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Abstract. Levinson’s operator inequality is given for unital fields of positive linear mappings
and a large class of functions. Order among quasi-arithmetic means is considered under similar
conditions.

1. Introduction

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert
space H .We denote by Bh(H) the real subspace of all self-adjoint operators on H .
Bounds of X ∈Bh(H) are defined by mX := inf{〈Xξ ,ξ 〉 : ξ ∈ H,‖ξ‖ = 1} and MX :=
sup{〈Xξ ,ξ 〉 : ξ ∈ H,‖ξ‖ = 1}

A continuous real valued function f defined on an interval I is said to be operator
convex if f (λX +(1−λ )Y) � λ f (X)+(1−λ ) f (Y) for all self-adjoint operators X ,Y
with spectra contained in I and all λ ∈ [0,1] . If the function f is operator convex,
then so-called Jensen’s operator inequality f (Φ(X)) � Φ( f (X)) holds for any unital
positive linear mapping Φ on B(H) and any X ∈ Bh(H) with spectrum contained in
I . Many other versions of Jensen’s operator inequality can be found in [4, 3].

Assume furthermore that (Φ1, . . . ,Φn) is an n -tuple of positive linear mappings
Φi : B(H) → B(K) . If in addition ∑n

i=1 Φi(1H) = 1K , we say that ∑n
i=1 Φi(1H) = 1K

is unital.
Now we give the definiton of classes of functions for which we observe Levinson’s

operator inequality:

DEFINITION 1. Let f ∈ C (I) be a real valued function on an arbitrary interval I
in R and c ∈ I◦ , where I◦ is the interior of I .

We say that f ∈ K c
1 (I) (resp. f ∈ K c

2 (I)) if there exists a constant α such that
the function F(t) = f (t)− α

2 t2 is concave (resp. convex) on I
⋂

(−∞,c] and convex
(resp. concave) on I

⋂
[c,∞) .

Moreover, we say that f ∈
•

K c
1 (I) (resp. f ∈

•
K c

2 (I)) if there exists a constant α
such that the function F(t) = f (t)− α

2 t2 is operator concave (resp. operator convex) on
I
⋂

(−∞,c] and operator convex (resp. operator concave) on I
⋂

[c,∞) .
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K c
1 (I) can be interpreted as the class of “3-convex functions at point c” and

generalizes 3-convex functions in the following sense: a function is 3-convex on
I if and only if it is at every c ∈ I◦ .

Next, we will review the history of research of Levison’s inequality.
Levinson [5] considered an inequality as follows:
If f : (0,2c) → R satisfies f ′′′ � 0 and pi,xi,yi , i = 1,2, . . . ,n, are such that

pi > 0 , ∑n
i=1 pi = 1 , 0 � xi � c and

x1 + y1 = x2 + y2 = . . . = xn + yn = 2c, (1)

then the inequality
n

∑
i=1

pi f (xi)− f (x) �
n

∑
i=1

pi f (yi)− f (y) (2)

holds, where x = ∑n
i=1 pixi and y = ∑n

i=1 piyi denote the weighted arithmetic means.
Popoviciu [11] showed that the assumptions on the differentiability of f can be

weakened and for (2) to hold it is enough to assume that f is 3-convex. Bullen [2]
gave another proof of Popoviciu’s result rescaled to a general interval [a,b] as follows:

If f : [a,b] → R is 3 -convex and pi,xi,yi , i = 1,2, . . . ,n, are such that pi > 0 ,
∑n

i=1 pi = 1 , a � xi,yi � b, (1) holds (for some c ∈ [a,b]) and

max(x1, . . . ,xn) � min(y1, . . . ,yn), (3)

then (2) holds.
Mercer [6] made a significant improvement by replacing (1) with the weaker con-

dition that the variances of the two sequences are equal:

n

∑
i=1

pi(xi− x)2 =
n

∑
i=1

pi(yi − y)2, (4)

Witkowski [12, 13] extended this result in several ways. Firstly, he showed that
Levinson’s inequality can be stated in a more general setting with random variables.
Furthermore, he showed that it is enough to assume that f is 3-convex and that the
assumption of equality of the variances can be weakened to inequality in a certain di-
rection.

Baloch, Pečarić and Praljak [1] built on and extend the methods of Witkowski [12].
They introduced a new class of functions K c

1 ((a,b)) as in Definition 1. Their main
result is that this class is the largest class of functions for which Levinson’s inequality
holds under Mercer’s assumptions as follows:

(i) Let a < xi � c � yi < b, pi > 0 for i = 1,2, . . . ,n, ∑n
i=1 pi = 1 and (4) holds.

If f ∈ K c
1 ((a,b)) , then inequality (2) holds and if f ∈ K c

1 ((a,b)) , then (2) holds with
reverse sign of inequality.

(ii) Let f : (a,b) → R be continuous and c ∈ (a,b) . If inequality (2) (resp. the
reverse of (2)) holds for every n ∈ N and sequences pi,xi,yi , i = 1, . . . ,n, such that
pi > 0 , ∑n

i=1 pi = 1 , a < xi � c � yi < b and (4) holds, then f ∈ K c
1 ((a,b)) (resp.

f ∈ K c
2 ((a,b))).
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In this paper, we give a general formulation of Levinson’s operator inequality. In

Section 2 we will prove the operator version of inequality (2) for f ∈
•

K c
1 (I) , which

will generalize the above result (i) by Baloch, Pečarić and Praljak. In Section 3 by
adding spectra conditions we will prove the same version of (2) for f ∈ K c

1 (I) . In
Section 4 we will give order among quasi-arithmetic means under similar conditions.
As an application we give order among power means, which will generalize Bullen’s
results [2, Corollary].

2. Levinson’s inequality with operator convexity and concavity

In this section we give version of Levinson’s operator inequality for f ∈
•

K c
i (I) ,

i = 1,2.

THEOREM 1. Let (X1, . . . ,Xn) be an n-tuple and (Y1, . . . ,Yk) be a k -tuple of self-
adjoint operators Xi,Yj ∈ Bh(H) with spectra contained in [mx,Mx] and [my,My] ,
respectively, such that a < mx � Mx � c � my � My < b for some a,b,c ∈ R . Let
(Φ1, . . . ,Φn) be a unital n-tuple and (Ψ1, . . . ,Ψk) be a unital k -tuple of positive linear
mappings Φi,Ψ j : B(H) → B(K) .

If f ∈
•

K c
1 ((a,b)) and αX � αY , then

n
∑
i=1

Φi
(
f (Xi)

)− f
( n

∑
i=1

Φi(Xi)
)

� α
2 X � α

2 Y �
k
∑
j=1

Ψ j
(
f (Yj)

)− f
( k

∑
j=1

Ψ j(Yj)
)

(5)

holds, where

X :=
n
∑
i=1

Φi
(
X2

i

)−( n
∑
i=1

Φi(Xi)
)2

, Y :=
k
∑
j=1

Ψ j
(
Y 2

j

)−( k
∑
j=1

Ψ j(Yj)
)2

.

If f ∈
•

K c
2 ((a,b)) and αX � αY , then the reverse inequalities are valid in (5).

Proof. We will give the proof for f ∈
•

K c
1 ((a,b)) . So, there is a constant α such

that F(t) = f (t)− α
2 t2 is operator concave on [mx,c] ⊂ (a,c] . Then the reverse of

Jensen’s inequality for an operator concave function gives

0 � F
( n

∑
i=1

Φi(Xi)
)
−

n
∑
i=1

Φi
(
F(Xi)

)
= f

( n
∑
i=1

Φi(Xi)
)
− α

2

( n
∑
i=1

Φi(Xi)
)2−

n
∑
i=1

Φi
(
f (Xi)

)
+ α

2

n
∑
i=1

Φi
(
X2

i

)
.

It follows
n

∑
i=1

Φi
(
f (Xi)

)− f
( n

∑
i=1

Φi(Xi)
)

� α
2

X . (6)
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Also, since F is operator convex on [c,My] ⊂ [c,b) , Jensen’s operator inequality gives

0 �
k
∑
j=1

Ψ j
(
F(Yj)

)−F
( k

∑
j=1

Ψ j(Yj)
)

=
k
∑
j=1

Ψ j
(
f (Yj)

)− α
2

k
∑
j=1

Ψ j
(
Y 2

j

)− f
( k

∑
j=1

Ψ j(Yj)
)

+ α
2

( k
∑
j=1

Ψ j(Yj)
)2

.

It follows
α
2

Y �
k

∑
j=1

Ψ j
(
f (Yj)

)− f
( k

∑
j=1

Ψ j(Yj)
)
. (7)

Combining inequalities (6) and (7) and taking into account that αX � αY , we obtain
the desired inequality (5). �

Now, we give an example to clear the situation in Theorem 1.

EXAMPLE 1. Let c > 1, d =
√

c5+c3/2√
c3−1

, f (t) =
√

t3 − t2/2 on (0,c] and f (t) =

d
√

t−d/t− t2 on [c,∞) . Then f ∈
•

K c
2 ((0,∞)) for α = −2.

Let Φ,Ψ : M3(C) → M2(C) be defined by Φ((mi j)1�i, j�3) = 1
2 (mi j)1�i, j�2 and

Ψ(M) = 1
3Tr(M)I2 for every M = (mi j)1�i, j�3 ∈ M3(C) .

If

X1 =

⎛
⎝ 1 1 1

1 2 0
1 0 3

⎞
⎠ , X2 =

⎛
⎝2 2 1

2 4 −1
1 −1 3

⎞
⎠ , Y1 =

⎛
⎝15 3 2

3 18 1
2 1 9

⎞
⎠ ,

then 0.1I3 < X1,X2 < 5.3I3 < 8.3I3 <Y1 < 20.2 and we can choose any c from [5.3,8.3] .
Next, we have

X = Φ
(
X2

1

)
+ Φ

(
X2

2

)−(Φ(X1)+ Φ(X2)
)2

=
(

1.5 0.25
0.25 1.75

)

< Y = Ψ
(
Y 2

1

)−(Ψ(Y1)
)2

=
(

70/3 0
0 70/3

)
.

Then, according to Theorem 1, we obtain (rounded to six decimal places)

F1 =
(

0.286126 0.172952
0.172952 0.484473

)
< X < Y < F2 = (70/3+0.0667891d)I2,

where

F1 =

√(
∑2

i=1 Φ
(
Xi
))3− 1

2

(
∑2

i=1 Φ
(
Xi
))2 −∑2

i=1

(
Φ
(√

X3
i

)− 1
2 Φ
(
X2

i

))
,

F2 = d
√

Ψ
(
Y1
)−d

(
Ψ
(
Y1
))−1−

(
Ψ
(
Y1
))2 −dΨ

(√
Y1
)
+dΨ

(
Y−1

1

)
+ Ψ

(
Y 2

1

)
.

This shows that inequality (5) can be strict.
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Next, we give the following obvious corollary to Theorem 1 with convex combi-
nations of operators Xi , i = 1, . . . ,n and Yj , j = 1, . . . ,k . This is a generalization of [1,
Theorem 2.6].

COROLLARY 2. Let (X1, . . . ,Xn) be an n-tuple and (Y1, . . . ,Yk) be a k -tuple of
self-adjoint operators Xi,Yj ∈Bh(H) with spectra contained in [mx,Mx] and [my,My] ,
respectively, such that a < mx � Mx � c � my � My < b for some a,b,c ∈ R . Let
(p1, . . . , pn) be an n-tuple and (q1, . . . ,qk) be a k -tuple of positive scalars such that
∑n

i=1 pi = 1 and ∑k
j=1 q j = 1 .

If f ∈
•

K c
1 ((a,b)) and αP � αQ, then

n

∑
i=1

pi f (Xi)− f
(
X
)

� α
2

P � α
2

Q �
k

∑
j=1

q j f (Yj)− f
(
Y
)

(8)

holds, where

P :=
n
∑
i=1

pi

(
Xi−X

)2
, Q :=

k
∑
j=1

q j

(
Yj −Y

)2
,

and X :=
n
∑
i=1

piXi , Y :=
k
∑
j=1

q jYj denote the weighted arithmetic means of operators.

If f ∈
•

K c
2 ([mx,My]) and αP � αQ, then reverse inequalities are valid in (8).

Proof. We apply Theorem 1 for positive linear mappings Φi,Ψ j : B(H) →B(K)
determined by Φi : B �→ piB , i = 1, . . . ,n and Ψ j : B �→ q jB , j = 1, . . . ,k . �

REMARK 1. 1) If f is convex (resp. concave) , then f ′′−(c) � α � f ′′+(c) (resp.
f ′′+(c) � α � f ′′−(c)) , see [1]. So, condition αX � αY (resp. αX � αY ) in Theorem 1
can be weakened to X � Y (resp. Y � X ).

2) Setting n = k , pi = qi and A :=
n
∑
i=1

pi

(
Xi−X

)2
=

n
∑
i=1

pi

(
Yi −Y

)2
(compare

with (4)) in Corollary 2, we get (compare with (2))

n

∑
i=1

pi f (Xi)− f
(
X
)

� α
2

A �
n

∑
i=1

pi f (Yi)− f
(
Y
)

(9)

if f ∈
•

K c
1 ((a,b)) . Or, we get reverse inequalities in (9) if f ∈

•
K c

2 ((a,b)) . This is a
generalization of Mercer’s result [6] on operators.

3. Levinson’s inequality without operator concavity and convexity

In this section we give Levinson’s operator inequality for f ∈ K c
i (I) , i = 1,2.

Operator convexity plays an essential role in (5). In fact, this inequality will be
false if we replace an operator convex function by a general convex function. We give
a simple counterexample:
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COUNTEREXAMPLE 1. Let c > 0, d =
√

c7 +
√

c3/2, f (t) = t4 − t2/2 on (0,c]

and f (t) = d
√

t− t2 on [c,∞) . Then f ∈K c
2 ((0,∞)) for α =−2, but f �∈

•
K c

2 ((0,∞))
because the function t �→ t4 is not operator convex on (0,∞) . Let Φ : M2(C) →M2(C)
be mapping defined by Φ(M) = M/2 for every M ∈ M2(C) . If

X1 =
(

50 −30
−30 20

)
, X2 =

(
9 −1
−1 10

)
, Y1 =

(
100 1
1 200

)
, Y2 =

(
200 2
2 300

)
,

then I2 < X1,X2 < 69I2 < 99I2 <Y1,Y2 < 301I2 and we can choose any c from [69,99] .
Next, we have (by setting Φ1 = Φ2 = Ψ1 = Ψ2 in Theorem 1)

X = 1
2 (X1−X2)2 =

(
420.25 410.25
410.25 25.

)
< Y = 1

2(Y1 −Y2)2 =
(

2500 0.25
0.25 2500

)
.

Then, we obtain (rounded to six decimal places)

F1 �� −X > −Y > F2,

where

F1 =
2

∑
i=1

(X4
i

2
− X2

i

4

)
−
( 2

∑
i=1

Xi

2

)4
+

1
2

( 2

∑
i=1

Xi

2

)2
=
(

2.37074 ·106 347175.
347175. 34362.5

)
,

F2 =
2

∑
i=1

(
d
Y 1/2

i

2
− Y 2

i

2

)
−d
( 2

∑
i=1

Yi

2

)1/2
+
( 2

∑
i=1

Yi

2

)2

= −
(

2500 0.25
0.25 2500

)
−d

(
0.176379 0.000965
0.000965 0.0801

)
.

So, the reverse inequality is false in (5) under the operator order.

In the following theorem we give a general result when Levinson’s operator in-
equality (5) holds for f ∈ K c

1 ([mx,My]) with conditions on the spectra of operators.
There have been many interesting works devoted to obtain operator inequalities under
spectra conditions. The reader is referred to [9, 10] and references therein.

THEOREM 3. Let (X1, . . . ,Xn) be an n-tuple and (Y1, . . . ,Yk) be a k -tuple of self-
adjoint operators Xi,Yj ∈ Bh(H) . Let mXi ,MXi be bounds of Xi and mYj ,MYj be
bounds of Yj , such that a < mXi � MXi � c � mYj � MYj < b for some a,b,c ∈ R and
every i = 1, . . . ,n, j = 1, . . . ,k . Let (Φ1, . . . ,Φn) be a unital n-tuple and (Ψ1, . . . ,Ψk)
be a unital k -tuple of positive linear mappings Φi,Ψ j : B(H) → B(K) . Let mX ,MX

and mY ,MY be bounds of X = ∑n
i=1 Φi(Xi) and Y = ∑k

j=1 Ψ j(Yj) , respectively, such
that

(mX ,MX ) ∩ [mXi ,MXi ] = ∅, i = 1, . . . ,n,
(mY ,MY ) ∩ [mYj ,MYj ] = ∅, j = 1, . . . ,k.

(10)

If f ∈ K c
1 ((a,b)) and αX � αY hold, then

n

∑
i=1

Φi
(
f (Xi)

)− f
(
X
)

� α
2

X � α
2

Y �
k

∑
j=1

Ψ j
(
f (Yj)

)− f
(
Y
)

(∗)
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is valid (i.e. (5) is valid), where

X :=
n
∑
i=1

Φi
(
X2

i

)−X
2
, Y :=

k
∑
j=1

Ψ j
(
Y 2

j

)−Y
2
.

If f ∈ K c
2 ((a,b)) and αX � αY hold, then reverse inequalities are valid in (∗) .

Proof. The proof is similar to the one for Theorem 1. We apply Jensen’s operator
inequality without operator convexity and concavity (see [9, Theorem 1.]). We omit the
details of the proof. �

As an application of Theorem 3, we obtain many interesting inequalities. For
example, we obtain the following inequalities for some power functions.

EXAMPLE 2. The function f (t) = t p , p = 3,4, . . . is an element of K c
1 ((−c,∞))

for α = p(p−1)cp−2 and c ∈ R+ . Let mappings Φi , Ψ j and operators Xi , Yj , X , Y ,
X , Y be as in Theorem 3. If (10) and X � Y hold, then

n

∑
i=1

Φi
(
X p

i

)−X
p �

(
n
2

)
cp−2X �

(
n
2

)
cp−2Y �

k

∑
j=1

Ψ j
(
Y p

j

)−Y
p
.

REMARK 2.
1) In Counterexample 1 bounds of X1 are mX1 = 1.45898, MX1 = 68.54102, and

of X = X1/2+X2/2 are mX = 5.13824, MX = 39.3618. Then (mX ,MX )∩ [mX1 ,MX1 ] �=
∅ , so spectra conditions don’t hold and we cannot apply Theorem 3.

2) If we add spectra conditions (10) in Corollary 2, we can put weaker conditions

on the function f : it is sufficient that f is in class K c
1 ((a,b)) instead of in

•
K c

1 ((a,b)) .

3) Similarly as in Definition 1, we can observe a class of functions
•

K c
3 (I) , when

F is operator concave on I∩(−∞,c] and real convex function on I∩ [c,∞) . So, we can
obtain the following result:

Let mappings Φi , Ψ j and operators Xi , Yj , X , Y , X , Y be as in Theorem 3. If
f ∈ K c

3 ((a,b)) , αX � αY and (mY ,MY )∩ [mYj ,MYj ] = ∅ , ( j = 1, . . . ,k ) hold, then
(5) is valid

In the same way, we can consider other combinations.

Next, we give a version of Levison’s operator inequality with the scalar product.

THEOREM 4. Let (X1, . . . ,Xn) be an n-tuple and (Y1, . . . ,Yk) be a k -tuple of self-
adjoint operators Xi,Yj ∈ Bh(H) with spectra contained in [mx,Mx] and [my,My] ,
respectively, such that a < mx � Mx � c � my � My < b for some a,b,c ∈ R . Let
(z1, . . . ,zn) be an n-tuple and (w1, . . . ,wk) be a k -tuple of vectors zi,wj ∈ H , such
that ∑n

i=1 ‖ zi ‖2= 1 and ∑k
i=1 ‖ wi ‖2= 1 .

If f ∈ K c
1 ((a,b)) and αx � αy , then

n

∑
i=1

〈
f (Xi)zi,zi

〉− f (x) � α
2
x � α

2
y �

k

∑
j=1

〈
f (Yj)wj,wj

〉− f (y), (11)
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holds, where

x :=
n
∑
i=1

〈(
Xi − x1H

)2
zi,zi

〉
, x :=

n
∑
i=1

〈
Xizi,zi

〉
,

y :=
k
∑
j=1

〈(
Yj − y1H

)2
wj,wj

〉
, y :=

k
∑
j=1

〈
Yjwj,wj

〉
.

If f ∈ K c
2 ((a,b)) and αx � αy hold, then reverse inequalities are valid in (11).

Proof. We use the same technique as in the proof of Theorem 1. For the sake of
completeness, we give the proof.

Let f ∈ K c
1 ((a,b)) . So, here is a constant α such that F(t) = f (t)− α

2 t2 is
concave on [mx,c] ⊂ (a,c] . Then the converse of Jensen’s inequality for a concave
function implies

0 � F(x)−
n

∑
i=1

〈
F(Xi)zi,zi

〉
= f (x)− α

2
x2−

n

∑
i=1

〈
f (Xi)zi,zi

〉
+

α
2

n

∑
i=1

〈
X2

i zi,zi
〉
.

So
n

∑
i=1

〈
f (Xi)zi,zi

〉− f (x) � α
2

n

∑
i=1

〈
X2

i zi,zi
〉− α

2
x2 =

α
2
x. (12)

Similarly, since F is convex on [c,My] ⊂ [c,b) , Jensen’s inequality implies

α
2
y =

α
2

k

∑
j=1

〈
Y 2

j w j,wj
〉− α

2
y2 �

k

∑
j=1

〈
f (Yj)wj,wj

〉− f (y). (13)

Combining inequalities (12) and (13) and taking into account that αx � αy , we
obtain (11). �

4. Quasi-arithmetic means

We define the quasi-arithmetic mean of operators:

Mϕ(X,ΦΦΦΦ,n) := ϕ−1

(
n

∑
i=1

Φi (ϕ(Xi))

)
, (14)

where (X1, . . . ,Xn) is an n -tuple of self-adjoint operators in Bh(H) with spectra in I ,
(Φ1, . . . ,Φn) is a unital n -tuple of positive linear mappings Φi : B(H) → B(K) and
ϕ : I → R is a strictly monotone function. There have been many works devoted to
observing the order among these means, see e.g. [7, 8, 4, 3].

The power mean is a special case of the quasi-arithmetic mean:

Mr(X,ΦΦΦΦ,n) :=

{
(∑n

i=1 Φi (Xr
i ))

1/r , r ∈ R\{0},
exp
(
∑n

i=1 Φi
(
ln(Xi)

))
, r = 0 ,

(15)

where X1, . . . ,Xn are positive operators.
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4.1. Results with operator convexity and concavity

In this subsection we give order among quasi-arithmetic means under similar con-
ditions as in Section 2.

First, as a generalization of [2, Corollary] on operators and quasi-arithmeticmeans,
we obtain the following results.

THEOREM 5. Let (X1, . . . ,Xn) be an n-tuple and (Y1, . . . ,Yk) be a k -tuple of self-
adjoint operators Xi,Yj ∈ Bh(H) with spectra contained in [mx,Mx] and [my,My] ,
respectively, such that a < mx � Mx � c1 � my � My < b for some a,b,c1 ∈ R . Let
(Φ1, . . . ,Φn) be a unital n-tuple and (Ψ1, . . . ,Ψk) be a unital k -tuple of positive lin-
ear mappings Φi,Ψ j : B(H) → B(K) . Let ψ ,ϕ : (a,b) → R be strictly monotone
functions, c = ϕ(c1) and I is the open interval between ϕ(a) and ϕ(b) .

If ψ ◦ϕ−1 ∈
•

K c
1 (I) and αXϕ � αYϕ , then

ψ
(
Mψ(X,ΦΦΦΦ,n)

)−ψ
(
Mϕ (X,ΦΦΦΦ,n)

)
� α

2 Xϕ � α
2 Yϕ � ψ

(
Mψ (Y,ΨΨΨΨ,k)

)−ψ
(
Mϕ(Y,ΨΨΨΨ,k)

)
,

(16)

where

Xϕ :=
n
∑
i=1

Φi
(
ϕ(Xi)2

)−( n
∑
i=1

Φi (ϕ(Xi))
)2

,

Yϕ :=
k
∑
j=1

Ψ j
(
ϕ(Yj)2

)−( k
∑
j=1

Ψ j (ϕ(Yj))
)2

.
(17)

If ψ ◦ϕ−1 ∈
•

K c
2 (I) and αXϕ � αYϕ hold, then reverse inequalities are valid in (16).

Proof. Suppose that ϕ is a strictly increasing function in (a,b) .
Then mx1H � Xi � Mx1H and my1H � Yj � My1H implies ϕ(mx)1H � ϕ(Xi) �

ϕ(Mx)1H and ϕ(my)1H � ϕ(Yj) � ϕ(My)1H for i = 1, . . . ,n , j = 1, . . . ,k . Further-
more, a < mx � Mx � c1 � my � My < b implies ϕ(a) < ϕ(mx) � ϕ(Mx) � c �
ϕ(my) � ϕ(My) < ϕ(b) .

So, for a function f ∈
•

K c
1 ((ϕ(a),ϕ(b))) there is a constant α such that F(t) =

f (t)− α
2 t2 is operator concave on [ϕ(mx),c]⊂ (ϕ(a),c] . Then the converse of Jensen’s

inequality for operators (ϕ(X1), . . . ,ϕ(Xn)) gives

n

∑
i=1

Φi
(
f (ϕ(Xi))

)− f
( n

∑
i=1

Φi(ϕ(Xi))
)

� α
2

[ n

∑
i=1

Φi
(
ϕ(Xi)2)−( n

∑
i=1

Φi(ϕ(Xi))
)2
]
.

Also, since F is operator convex on [c,ϕ(My)] ⊂ [c,ϕ(b)) , Jensen’s inequality for
operators (ϕ(Y1), . . . ,ϕ(Yk)) gives

α
2

[ k

∑
j=1

Ψ j
(
ϕ(Yj)2)−( k

∑
j=1

Ψ j(ϕ(Yj))
)2
]

�
k

∑
j=1

Ψ j
(
f (ϕ(Yj))

)− f
( k

∑
j=1

Ψ j(ϕ(Yj))
)
.
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Setting f = ψ ◦ϕ−1 in above two inequalities and taking into account that αXϕ � αYϕ
holds, we obtain

n
∑
i=1

Φi
(
ψ(Xi)

)−ψ ◦ϕ−1
( n

∑
i=1

Φi(ϕ(Xi))
)

� α
2 Xϕ

� α
2 Yϕ �

k
∑
j=1

Ψ j
(
ψ(Yj)

)−ψ ◦ϕ−1
( k

∑
j=1

Ψ j(ϕ(Yj))
)
,

which gives the desired inequality (16).
Analogously, we can prove (16) in the case when ϕ is a strictly decreasing func-

tion. �
Setting ψ equal to the identity function in Theorem 5, we can obtain inequality

(18). We give this result with weakened assumptions.

THEOREM 6. Let mappings Φi , Ψ j , operators Xi , Yj and a,b,c1 be as in The-
orem 5. Let f : (a,b) → R such that ϕ := f |(a,c1] , ψ := f |[c1,b) be strictly monotone
functions, c = ϕ(c1) and I is the open interval between f (a) and f (b) .

If f−1 ∈
•

K c
1 (I) and αYψ � αXϕ , then

Mψ (Y,ΨΨΨΨ,k)−M1(Y,ΨΨΨΨ,k) � α
2

Yψ � α
2

Xϕ � Mϕ(X,ΦΦΦΦ,n)−M1(X,ΦΦΦΦ,n), (18)

where

Yψ :=
( k

∑
j=1

Ψ j (ψ(Yj))
)2−

k
∑
j=1

Ψ j
(
ψ(Yj)2

)
,

Xϕ :=
( n

∑
i=1

Φi (ϕ(Xi))
)2−

n
∑
i=1

Φi
(
ϕ(Xi)2

)
,

If f−1 ∈
•

K c
2 (I) and αYψ � αXϕ holds, then reverse inequalities are valid in (18).

Proof. If both functions ϕ and ψ are strictly increasing or decreasing these results
follow directly from Theorem 5. The remaining two cases can be proven by using the
same technique as in the proof of Theorem 5. �

REMARK 3. Let Φi , Ψ j be mappings, Xi , Yj be positive operators as in Theo-
rem 5 and 0 < mx � Mx � c � my � My < b . Setting f (t) = ts , s � 1 for t ∈ (0,c] ,
f (t) = dtr , r �−1 or 1

2 � r � 1 for t ∈ [c,∞) , where d = cs/r and α = 0 in Theorem 6,
we obtain order among power means as follows

Mr(Y,ΨΨΨΨ,k)−M1(Y,ΨΨΨΨ,k) � 0 � Ms(X,ΦΦΦΦ,n)−M1(X,ΦΦΦΦ,n). (19)

We remark that (19) holds for all positive operators X1, . . . ,Xn , Y1, . . . ,Yk without
condition Mx � c � my . Really, LHS (resp. RHS) of (19) holds since t �→ ts (resp.
t �→ tr ) is operator concave (resp. operator convex) on (0,∞) , see [8, 4].

Setting α �= 0 in Theorem 6, we can obtain a refinement of (19) for some r,s . In
this way we obtain inequalities for instance as in the following corollary.
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COROLLARY 7. Let Φi , Ψ j be mappings, Xi , Yj be positive operators as in The-
orem 5 and 0 < mx � Mx � c � my � My < b.

(i) If s � 1 and C1/2 � Cs , then

M1/2(Y,ΨΨΨΨ,k)−M1(Y,ΨΨΨΨ,k) � αC1/2 � αCs � Ms(X,ΦΦΦΦ,n)−M1(X,ΦΦΦΦ,n) (20)

for every α ∈ (0,2c1−2s) , where

C1/2 :=
( k

∑
j=1

Ψi(
√

Yj)
)2 −

k
∑
j=1

Ψ j
(
Yj
)
, Cs :=

( n
∑
i=1

Φi(Xs
i )
)2 −

n
∑
i=1

Φi
(
X2s

i

)
.

(ii) If C1/2 � Cexp , then

M1/2(Y,ΨΨΨΨ,k)−M1(Y,ΨΨΨΨ,k) � αC1/2 � αCexp � Mexp(X,ΦΦΦΦ,n)−M1(X,ΦΦΦΦ,n) (21)

for every α ∈ (0,2c1−2s) , where

Cexp :=
( n

∑
i=1

Φi(expXi)
)2− n

∑
i=1

Φi
(
(expXi)2

)
.

Proof. (i) We set f (t) = ts , s � 1 for t ∈ (0,c] and f (t) = d
√

t for t ∈ [c,∞) ,

where d = cs−1/2 . Then f is strictly monotone on (0,∞) and f−1 ∈
•

K c
1 ((0,∞)) for

every α ∈ (0,2/a2) . So, αYψ � αXϕ and (18) give αC1/2 � αCs and (20), since the
power means are positively homogeneous.

(iii) Setting f (t) = exp(t) for t ∈ (0,c] , f (t) = d
√

t for t ∈ [c,∞) , where d =
exp(c)/

√
c , and using the same technique as above, we obtain C1/2 �Cexp and (21). �

4.2. Results without operator convexity and concavity

For wider application it is interesting to consider inequalities involving quasi-
arithmetic means under similar conditions as in Section 3. Thus, if spectra conditions
hold, then (16) is valid for all strictly monotone functions ϕ ,ψ : (a,b) → R such that
ψ ◦ϕ−1 ∈ K c

1 (I) and (18) is valid for every strictly monotone function f : (a,b) → R

such that f−1 ∈ K c
1 (I) . Now we give these results.

THEOREM 8. Let (X1, . . . ,Xn) be an n-tuple and (Y1, . . . ,Yk) be a k -tuple of self-
adjoint operators Xi,Yj ∈ Bh(H) . Let mXi ,MXi be bounds of Xi and mYj ,MYj be
bounds of Yj , such that a < mXi � MXi � c1 � mYj � MYj < b for some a,b,c ∈ R and
every i = 1, . . . ,n, j = 1, . . . ,k . Let (Φ1, . . . ,Φn) be a unital n-tuple and (Ψ1, . . . ,Ψk)
be a unital k -tuple of positive linear mappings Φi,Ψ j : B(H) →B(K) . Let mϕX ,MϕX

and mϕY ,MϕY be bounds of Mϕ(X,ΦΦΦΦ,n) and Mϕ(Y,ΨΨΨΨ,k) , respectively, such that

(mϕX ,MϕX )∩ [mXi ,MXi ] = ∅, i = 1, . . . ,n,
(mϕY ,MϕY )∩ [mYj ,MYj ] = ∅, j = 1, . . . ,k.

(22)

Let ψ ,ϕ : (a,b) → R be strictly monotone functions, c = ϕ(c1) and I is the open
interval between ϕ(a) and ϕ(b) .
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If ψ ◦ϕ−1 ∈
•

K c
1 (I) and αXϕ � αYϕ , then

ψ
(
Mψ(X,ΦΦΦΦ,n)

)−ψ
(
Mϕ (X,ΦΦΦΦ,n)

)
� α

2 Xϕ � α
2 Yϕ � ψ

(
Mψ (Y,ΨΨΨΨ,k)

)−ψ
(
Mϕ(Y,ΨΨΨΨ,k)

)
,

(∗∗)

is valid (i.e. (16) is valid), where Xϕ ,Yϕ are defined by (17).

If ψ ◦ϕ−1 ∈
•

K c
2 (I) and αXϕ � αYϕ hold, then reverse inequalities are valid in

(∗∗) .

Proof. Suppose that ϕ is a strictly increasing function in (a,b) .
Then mXi1H � Xi � MXi1H and mϕX 1K � Mϕ (X,ΦΦΦΦ,n) � MϕX 1K , implies

ϕ(mXi)1H � ϕ(Xi) � ϕ(MXi)1H , i = 1, . . . ,n,

and ϕ(mϕX )1K � ϕ
(
Mϕ (X,ΦΦΦΦ,n)

)
=

n

∑
i=1

Φi(ϕ(Ai)) � ϕ(MϕX )1K .

It follows that (
mϕX ,MϕX

)∩ [mXi ,MXi ] = ∅, i = 1, . . . ,n,

⇒ (
ϕ(mϕX ),ϕ(MϕX )

)∩ [ϕ(mXi),ϕ(MXi)] = ∅, i = 1, . . . ,n. (23)

Similarly, we can prove that(
mϕY ,MϕY

)∩ [mYj ,MYj ] = ∅, j = 1, . . . ,k,

⇒ (
ϕ(mϕY ),ϕ(MϕY )

)∩ [ϕ(mYj ),ϕ(MYj )] = ∅, j = 1, . . . ,k. (24)

Furthermore, a < mXi � MXi � c1 � mYj � MYj < b implies

ϕ(a) < ϕ(mXi) � ϕ(MXi) � c � ϕ(mYj ) � ϕ(MYj ) < ϕ(b)

for every i = 1, . . . ,n , j = 1, . . . ,k .
Now, we use a similar technique as in the proof of Theorem 5: Since ψ ◦ϕ−1 ∈

K c
1 (I) , there is a constant α such that F(t)= ψ ◦ϕ−1(t)− α

2 t2 is concave on (ϕ(a),c] .
Then the converse of Jensen’s inequality for operators (ϕ(X1), . . . ,ϕ(Xn)) and with
spectra condition (23) gives (see [9])

n

∑
i=1

Φi
(
ψ(Xi)

)−ψ ◦ϕ−1
( n

∑
i=1

Φi(ϕ(Xi))
)

� Xϕ . (25)

Also, since F is convex on [c,ϕ(b)) , Jensen’s inequality for operators (ϕ(Y1), . . . ,
ϕ(Yk)) and spectra condition (24) gives

Yϕ �
k

∑
j=1

Ψ j
(
ψ(Yj)

)−ψ ◦ϕ−1
( k

∑
j=1

Ψ j(ϕ(Yj))
)
, (26)



LEVINSON’S INEQUALITY FOR HILBERT SPACE OPERATORS 1283

Combining (25) and (26) and taking into account that αXϕ � αYϕ , we obtain the de-
sired inequality (∗∗) .

Analogously, we can prove (∗∗) in the case when ϕ is a strictly decreasing func-
tion. �

Applying Theorem 8, we obtain a generalization and refining of Bullen’s result [2,
Corollary] for power means.

COROLLARY 9. Let Φi , Ψ j be mappings, Xi , Yj be positive operators as in
Theorem 8 and 0 < mXi � MXi � c � mYj � MYj < b for some a,b,c ∈ R and ev-
ery i = 1, . . . ,n, j = 1, . . . ,k . Let mϕX ,MϕX and mϕY ,MϕY be bounds of Mϕ (X,ΦΦΦΦ,n)
and Mϕ (Y,ΨΨΨΨ,k) , respectively. Let

CsX :=

⎧⎪⎨
⎪⎩
( n

∑
i=1

Φi(Xs
i )
)2− n

∑
i=1

Φi
(
X2s

i

)
, s �= 0( n

∑
i=1

Φi(lnXi)
)2 −

n
∑
i=1

Φi
(
ln2(Xi)

)
, s = 0,

and CsY , C0Y be analogous notations for operators Y1, . . . ,Yk . Let α = r
s

(
r
s −1

)
c

r
s−2

if r s �= 0 , α = r2 exp(cr) if s = 0 and α = − 1
s c

−2 if r = 0 .
(i) If r < 0 < s, 2s � r � s < 0 , s < 0 < r or 0 < s � r � 2s, CsX � CsY and

spectra conditions (22) hold, then

Ms(X,ΦΦΦΦ,n)r −Mr(X,ΦΦΦΦ,n)r � αCsX � αCsY � Ms(Y,ΨΨΨΨ,k)r −Mr(Y,ΨΨΨΨ,k)r. (27)

(ii) If r � 2s < 0 , 0 < 2s � r , CsX � CsY or s � r < 0 or 0 < r � s, CsX � CsY
and (22) holds, then reverse inequalities are valid in (27).

(iii) If r < 0 , C0X � C0Y and (22) holds, then (27) is valid for s = 0 .
But, if r > 0 , C0X �C0Y and (22) holds, then reverse inequalities are valid in (27)

for s = 0 .
(iv) If s > 0 , CsX � CsY and (22) holds, then

ln

(
M0(X,ΦΦΦΦ,n)
Ms(X,ΦΦΦΦ,n)

)
� αCsX � αCsY � ln

(
M0(Y,ΨΨΨΨ,k)
Ms(Y,ΨΨΨΨ,k)

)
. (28)

If s < 0 , CsX � CsY and spectra conditions:

(mϕY ,MϕY )∩ [mYi ,MYi ] = ∅, i = 1, . . . ,k, (29)

hold, then reverse inequalities are valid in (28).

Proof. (i)–(ii) : We set ϕ(t) = ts , ψ(t) = tr and f (t) = t
r
s , r,s �= 0. Let us

consider a function F(t) = t
r
s − α

2 t2 for α = r
s (

r
s − 1)c

r
s−2 . Since F ′′(t) = r

s (
r
s −

1)(t
r
s−2− c

r
s−2) , then c is inflection point of F .

If r
s < 0 or 1 � r

s � 2, then f ∈ K c
2 ((0,∞)) and α > 0. So, applying Theorem 8

we obtain (27) in the case (i) .



1284 J. MIĆIĆ, J. PEČARIĆ AND M. PRALJAK

If r
s � 2, then α > 0 or if 0 < r

s � 1, then α < 0. Also, f ∈ K c
1 ((0,∞)) and

reverses of inequalities (27) hold in the case (ii) .
(iii) : If s = 0, we set ϕ(t) = ln t , ψ(t) = tr and f (t) = exp(tr) , r �= 0. Let F(t) =

exp(tr)− α
2 t2 for α = r2 exp(cr) . Then f ∈K c

1 ((0,∞)) for r > 0, or f ∈K c
2 ((0,∞))

for r < 0. So, applying Theorem 8 we obtain (27) under conditions r > 0, C0X � C0Y

and (22). Or, we obtain (27) under conditions r < 0, C0X � C0Y and (22).
(iv) : If r = 0, we set ϕ(t) = ts , ψ(t) = ln t and f (t) = 1

s ln t , s �= 0. Let F(t) =
1
s lnt − α

2 t2 for α = − 1
sc2 . Then f ∈ K c

1 ((0,∞)) for s > 0, or f ∈ K c
3 ((0,∞)) for

s < 0. So, applying Theorem 8 we obtain (28) under conditions s < 0, CsX � CsY and
(22). Or, we obtain (28) under conditions s > 0, CsX � CsY and (29). �

Finally, we give version of Theorem 6 without operator convexity or concavity.
The proof is similar to the one for Theorem 8 and we omit it.

THEOREM 10. Let Φi , Ψ j be mappings, Xi , Yj be operators as in Theorem 8 and
a < mXi � MXi � c1 � mYj � MYj < b for some a,b,c ∈ R and every i = 1, . . . ,n, j =
1, . . . ,k . Let mϕX ,MϕX and mϕY ,MϕY be bounds of Mϕ (X,ΦΦΦΦ,n) and Mϕ(Y,ΨΨΨΨ,k) ,
respectively, such that spectra conditions (22) hold. Let f : (a,b) → R such that ϕ :=
f |(a,c1] , ψ := f |[c1,b) be strictly monotone functions, c = ϕ(c1) and I is the open
interval between f (a) and f (b) .

If f−1 ∈ K c
1 (I) and αYψ � αXϕ , then (18) is valid, where Xϕ ,Yϕ are defined by

(17).
If f−1 ∈K c

2 (I) and αYψ � αXϕ holds, then reverse inequalities are valid in (18).

REMARK 4. By setting r = 1 in Corollary 9, we obtain order between Ms(Y,ΨΨΨΨ,k)
and Ms(X,ΦΦΦΦ,n) . Applying Theorem 10, we can obtain another order among power
means as follows. Setting f (t) = ts , s � 1 for t ∈ (0,c] , f (t)= d tr , r � 1 for t ∈ [c,∞) ,
where d = cs/r and α = 0 in this theorem, we obtain obvious inequality

Mr(Y,ΨΨΨΨ,k)−M1(Y,ΨΨΨΨ,k) � 0 � Ms(X,ΦΦΦΦ,n)−M1(X,ΦΦΦΦ,n)

under spectra conditions (22).
But, for some α > 0, we can obtain refining of the above inequalities as follows:
Let CsX , CrY and C0Y as in Corollary 6. If s � 1 , 0 � r � 1 , CrY � CsX and

spectra conditions (29) hold, then

Mr(Y,ΨΨΨΨ,k)−M1(Y,ΨΨΨΨ,k) � αCsY � αCsX � Ms(X,ΦΦΦΦ,n)−M1(X,ΦΦΦΦ,n)

is valid for every α ∈ (0,c−2+(1−r)/r2 (1− r)/r2) .
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