and Hardy–Hilbert’s inequality (3). For
more details see [12].

We also note that Hardy’s inequality (1) shows that the Hardy operator H , defined
by

H f (x) =
1
x

x∫
0

f (t)dt,

maps Lp into itself with operator norm p/(p−1). The operator can be generalized by
adding a kernel

Ak f (x) =
1

K(x)

∞∫
0

f (t)k(x,t)dt, (5)

where

K(x) =
∞∫

0

k(x,t)dt < ∞.

Here k(x,y) is a general measurable and non-negative function.
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Further generalization include measure spaces (Ω1,Σ1,μ1), (Ω2,Σ2,μ2) , so Ak

from (5) can be generalized as follows:

Ak f (x) :=
1

K(x)

∫
Ω2

k(x,y) f (y)dμ2(y), (6)

where f : Ω2 → R is a measurable function, k : Ω1 ×Ω2 → R is a measurable and
non-negative kernel and

K(x) :=
∫

Ω2

k(x,y)dμ2(y) < ∞, x ∈ Ω1. (7)

In this setting K. Krulić et al. [10] proved the following Hardy-type inequality.

THEOREM 1. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive
σ -finite measures, u be a weight function on Ω1 , k a non-negativemeasurable function
on Ω1×Ω2 , and K be defined on Ω1 by (7) .

Suppose that K(x) > 0 for all x∈Ω1 , that the function x �→ u(x) k(x,y)
K(x) is integrable

on Ω1 for each fixed y ∈ Ω2 , and that v is defined on Ω2 by

v(y) :=
∫

Ω1

u(x)
k(x,y)
K(x)

dμ1(x) < ∞.

If Φ is a convex function on an interval I ⊆ R , then the inequality∫
Ω1

u(x)Φ(Ak f (x))dμ1(x) �
∫

Ω2

v(y)Φ( f (y))dμ2(y) (8)

holds for all measurable functions f : Ω2 → I , where Ak is defined by (6) .

Notice that in the case of a concave function Φ , the sign of inequality (8) would
be reversed.

In this paper we will make a further generalization of inequality (8) and obtain a
Hardy inequality of Levinson type. Instead of convex functions we will work with the
class of 3-convex functions at a point, following the idea of I. A. Baloch et al. [2] and
J. Pečarić et al. [13]. We will point out the dual class of functions and the corresponding
dual inequality. Particular applications of the main result will give us several examples
of one-dimensional and multidimensional inequalities of Levinson type.

CONVENTIONS. An interval I in R is any convex subset of R , while Int I de-
notes its interior. By R+ we denote the set of all positive real numbers, i.e. R+ =
(0,∞) . A k th order divided difference of a function f : I → R , where I is an interval
in R , at distinct points x0, . . . ,xk ∈ I is defined recursively by

[xi] f = f (xi), for i = 0, . . . ,k

and

[x0, . . . ,xk] f =
[x1, . . . ,xk] f − [x0, . . . ,xk−1] f

xk − x0
.

A function f : I → R is called k -convex if [x0, . . . ,xk] f � 0 for all choices of k + 1
distinct points x0, . . . ,xk ∈ I . If the k th derivative f (k) of a k -convex function exists,
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then f (k) � 0, but f (k) may not exist (for properties of divided differences and k -
convex functions see [12]). For u,v ∈ R

n
+ , u = (u1,u2, . . . ,un) , v = (v1,v2, . . . ,vn) ,

let
u
v

=
(

u1

v1
,
u2

v2
, . . . ,

un

vn

)
and uv = uv1

1 uv2
2 · · ·uvn

n .

In particular, u1 = ∏n
i=1 ui , u2 = (∏n

i=1 ui)
2 , and u−1 = (∏n

i=1 ui)
−1 , where n = (n,n,

. . . ,n) . We write u < v if componentwise ui < vi , i = 1, . . . ,n . Relations � , > , and
� are defined analogously. Finally, we denote (0,b) = {x ∈ R

n
+ : 0 < x < b} and

(b,∞) = {x ∈ R
n
+ : b < x < ∞} .

2. Main results with applications

In the statements of our results we will replace convex functions with the following
class of functions (see [2], [13]).

DEFINITION 1. Let f : I → R , where I is an interval in R , be a function and
c ∈ Int I . We say that f ∈ K c

1 (I) (resp. f ∈ K c
2 (a,b)) if there exists a constant α

such that the function F(x) = f (x)− α
2 x2 is concave (resp. convex) on I∩ (−∞,c] and

convex (resp. concave) on I∩ [c,∞) .

The next two remarks give some properties of functions in K c
i (I) , i = 1,2.

REMARK 1. If f ∈ K c
i (I) , i = 1,2, and f ′′(c) exists, then f ′′(c) = α . Indeed,

let f ∈ K c
1 (I) . Due to the concavity and convexity of F , for every distinct points

x j ∈ I∩ (−∞,c] and y j ∈ I∩ [c,∞) , j = 1,2,3, we have

[x1,x2,x3]F = [x1,x2,x3] f − α
2

� 0 � [y1,y2,y3] f − α
2

= [y1,y2,y3]F.

Therefore, if f ′′−(c) and f ′′+(c) exist, letting x j ↗ c and y j ↘ c , we get

f ′′−(c) � α � f ′′+(c).

Similarly, for f ∈ K c
2 (I) , we have f ′′+(c) � α � f ′′−(c) .

REMARK 2. Function f : I → R is 3-convex (resp. 3-concave) if and only if
f ∈ K c

1 (I) (resp. f ∈ K c
2 (I)) for every c ∈ IntI . In other words, a function is 3-

convex on an interval if and only if it is 3-convex at every point of its interior, so the
property from the definition of K c

1 (I) can be described as “3-convexity at point c”.

We will often work with two sets of measure spaces and functions that satisfy the
assumptions of Theorem 1. Therefore, let us denote the operator

Âkg(x) :=
1

K̂(x)

∫
Ω̂2

k̂(x,y)g(y)dμ̂2(y), (9)

where (Ω̂1, Σ̂1, μ̂1) and (Ω̂2, Σ̂2, μ̂2) are measure spaces, g : Ω̂2 → R is a measurable
function, k̂ : Ω̂1× Ω̂2 → R is a measurable and non-negative kernel and

K̂(x) :=
∫

Ω̂2

k̂(x,y)dμ̂2(y) < ∞, x ∈ Ω̂1. (10)
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Furthermore, for a weight function û on Ω̂1 let

v̂(y) :=
∫

Ω̂1

û(x)
k̂(x,y)
K̂(x)

dμ̂1(x) < ∞.

Throughout the rest of the paper we assume that all the integrals are well defined and
finite. The following theorem is our main result.

THEOREM 2. Let spaces (Ω1,Σ1,μ1) , (Ω2,Σ2,μ2) and functions u,k,K,v,Ak be
as in Theorem 1. Furthermore, let (Ω̂1, Σ̂1, μ̂1) , (Ω̂2, Σ̂2, μ̂2) , û, k̂, K̂, v̂, Âk be another
set of spaces and functions as in Theorem 1. If f : Ω2 → I ∩ (−∞,c] and g : Ω̂2 →
I∩ [c,∞) are measurable functions satisfying∫

Ω1

u(x)(Ak f (x))2 dμ1(x)−
∫

Ω2

v(y) f 2(y) dμ2(y)

=
∫

Ω̂1

û(x)(Âkg(x))2 dμ̂1(x)−
∫

Ω̂2

v̂(y)g2(y) dμ̂2(y), (11)

then for every Φ ∈ K c
1 (I) the following inequality holds∫

Ω̂1

û(x)Φ(Âkg(x)) dμ̂1(x)−
∫

Ω̂2

v̂(y)Φ(g(y))dμ̂2(y)

�
∫

Ω1

u(x)Φ(Ak f (x)) dμ1(x)−
∫

Ω2

v(y)Φ( f (y)) dμ2(y). (12)

If Φ ∈ K c
2 (I) in the above setting, then (12) holds with the sign reversed.

Proof. From Definition 1 there exists a constant α such that F(x) = Φ(x)− α
2 x2

is concave on I∩ (−∞,c] so we can apply Theorem 1 on the function F and get∫
Ω1

u(x)F(Ak f (x)) dμ1(x)−
∫

Ω2

v(y)F( f (y)) dμ2(y) � 0.

By the definition of the function F we have∫
Ω1

u(x)
[
Φ(Ak f (x))− α

2
(Ak f (x))2

]
dμ1(x)−

∫
Ω2

v(y)
[
Φ( f (y))− α

2
f 2(y)

]
dμ2(y)� 0.

Since integral is a linear functional we can write∫
Ω1

u(x)Φ(Ak f (x)) dμ1(x)−
∫

Ω2

v(y)Φ( f (y)) dμ2(y)

� α
2

{∫
Ω1

u(x)(Ak f (x))2 dμ1(x)−
∫

Ω2

v(y) f 2(y) dμ2(y)
}

. (13)

For the same constant α the second part of Definition 1 gives us a convex function
F(x) = Φ(x)− α

2 x2 on I∩ [c,∞) . Now, from Theorem 1 we have∫
Ω̂1

û(x)F(Âkg(x)) dμ̂1(x)−
∫

Ω̂2

v̂(y)F(g(y)) dμ̂2(y) � 0.

Similarly as in the first part of the proof, we obtain∫
Ω̂1

û(x)
[
Φ(Âkg(x))− α

2
(Âkg(x))2

]
dμ̂1(x)−

∫
Ω̂2

v̂(y)
[
Φ(g(y))− α

2
g2(y)

]
dμ̂2(y)� 0
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and also ∫
Ω̂1

û(x)Φ(Âkg(x)) dμ̂1(x)−
∫

Ω̂2

v̂(y)Φ(g(y)) dμ̂2(y)

� α
2

{∫
Ω̂1

û(x)(Âkg(x))2 dμ̂1(x)−
∫

Ω̂2

v̂(y)g2(y) dμ̂2(y)
}

. (14)

Due to assumption (11) the right hand sides of inequalities (13) and (14) are equal.
Hence, we obtain (12). In the case Φ ∈ K c

2 (I) , the function F(x) = Φ(x)− α
2 x2 is

convex on I∩ (−∞,c] and concave on I∩ [c,∞) . Following the idea of the first part of
the proof we get our statement. �

REMARK 3. The assumption of equality (11) in Theorem 1 can be weakened.
More concretely, if

(a) α � 0 and ∫
Ω1

u(x)(Ak f (x))2 dμ1(x)−
∫

Ω2

v(y) f 2(y) dμ2(y)

�
∫

Ω̂1

û(x)(Âkg(x))2 dμ̂1(x)−
∫

Ω̂2

v̂(y)g2(y) dμ̂2(y), (15)

or

(b) α � 0 and ∫
Ω1

u(x)(Ak f (x))2 dμ1(x)−
∫

Ω2

v(y) f 2(y) dμ2(y)

�
∫

Ω̂1

û(x)(Âkg(x))2 dμ̂1(x)−
∫

Ω̂2

v̂(y)g2(y) dμ̂2(y), (16)

then (12) holds. Indeed, if we multiply (15) with α
2 � 0 we get

α
2

{∫
Ω1

u(x)(Ak f (x))2 dμ1(x)−
∫

Ω2

v(y) f 2(y) dμ2(y)
}

� α
2

{∫
Ω̂1

û(x)(Âkg(x))2 dμ̂1(x)−
∫

Ω̂2

v̂(y)g2(y) dμ̂2(y)
}

(17)

so we can chain inequalities (13) and (14) to get (12). In the case when we multiply
(16) with α

2 � 0 we again get (17) and the conclusion is the same. �

COROLLARY 1. Let spaces (Ω1,Σ1,μ1) , (Ω2,Σ2,μ2) , (Ω̂1, Σ̂1, μ̂1) , (Ω̂2, Σ̂2, μ̂2)
and functions u,k,K,v,Ak, û, k̂, K̂, v̂, Âk, f ,g be as in Theorem 2 and assume that (11)
holds. If Φ is 3 -convex on the interval I , then (12) holds. If Φ is 3 -concave, then (12)
holds with the sign reversed.

Proof. If Φ is 3-convex, then by Remark 2 it is also from K c
1 (I) for every c ∈

IntI , so we can apply Theorem 2. If Φ is 3-concave, then Φ ∈ K c
2 (I) for every

c ∈ IntI , so we can again apply Theorem 2. �
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EXAMPLE 1. Consider Theorem2 with Ω1 = Ω2 = (0,∞) , I = (0,b) and k(x,y)=
1, 0 � y � x, k(x,y) = 0, y > x, dμ1(x) = dx, dμ2(y) = dy and u(x) = 1

x . Then v(y) = 1
y

and condition (11) becomes
∞∫

0

⎛
⎝1

x

x∫
0

f (y)dy

⎞
⎠

2

dx
x
−

∞∫
0

f 2(y)
dy
y

=
∫

Ω̂1

û(x)(Âkg(x))2 dμ̂1(x)−
∫

Ω̂2

v̂(y)g2(y) dμ̂2(y).

Since Φ(u) = up for p > 2 or p ∈ (0,1) is 3-convex, inequality (12) becomes∫
Ω̂1

û(x)Φ(Âkg(x)) dμ̂1(x)−
∫

Ω̂2

v̂(y)Φ(g(y))dμ̂2(y)

�
∞∫

0

⎛
⎝1

x

x∫
0

f (y)dy

⎞
⎠

p

dx
x
−

∞∫
0

f p(y)
dy
y

(18)

so we get our type of the original Hardy inequality. If, furthermore, Ω̂1 = Ω̂2 = (0,b)
and k̂(x,y) = 1, 0 � y � x, k̂(x,y) = 0, y > x, dμ̂1(x) = dx, dμ̂2(y) = dy and û(x) = 1

x ,
then v̂(y) = 1

y − 1
b and condition (11) becomes

∞∫
0

⎛
⎝1

x

x∫
0

f (y)dy

⎞
⎠

2

dx
x
−

∞∫
0

f 2(y)
dy
y

=
b∫

0

⎛
⎝1

x

x∫
0

g(y)dy

⎞
⎠

2

dx
x
−

b∫
0

(
1
y
− 1

b

)
g2(y)dy,

while inequality (19) becomes
b∫

0

⎛
⎝1

x

x∫
0

g(y)dy

⎞
⎠

p

dx
x
−

b∫
0

(
1
y
− 1

b

)
gp(y)dy

�
∞∫

0

⎛
⎝1

x

x∫
0

f (y)dy

⎞
⎠

p

dx
x
−

∞∫
0

f p(y)
dy
y

.

If Φ(u) = up , p ∈ (1,2) or p < 0, then Φ is 3-concave and (18) holds with the sign
reversed. �

EXAMPLE 2. Let Ω1 = Ω2 = (0,∞) , replace dμ1(x) and dμ2(y) by the Lebesque

measures dx and dy , respectively, let k(x,y) = ( y
x )−1/p

x+y , p∈R\{1} and u(x) = 1
x . Then

K(x) = K = π
sin(π/p) and v(y) = 1

y . If condition (11) holds, i. e. if

1
K2

∞∫
0

⎛
⎝

∞∫
0

(y
x

)−1/p f (y)
x+ y

d y

⎞
⎠

2

d x
x

−
∞∫

0

f 2(y)
d y
y

=
∫

Ω̂1

û(x)(Âkg(x))2 dμ̂1(x)−
∫

Ω̂2

v̂(y)g2(y) dμ̂2(y),
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then applying inequality (12) for Φ(u) = up with p ∈ R+ \ [1,2] yields∫
Ω̂1

û(x)Φ(Âkg(x)) dμ̂1(x)−
∫

Ω̂2

v̂(y)Φ(g(y))dμ̂2(y)

� K−p

∞∫
0

⎛
⎝

∞∫
0

y−1/p f (y)
x+ y

d y

⎞
⎠

p

d x−
∞∫

0

f p(y)
d y
y

, (19)

while for p ∈ (−∞,0)∪ (1,2) inequality (19) holds with the sign reversed. Replace
f (t)t−1/p with f (t) and we get our type of inequality for Hilbert’s inequality. �

In the previous examples we derived only inequalities over some subsets of R+ .
However, Theorem 1 and Theorem 2 cover much more general situations. We can apply
that result to n -dimensional cells in R

n
+ and thus, in particular, obtain a generalization

of Godunova’s inequality.

Applying Theorem 1 with Ω1 = Ω2 = R
n
+ , Lebesgue measures dμ1(x) = dx and

dμ2(y) = dy , and a kernel k : R
n
+ ×R

n
+ → R of the form k(x,y) = l

( y
x

)
, where

l : R
n
+ → R is a non-negative measurable function, K. Krulić et al [10] obtained the

following generalization of Godunova’s inequality.

COROLLARY 2. Let l and u be non-negative measurable functions on R
n
+ such

that 0 < L(x) = x1 ∫
Rn

+
l(y)dy < ∞ for all x ∈ R

n
+ , and that the function x �→ u(x)

l( y
x )

L(x)
is integrable on R

n
+ for each fixed y ∈ R

n
+ . Let the function v be defined on R

n
+ by

v(y) =
∫

R
n
+

u(x)
l
( y

x

)
L(x)

dx.

If Φ is a convex function on an interval I ⊆ R , then the inequality∫
R

n
+

u(x)Φ
(

1
L(x)

∫
R

n
+

l
(y

x

)
f (y)dy

)
dx �

∫
R

n
+

v(y)Φ( f (y))dy

holds for all measurable functions f : R
n
+ → I .

For
∫
R

n
+

l(t)dt = 1 and u(x) = x−1 , Corollary 2 from [10] reduces to Godunova’s
inequality (4). This shows that Corollary 2 is a genuine generalization of Godunova’s
inequality (4). Let l̂, û, L̂, v̂ be another set of functions as in Corollary 2, i. e. let l̂ be a
non-negative measurable function on R

m
+ such that 0 < L̂(x) = x1 ∫

R
m
+

l̂(y)dy < ∞ for
all x ∈ R

m
+ and for a weight function û on R

m
+ let

v̂(y) =
∫

Rm
+

û(x)
l̂
( y

x

)
L̂(x)

dx.

THEOREM 3. Let functions l , u , L , v be as in Corollary 2 and let l̂, û, L̂, v̂ be
another set of functions as in Corollary 2. If f : R

n
+ → I ∩ (−∞,c] and g : R

m
+ →

I∩ [c,∞) are measurable functions satisfying∫
R

m
+

û(x)
(

1

L̂(x)

∫
R

m
+

l̂
(y

x

)
g(y)dy

)2

dx−
∫

R
m
+

v̂(y)(g(y))2dy

=
∫

Rn
+

u(x)
(

1
L(x)

∫
Rn

+

l
(y

x

)
f (y)dy

)2

dx−
∫

Rn
+

v(y)( f (y))2dy (20)
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then for every Φ ∈ K c
1 (I) the following inequality holds∫

R
m
+

û(x)Φ
(

1

L̂(x)

∫
R

m
+

l̂
(y

x

)
g(y)dy

)
dx−

∫
R

m
+

v̂(y)Φ(g(y))dy

�
∫

R
n
+

u(x)Φ
(

1
L(x)

∫
R

n
+

l
(y

x

)
f (y)dy

)
dx−

∫
R

n
+

v(y)Φ( f (y))dy. (21)

If Φ ∈ K c
2 (I) in the above setting, then (12) holds with the sign reversed.

COROLLARY 3. Let l , u , L , v , l̂ , û , L̂ , v̂ , f , g be as in Theorem 3 and assume
that (20) holds. If Φ is a 3 -convex function on the interval I , then (21) holds. If Φ is
a 3 -concave function, then (21) holds with the sign reversed.

EXAMPLE 3. Let n = 1, I = (0,b) , dμ1(x) = dx , dμ2(y) = dy ,

u(x) = x−2α and k(x,y) =
logy− logx

y− x

(y
x

)−α
, α ∈ (0,1).

For all α ∈ (0,1) we have

K(x) =
∞∫

0

logy− logx
y− x

(y
x

)−α
dy =

∞∫
0

logu
u−1

u−αdu

=
∫ ∞

−∞

te(1−α)t

et −1
dt = Ψ

′
(α)+ Ψ

′
(1−α) =

π2

sin2 πα
,

where Ψ(x) = Γ
′
(x)

Γ(x) , x > 0, is the Digamma function and we used the identity Ψ(1−
x) = Ψ(x)+ π cotπx, x ∈ (0,1) (for details on Ψ see [1]). Now we have

v(y) =
sin2 πα

π2

∞∫
0

logx− logy
x− y

(y
x

)α
y−2αdx

=
sin2 πα

π2 y−2α
∞∫

0

logu
u−1

u−αdu = y−2α , (x = yu),

so condition (20) becomes

sin4 πα
π4

∫ ∞

0

(
x−α

∫ ∞

0

logy− logx
y− x

(y
x

)−α
f (y)dy

)2

dx−
∫ ∞

0

(
f (y)
yα

)2

dy

=
∫

R
m
+

û(x)
(

1

L̂(x)

∫
R

m
+

l̂
(y

x

)
g(y)dy

)2

dx−
∫

R
m
+

v̂(y)(g(y))2dy.

If this condition is fulfilled, then for Φ ∈ K c
1 (I) we can apply inequality (12) and

obtain∫
R

m
+

û(x)Φ
(

1

L̂(x)

∫
R

m
+

l̂
(y

x

)
g(y)dy

)
dx−

∫
R

m
+

v̂(y)Φ(g(y))dy

�
∞∫

0

Φ

⎛
⎝ sin2 πα

π2

∞∫
0

logy− logx
y− x

(y
x

)−α
f (y)dy

⎞
⎠x−2αdx−

∞∫
0

y−2αΦ( f (y))dy. �
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Further, by applying our result to the 3-convex function Φ(x) = ex and making
some suitable variable transformations we can obtain Pólya–Knopp type inequalities.
We give the following example:

EXAMPLE 4. Let the assumptions in Theorem 2 be satisfied with functions f
and g replaced by log f p and loggp , respectively, i. e. the functions f and g sat-
isfy log f p � c � loggp and

∫
Ω1

u(x)
(

1
K(x)

∫
Ω2

k(x,y) log f p(y)dμ2(y)
)2

dμ1(x)−
∫

Ω2

v(y) log2 f p(y)dμ2(y)

=
∫

Ω̂1

û(x)
(

1

K̂(x)

∫
Ω̂2

k̂(x,y) loggp(y)dμ̂2(y)
)2

dμ̂1(x)−
∫

Ω̂2

v̂(y) log2 gp(y)dμ̂2(y).

Since the function Φ(x) = ex is 3-convex on R , for every interval I ⊂ R and c ∈ IntI
we have Φ ∈ K c

1 (I) . Therefore, inequality (12) applied for Φ yields

∫
Ω̂1

û(x)
[
exp

(
1

K̂(x)

∫
Ω̂2

k̂(x,y) logg(y)dμ̂2(y)
)]p

dμ̂1(x)−
∫

Ω̂2

v̂(y)gp(y)dμ̂2(y)

�
∫

Ω1

u(x)
[
exp

(
1

K(x)

∫
Ω2

k(x,y) log f (y)dμ2(y)
)]p

dμ1(x)−
∫

Ω2

v(y) f p(y)dμ2(y).

(22)

In particular, if p = 1, Ω1 = Ω2 = (0,∞),Ω̂1 = Ω̂2 = (0,b), k̂(x,y) = k(x,y) =
1, 0 < y < x, k̂(x,y) = k(x,y) = 0, y � x. (so that K̂(x) = K(x) = x ), dμ̂1(x) = dμ1(x) =
dx, dμ̂2(y) = dμ2(y) = dy, û(x) = u(x) = 1

x (so that v(x) = 1
x , v̂(x) = 1

x − 1
b ) replacing

f (x)/x by f (x) and g(x)/x by g(x) after a simple calculation we find that (22) is equal
to

b∫
0

exp

⎛
⎝1

x

x∫
0

logg(y)dy

⎞
⎠ dx− e

b∫
0

(
1
y
− 1

b

)
g(y)dy

�
∞∫

0

exp

⎛
⎝1

x

x∫
0

log f (y)dy

⎞
⎠ dx− e

∞∫
0

f (y)dy

which is an inequality related to the classical Pólya–Knopp’s inequality. �
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Prilaz baruna Filipovića 28a, 10 000 Zagreb, Croatia

e-mail: krulic@ttf.hr

Josip Pečarić
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