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LEVINSON’S INEQUALITY FOR HILBERT SPACE OPERATORS

JADRANKA MICIC, JOSIP PECARIC AND MARJAN PRALJAK

(Communicated by N. Elezovic)

Abstract. Levinson’s operator inequality is given for unital fields of positive linear mappings
and a large class of functions. Order among quasi-arithmetic means is considered under similar
conditions.

1. Introduction

Let #(H) be the algebra of all bounded linear operators on a complex Hilbert
space H.We denote by %),(H) the real subspace of all self-adjoint operators on H.
Bounds of X € %,,(H) are defined by my :=inf{(X&,£): & € H,||§|| =1} and My :=
sup {(X&,E): E € H,|E] = 1)

A continuous real valued function f defined on an interval 7 is said to be operator
convex if f(AX+(1—2)Y)<Af(X)+(1—A)f(Y) for all self-adjoint operators X,Y
with spectra contained in / and all A € [0,1]. If the function f is operator convex,
then so-called Jensen’s operator inequality f(®(X)) < ®(f(X)) holds for any unital
positive linear mapping ® on #(H) and any X € %;,(H) with spectrum contained in
I. Many other versions of Jensen’s operator inequality can be found in [4, 3].

Assume furthermore that (®y,...,®,) is an n-tuple of positive linear mappings
D;: B(H) — A(K). If in addition Y | D;(1y) = lg, we say that Y D;(1y) = 1k
is unital.

Now we give the definiton of classes of functions for which we observe Levinson’s
operator inequality:

DEFINITION 1. Let f € €(I) be a real valued function on an arbitrary interval 1
in R and ¢ € I°, where I° is the interior of I.

We say that f € J£°(I) (resp. f € £ (I)) if there exists a constant o such that
the function F(r) = f(t) — $¢* is concave (resp. convex) on I()(—ee,c] and convex
(resp. concave) on I([c,).

Moreover, we say that f € Z,°(I) (resp. f € £ (I)) if there exists a constant o
such that the function F (1) = f(t) — $1* is operator concave (resp. operator convex) on
I(N(—-oo,c] and operator convex (resp. operator concave) on I()[c,o).
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,¢(I) can be interpreted as the class of “3-convex functions at point ¢” and
generalizes 3-convex functions in the following sense: a function is 3-convex on
I if and only if it is atevery c € I°.

Next, we will review the history of research of Levison’s inequality.

Levinson [5] considered an inequality as follows:

If f:(0,2¢) — R satisfies " >0 and p;,xi,y;, i =1,2,...,n, are such that
pi>0, Y pi=1 0<x<cand

xityi=x2+y=...=x+y,=2c, ey
then the inequality

N pif(xi) = f(X) <Y pif (i) — () (2)

i=1 i=1

holds, where x =Y pix; and y =Y.', piy; denote the weighted arithmetic means.
Popoviciu [11] showed that the assumptions on the differentiability of f can be
weakened and for (2) to hold it is enough to assume that f is 3-convex. Bullen [2]
gave another proof of Popoviciu’s result rescaled to a general interval [a, b] as follows:
If f:]a,b] — R is 3-convex and p;,x;,yi, i =1,2,...,n, are such that p; >0,
SEpi=1, a<xy,yi <b, (1) holds (for some ¢ € [a,b]) and

max(xy,...,x,) <min(y,...,y), 3)

then (2) holds.
Mercer [6] made a significant improvement by replacing (1) with the weaker con-
dition that the variances of the two sequences are equal:

Epi(xi—f)zzzpi(yi—f)27 4)

Witkowski [12, 13] extended this result in several ways. Firstly, he showed that
Levinson’s inequality can be stated in a more general setting with random variables.
Furthermore, he showed that it is enough to assume that f is 3-convex and that the
assumption of equality of the variances can be weakened to inequality in a certain di-
rection.

Baloch, Pecari¢ and Praljak [ 1] built on and extend the methods of Witkowski [12].
They introduced a new class of functions J#{((a,b)) as in Definition 1. Their main
result is that this class is the largest class of functions for which Levinson’s inequality
holds under Mercer’s assumptions as follows:

(i) Let a<xi<c<yi<b, pi>0fori=12,...,n, X} | pi =1 and (4) holds.
If f € Z°((a,b)), then inequality (2) holds and if f € #°((a,b)), then (2) holds with
reverse sign of inequality.

(ii) Ler f: (a,b) — R be continuous and ¢ € (a,b). If inequality (2) (resp. the
reverse of (2)) holds for every n € N and sequences p;,xi,yi, i = 1,...,n, such that
pi>0, YL pi=1, a<xi<c<y <b and (4) holds, then f € J#°((a,b)) (resp.
f € #5((a.b))).
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In this paper, we give a general formulation of Levinson’s operator inequality. In

Section 2 we will prove the operator version of inequality (2) for f € J#(I), which
will generalize the above result (i) by Baloch, Pecari¢ and Praljak. In Section 3 by
adding spectra conditions we will prove the same version of (2) for f € J£°(I). In
Section 4 we will give order among quasi-arithmetic means under similar conditions.
As an application we give order among power means, which will generalize Bullen’s
results [2, Corollary].

2. Levinson’s inequality with operator convexity and concavity

L]
In this section we give version of Levinson’s operator inequality for f € J#(I),
i=1,2.

THEOREM 1. Let (Xy,...,X,) be an n-tuple and (Y1,...,Y;) be a k-tuple of self-
adjoint operators X;,Y; € By (H) with spectra contained in [my,My] and [my,M,],
respectively, such that a < m, < M, < ¢ <my <My, < b for some a,b,c € R. Let

(Dy,...,D,) be aunital n-tuple and (Y1, ...,¥y) be a unital k-tuple of positive linear
mappings ©;,¥; : A(H) — B(K).

Iffe Jéf((mb)) and aX < oY, then
n k
> oi(f(x) (T o) <X < §r< 3

holds, where

n

2 n 2 k ) k 2
X:i= 3 & (X2) - (l_;@,-(x,-)) Cri= X w() - (X W)
If f € 2 ((a,b)) and aX > o, then the reverse inequalities are valid in (5).

L]
Proof. We will give the proof for f € J#°((a,b)). So, there is a constant o such
that F(r) = f(r) — $¢* is operator concave on [my,c] C (a,c]. Then the reverse of
Jensen’s inequality for an operator concave function gives

<F( 3 @x)) - 3 o (F(x)

i=

1
—f(Zq’ 0)-5(30m) - L) +§ 5 o)

It follows

Y &) - (T @ilx)) < 5. ©)
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Also, since F' is operator convex on [c,M,] C [c,b), Jensen’s operator inequality gives

k k
0< X ¥(F(Y)) —F(Z ‘PJ(Y/))
j=1 Jj=1
_ i‘{‘ (f(v;) — & §\y (YZ)—f( k \y.(y)>+2(2 v (Y)>2
P j f 2j=1 JARS: = VASY) 2 = UASY
It follows . X
Sr < w ) - (2 wm). 7
j=1 J=1

Combining inequalities (6) and (7) and taking into account that o X < oY, we obtain

the desired inequality (5). O
Now, we give an example to clear the situation in Theorem 1.

EXAMPLE 1. Let ¢ > 1, d = Y222 f(1) = i —2/2 on (0.¢] and f(1) =

d/t—d/t—1% on [c,). Then f € #y((0,)) for o = —2.
Let q),‘P 1 Mj (C) — MQ(C) be defined by (I)((mij)lgi7j<3) = %(mij)lg,-h,'gz and

Y (M) = %Tr(M)Iz for every M = (m;;)1<i j<3 € M3(C).

111 22 1 1532
Xi=(120], o=[24 -1, n=|3181],
103 1-13 219

then 0.175 < X1,X, < 5.313 < 8.315 <Y; < 20.2 and we can choose any ¢ from [5.3,8.3]

Next, we have
1.5 0.25 )

2
X=0(x) + () - (006 +00x) = ()5, 02
2 70/3 0
_ 2\ _
<v=w(r?) - (vm)) ( K 70/3> .
Then, according to Theorem 1, we obtain (rounded to six decimal places)

0.286126 0.172952
F = (0.172952 0.484473> <X <Y < F,=(70/3+0.0667891d),

where
F = (z$=1q>(xi))3—%(z%zlqn(x,-))z—z%zl(@( Xﬁ)_%q)(xiz)),
B=d o) —a(¥m) - (¥m)) - a¥ (/) raw () e (D).

This shows that inequality (5) can be strict.
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Next, we give the following obvious corollary to Theorem | with convex combi-
nations of operators X;, i=1,...,n and Y;, j=1,...,k. This is a generalization of [1,
Theorem 2.6].

COROLLARY 2. Let (Xi,...,X,) be an n-tuple and (Y1,...,Y;) be a k-tuple of
self-adjoint operators X;,Y; € %By,(H) with spectra contained in [my,M,] and [my,M,],
respectively, such that a < my < My < ¢ <my <My, <b for some a,b,c € R. Let
(p1,---,pn) be an n-tuple and (q1,...,qx) be a k-tuple of positive scalars such that
Yipi=land 35 q;=1.

Iffe J%lc((mb)) and P < aQ, then

k
Y pifx)—f(X) <SP<So< Y i)~ £(Y) ®)
holds, where

- ipi<x,-—)?)2, 0:

i=1 j=

Il
M=
~.
~
N
%
~—

_ n _
and X .= Y, piX;, Y := Z q;Y; denote the weighted arithmetic means of operators.
i=1 j=1

If f e A ([me,M,y)) and oP > aQ, then reverse inequalities are valid in (8).

Proof. We apply Theorem 1 for positive linear mappings ®;,'¥; : Z(H) — #(K)
determined by @; : B+ p;B,i=1,....nand ¥;:B+—q;B, j=1,...,k. [0

REMARK 1. 1) If f is convex (resp.concave),then f”(c) < a < f/(c) (resp.
V(c) <a< f’(c)), see[1]. So, condition X < oY (resp. aX > aY) in Theorem I
can be weakened to X <Y (resp. ¥ < X).

n N2 n N2
2) Setting n==k, pj=gq; and A:= Y p; <X,- —X) = pi (Yi —Y) (compare
i=1 i=1
with (4)) in Corollary 2, we get (compare with (2))

épif(Xi)— (_> %A Zplf () )

if f € #°((a,b)). Or, we get reverse inequalities in (9) if f € J#((a,b)). Thisis a
generalization of Mercer’s result [6] on operators.

3. Levinson’s inequality without operator concavity and convexity

In this section we give Levinson’s operator inequality for f € J#°(I), i=1,2.

Operator convexity plays an essential role in (5). In fact, this inequality will be
false if we replace an operator convex function by a general convex function. We give
a simple counterexample:
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COUNTEREXAMPLE 1. Let ¢ >0, d = V7 +Vc3/2, f(t) =1* —12/2 on (0,c]

and f(t) =d\/t —t* on [c,). Then f € #,°((0,%)) for &= —2,but f & 75 ((0,))
because the function 7 +— ¢* is not operator convex on (0,o0). Let ® : M, (C) — M,(C)
be mapping defined by ®(M) = M /2 for every M € M>(C). If

50 —30 9 —1 100 1 200 2
X1_<—30 20 ) X2_<—1 ) Yl_( 1 200)’ Y2_< 2 300)’
then I < X1,X, <691, <991, <Y,Y, <301, and we can choose any ¢ from [69,99].
Next, we have (by setting ®; = ®, =¥ =¥, in Theorem 1)

42025 410.25 2500 0.25
Ly w2 =Ly, —y)2=
X=2-%) (410.25 25, ) <V =321 -h) (0.25 2500)'

Then, we obtain (rounded to six decimal places)
FZ-X>-Y>h,
where

A-B (- Y - (R )
1/2 : :
RoS (e L) -a(2 ) (2 1)

_ (2500 0.25 —d 0.176379 0.000965
o 0.25 2500 0.000965 0.0801

So, the reverse inequality is false in (5) under the operator order.

In the following theorem we give a general result when Levinson’s operator in-
equality (5) holds for f € J#/°([m,M,]) with conditions on the spectra of operators.
There have been many interesting works devoted to obtain operator inequalities under
spectra conditions. The reader is referred to [9, 10] and references therein.

THEOREM 3. Let (Xy,...,X,) be an n-tuple and (Y1,...,Y;) be a k-tuple of self-
adjoint operators X;,Y; € PBy(H). Let my,,My, be bounds of X; and ij,Myj be
bounds of Y;, such that a < my, < My, < ¢ < my; < Myj < b for some a,b,c € R and
everyi=1,....,n, j=1,....k. Let (®y,...,®,) be a unital n-tuple and (¥y,...,VYx)
be a unital k-tuple of positive linear mappings ®;,\¥; : B(H) — #(K). Let mx,Myx
and my,My be bounds of X =¥, ®;(X;) and Y = Z’j‘-zl‘f‘j(YJ-), respectively, such
that

(mX,Mx) N [mX,.,MXJ =2, i=1,...,n,

(mY7My) n [mY_,-»MY_,-] =g, j=1,...,k (10)
If f e ((a,b)) and aX < aY hold, then
n k
Y B(F0X0) — £(X) < SX < TY < X W (1) — £(¥) (+)

i-1 =1
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is valid (i.e. (5) is valid), where
n _2 k )

X:=3YO(X?)-X", Y:i=3W¥;(Y})-Y.
i=1 j=1

If f e ((a,b)) and aX > oY hold, then reverse inequalities are valid in (x).

Proof. The proof is similar to the one for Theorem 1. We apply Jensen’s operator
inequality without operator convexity and concavity (see [9, Theorem 1.]). We omit the
details of the proof. [

As an application of Theorem 3, we obtain many interesting inequalities. For
example, we obtain the following inequalities for some power functions.

EXAMPLE 2. The function f(t) =7, p=3,4,... is an element of .%,°((—c,o°))
for oo = p(p— l)cl’_2 and ¢ € R". Let mappings ®@;, ¥; and operators X;, ¥;, X, Y,
X, Y be as in Theorem 3. If (10) and X < Y hold, then

Y o (xP) - X" < (;)cp—zx < (Z) Py < YY) Y

i=1 Jj=1

REMARK 2.

1) In Counterexample 1 bounds of X; are my, = 1.45898, My, = 68.54102, and
of X =X, /2+X,/2 are my =5.13824, Mx =39.3618. Then (mx,Mx)N[mx,,Mx,] #
, so spectra conditions don’t hold and we cannot apply Theorem 3.

2) If we add spectra conditions (10) in Corollary 2, we can put weaker conditions

on the function f: itis sufficient that f isin class .#°((a,b)) instead of in J#{°((a,D)).

3) Similarly as in Definition 1, we can observe a class of functions J#°(I), when
F is operator concave on I N (—eo,c] and real convex function on /N {[c,e). So, we can
obtain the following result:

Let mappings ®;, ¥; and operators X;, Y;, X, Y, X, Y be as in Theorem 3. If
f e x5 ((a,b)), oX < o and (my,My)N[my,,My,] =@, (j=1,...,k) hold, then
(5) is valid

In the same way, we can consider other combinations.

Next, we give a version of Levison’s operator inequality with the scalar product.

THEOREM 4. Let (X,...,X,) be an n-tuple and (Y1,...,Y;) be a k-tuple of self-
adjoint operators X;,Y; € By(H) with spectra contained in [my,My] and [my,M,],
respectively, such that a < m, < My, < ¢ <my < My, < b for some a,b,c € R. Let
(21,---,2n) be an n-tuple and (w,...,wi) be a k-tuple of vectors zj,w; € H, such
that 2, || 21 |P= 1 and 5, || wi [P=1.

If f € #((a,b)) and ax < oy, then

M=

D[R

(f(Xi)zi zi) — f(%) < %X < Sy < Y (F@)wiws) — £(7), (11)

1 j=1
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holds, where

x = _§<(Xi—ilﬂ)22i71i>» x = .§<Xi1i’Zi>7
p k

v = Zl<(Yj_y_1H)2ijWj>7 g = X Xwj,wj)-
j= =

If f € Zf((a,b)) and ax > oy hold, then reverse inequalities are valid in (11).

Proof. We use the same technique as in the proof of Theorem 1. For the sake of
completeness, we give the proof.

Let f € #((a,b)). So, here is a constant ¢ such that F(r) = f(r) — $1* is
concave on [my,c| C (a,c|]. Then the converse of Jensen’s inequality for a concave
function implies

B n n (x n
0< Fx) - S (P00 = £00) - 547~ 3z + 5 3. (KPs ).
i=1 i=1 i=1
So . .
> (f(X)am) — f(F) < 5 X (XPaz) - 58 = Tx. (12)
i=1 i=1
Similarly, since F is convex on [c¢,M,] C [c,b), Jensen’s inequality implies
k
o o o _ _
V=5 > (Yiwj,wj) — Eyz < DY f¥)wiwi) = F(3). (13)
j=1 j=1

Combining inequalities (12) and (13) and taking into account that ax < ay, we
obtain (11). O

4. Quasi-arithmetic means

We define the quasi-arithmetic mean of operators:

Moy (X, P, n) <2c1> ) (14)

where (X,...,X,) is an n-tuple of self-adjoint operators in %, (H) with spectra in I,
(®Dy,...,D,) is a unital n-tuple of positive linear mappings ®; : B(H) — A(K) and
¢ : I — R is a strictly monotone function. There have been many works devoted to
observing the order among these means, see e.g. [7, 8, 4, 3].

The power mean is a special case of the quasi-arithmetic mean:

(S0, @ (x)))'" re R\{0},
exp (XL, ®i(In(Xy)) , r=0,

where Xi,...,X, are positive operators.

M, (X, ®.n) := { (15)
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4.1. Results with operator convexity and concavity

In this subsection we give order among quasi-arithmetic means under similar con-
ditions as in Section 2.

First, as a generalization of [2, Corollary] on operators and quasi-arithmetic means,
we obtain the following results.

THEOREM 5. Let (X,...,X,) be an n-tuple and (Y1,...,Y;) be a k-tuple of self-
adjoint operators X;,Y; € By(H) with spectra contained in [my,My] and [my,M,],
respectively, such that a < my < My < ¢y <my <M, <b for some a,b,cy € R. Let
(Dy,...,D,) be a unital n-tuple and (Vy,...,¥Yx) be a unital k-tuple of positive lin-
ear mappings ®;,¥; : B(H) — B(K). Let y,¢ : (a,b) — R be strictly monotone
Sunctions, ¢ = @(c1) and I is the open interval between @(a) and @ (b).

If yoo € # (1) and aXy < Yy, then

l[/(f)ﬁW(X,d),n)) - l//(fm(p(X,d),n))

(16)
< %X(p < %Yq) < W(WW(Y7\P7k)) - W(m¢(Y7\Il7k))7
where ,
Xpi= 3 ®i(p(X) ~ (X @i (0(X))
I Wk 2 (17)
Vo= T ¥ (0(;%) ~ (T ¥ (o))
j=1 Jj=1

If yo go_l e (1) and oXy = aYy hold, then reverse inequalities are valid in (16).

Proof. Suppose that ¢ is a strictly increasing function in (a,b).

Then myly < Xi < Myly and myly <Y; < Myly implies @(my)ly < @(X;) <
o(My)1y and @(my)lg < @(Y;) < o(My)1g for i=1,...,n, j=1,... k. Further-
more, a < my < M, < ¢; <my <M, <b implies ¢(a) < ¢(m,) < @(My) < ¢ <
¢(my) < 9(My) < 9(b).

So, for a function f € JZ°((@(a),p(b))) there is a constant ¢ such that F(r) =
f(t) — %42 is operator concave on [@(m,),c] C (¢(a),c]. Then the converse of Jensen’s
inequality for operators (@(X;),...,0(X,)) gives

3.0 (l00) 1 (S0 (000) < 2 [3 i(006) - (S ito0x) |
i=1 i=1 i=1 i=1

Also, since F is operator convex on [c,@(M,)] C [c,(b)), Jensen’s inequality for
operators (@(Y1),...,0(Y;)) gives

k k k k
5 (o)) - (3 ‘P,,»<<p<Y,->>)2} < X ¥ (for) ~ 1( X ¥ilor))).

j=1
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Setting f = wo @~ ! in above two inequalities and taking into account that oXp < 0¥y

holds, we obtain
37X

@i(y(x) ~ yoo ! (I @ipwx) <

s
i=1 ' L
> W (w(1) —woo ! (2 ¥ile()),
=1 =1

Yo <

<

[S]IS)

J

which gives the desired inequality (16).
Analogously, we can prove (16) in the case when ¢ is a strictly decreasing func-

tion. [
Setting W equal to the identity function in Theorem 5, we can obtain inequality
(18). We give this result with weakened assumptions.

THEOREM 6. Let mappings ®;, ¥;, operators X;, Y; and a,b,c; be as in The-
orem5. Let f:(a,b) — R such that ¢ := f|, ... W= fl, ) be strictly monotone
Sunctions, ¢ = @(cy) and I is the open interval between f(a) and f(D).

If fle JC(I) and oYy < Xy, then
o
< EX(p < m(P(Xaq)an) _ml (X,q),l’l),

(18)

My (Y, W,K) — M (Y, ¥,0) < Sy

where

—
I M=z [ M=
> £
<
N
[38)
|
T

~e>< ‘€~<
i

|
__"/—\ -

Iffle JC(I) and oYy > aXy holds, then reverse inequalities are valid in (18).

Proof. If both functions ¢ and y are strictly increasing or decreasing these results

follow directly from Theorem 5. The remaining two cases can be proven by using the
same technique as in the proof of Theorem 5. [

REMARK 3. Let @;, ¥; be mappings, X;, Y; be positive operators as in Theo-
rem 5 and 0 < my < My < ¢ <my <M, <b. Setting f(r) =¢*, s > 1 for 1 € (0,c],
fty=dt", r<—1or % <r< 1 forz€|c,), where d=c*" and o =0 in Theorem 6,

we obtain order among power means as follows
19)

MY, W, k) — 90 (Y, W, k) <0< IM(X,D,n) — (X, D,n).
..., Y without

We remark that (19) holds for all positive operators Xi,...,X,, Y1,
condition M, < ¢ < m,. Really, LHS (resp. RHS) of (19) holds since ¢ — * (resp.
t — ") is operator concave (resp. operator convex) on (0,0), see [8, 4].

Setting o # 0 in Theorem 6, we can obtain a refinement of (19) for some r,s. In
this way we obtain inequalities for instance as in the following corollary.
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COROLLARY 7. Let ®;, ¥; be mappings, X;, Y; be positive operators as in The-
orem 5 and 0 <my <M, <c<my <M, <b.
(i) If s=1 and Ci/2 < G, then

My (Y, W, k) — 9 (Y, W,k) < oCyjn < <M(X, D, n) — M (X, D,n)  (20)

172.\')

Sorevery o € (0,2¢ , where

k 2 k n 2 n
Cipi= (T W) = Z¥(1), Gi=(Toix)) — X o(xP).
Jj=1 j=1 i i

(i) If C1jy < Cexp, then
ml/Q(Y7‘I’,k) My (Y, W, k) < aCy )y < Cexp < Mexp (X, @, 1) — N (X, @,n) (21)

for every a € (0,2¢'7%), where
n 2 n
Coxp := <'21 d),-(epr,-)> - ‘21 @; ((expX;)?).

Proof. (i) Weset f(t)=1t%, s> 1 for ¢t € (0,c] and f(t) = d/t for t € [c,),

where d = ¢*~1/2. Then f is strictly monotone on (0,c0) and f~! € #,°((0,e0)) for
every a € (0,2/a%). So, aYy < aX, and (18) give aC)/, < aC; and (20), since the
power means are positively homogeneous.

(iii) Setting f(¢) = exp(t) for ¢ € (0,c], f(t) = d+/t for t € [c,), where d =
exp(c)/+/c, and using the same technique as above, we obtain Cj /» < Cexp and (21).

4.2. Results without operator convexity and concavity

For wider application it is interesting to consider inequalities involving quasi-
arithmetic means under similar conditions as in Section 3. Thus, if spectra conditions
hold, then (16) is valid for all strictly monotone functions ¢,y : (a,b) — R such that
wo ! € #<(I) and (18) is valid for every strictly monotone function f : (a,b) — R
such that f~! € #{°(I). Now we give these results.

THEOREM 8. Let (Xy,...,Xy,) be an n-tuple and (Y1,...,Y;) be a k-tuple of self-
adjoint operators X;,Y; € By(H). Let myx,,Mx, be bounds of X; and my;,My, be
bounds of Y, such that a < myx, < My, < ci < my; < MY < b for some a,b,c € R and
everyi=1,....n, j=1,...,k. Let (Dy,...,D,) be a unital n- -tuple and (W1,...,¥;)
be a unital k-tuple ofpositive linear mappzngs ¥ BH)— A(K). Let m(px:Mq)x
and mg, .My, be bounds of My(X,®,n) and My (Y, ¥, k), respectively, such that

(m(pX,M(pX)ﬂ[mXi,MXi] =g, i=1,...,n,

. 22
(moyMoy) Ny, My] = @, j=1,...,k. (22)

Let v, ¢ : (a,b) — R be strictly monotone functions, ¢ = ¢(c1) and I is the open
interval between ¢(a) and @(b).
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If yoo~l e #(I) and aXy < 0Yy, then

W(mW(X7q)vn)) o W(m(P(X7<I)7n))

()
g %X(p g %Y(p < W(WW(Yalll:k)) - W(W(P(Yalll7k>)a

is valid (i.e. (16) is valid), where Xy,Y, are defined by (17).

If yoo € (1) and aXy > aYy hold, then reverse inequalities are valid in

Proof. Suppose that ¢ is a strictly increasing function in (a,b).
Then my, 1y < X; < Mx, 1y and mgy 1x < My(X, P,n) < My, 1x, implies

(P(mXi)1H<¢(Xi) (p(Mx)lH7 i=1,...,n,

and O (mey )1k < @(Mp(X, @,n)) = 2@ O(Mgy)1k.

It follows that
(mey, Mgy ) N[my,,Mx] =@, i=1,...,n,
= ((p(mq)X)7(p(Mq)X))m[q)(mxi)7(p(MXi)] =g, i=1,...,n (23)
Similarly, we can prove that
(mgy, Mg, ) N my, My, =@, j=1,... k
= (@(mg,),0(My,)) N [@(my,),@(My,)| =2, j=1,... .k (24)

Furthermore, a < myx, < My, < c¢1 < my; < My < b implies

¢(a) < @(my,) < @(Mx,) < ¢ < @(my;) < ¢(My;) < ¢(b)

forevery i=1,...,n, j=1,... k.

Now, we use a similar technique as in the proof of Theorem 5: Since wo @~ ! €
(1), there is a constant o such that F(1) = yo@~!(r)— %% is concave on (¢(a),c].
Then the converse of Jensen’s inequality for operators (¢@(X;),...,¢(X,)) and with
spectra condition (23) gives (see [9])

> @ (y(X) ~yoo (2@ ><X¢, (25)

Also, since F is convex on [c,@ (b)), Jensen’s inequality for operators (¢(Y}),...,
¢©(Y;)) and spectra condition (24) gives

k k
<X ¥ivm) —vee (X ¥ile). (26)

j=1
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Combining (25) and (26) and taking into account that aX, < oYy, we obtain the de-
sired inequality ().

Analogously, we can prove (xx) in the case when ¢ is a strictly decreasing func-
tion. [

Applying Theorem 8, we obtain a generalization and refining of Bullen’s result [2,
Corollary] for power means.

COROLLARY 9. Let ®;, ¥; be mappings, X;, Y; be positive operators as in
Theorem 8 and 0 < my, < My, < ¢ < my; <My <bf0rs0me a,b,c € R and ev-
eryi=1,....,n, j=1,... k. Let mq,X,Mq,X and m(,,y7M(,,y be bounds of My(X, D, n)
and My(Y,P, k), respectzvely Let

n 2 n
(Zoix) — Zoi(xF),  s£0
CSX = i:nl 2 i:1n
('zlcpi(mxi)) _ _zlcpi(lnz(x,-)), §=0.
1= 1=
and Cy,, Co, be analogous notations for operators Yy, ..., Y. Let =% (g — 1) cs2

ifrs#0, oo =r’exp(cr) ifs-Oana’Oc——lc_2 zfr—
(i) Ifr<0<s, 2s<r<s<0, s<0<ror0<s r<2s, Cyy <Gy, and
spectra conditions (22) hold, then

M, (X, @,n)" — M, (X, B,n)" < aCyy < aCsy < M (Y, ¥,5)" — M(Y, ¥, k). (27)

(i) Ifr<2s<0,0<2s<r, Cy =2Cy or s<r<0or0<r<s, Cy <Cy,
and (22) holds, then reverse inequalities are valid in (27).

(iii) If r <0, Co, < Co, and (22) holds, then (27) is valid for s =0

But, if r > 0, Co, = Co, and (22) holds, then reverse inequalities are valid in (27)
for s=0.

(iv) Ifs>0, Cy <Cy, and (22) holds, then

mO(X7(I>’n) E):),t()(Ya‘Il7k
In{ ————< | <aCy <aC, <1 28
n<9ﬁs(X7<I>7n) oo S O ST on v W k (28)
If s <0, Cyy = Gy, and spectra conditions:
(mgy My, ) N [my,,My] =@, i=1,... .k, (29)

hold, then reverse inequalities are valid in (28).

Proof. (i)-(ii): We set @(t) =1, w(t) =" and f(r) =1+, rs #0. Letus
con51der a functlon F(t) =15 — %% for a = L(5 —1)es2. Since F"(r) = L(% —
1)(¢5=2 —¢572), then ¢ is inflection point of F .

If £<0or1<%<2,then fe #°((0,%0)) and o > 0. So, applying Theorem 8

we obtain (27) in the case (i).
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If £>2,then o >0 orif 0 <f<1,then a <0. Also, f € %#,°((0,%0)) and
reverses of inequalities (27) hold in the case (ii).

(iii): If s=0,weset ¢(t) =Int, y(r)=1"and f(r) =exp(tr), r#0. Let F(t) =
exp(tr) — §1% for oo = r*exp(cr). Then f € J£,°((0,e0)) for r >0, 0r f € #5°((0,00))
for r < 0. So, applying Theorem 8 we obtain (27) under conditions r > 0, Cp, > Co,
and (22). Or, we obtain (27) under conditions r < 0, Cp, < Cp, and (22).

(iv ) Ifr—O weset @(1) =1*, y(t) =Int and f(t) = 1Inz, s #0. Let F(t) =
it — ¢ for(x——s— Then f € #,°((0,00)) for s >0, or f € J#5((0,00)) for
s <0. So applying Theorem 8 we obtain (28) under condmons 5 <0, Gy = Cy, and
(22). Or, we obtain (28) under conditions s > 0, C;, < Cy, and (29). O

Finally, we give version of Theorem 6 without operator convexity or concavity.
The proof is similar to the one for Theorem 8 and we omit it.

THEOREM 10. Let ®;, ¥; be mappings, X;, Y; be operators as in Theorem 8 and
a<mx <My, < ¢ <my SMY < b for some a, b. ,ceR andeveryi=1,...,n, j=
k. Let myy, My, and mq)y,Mq,y be bounds of My(X,®,n) and 9)?¢(Y7‘I’,k),
respectively, such that spectra conditions (22) hold. Let f : (a,b) — R such that ¢ :=
(e V= f|[q7b) be strictly monotone functions, ¢ = @(cy) and I is the open
interval between f(a) and f(b).
If f~ e (1) and aYy < aXy, then (18) is valid, where Xy,Y, are defined by
(17).
Iff'le (1) and oYy > oXg holds, then reverse inequalities are valid in (18).

REMARK 4. By setting r =1 in Corollary 9, we obtain order between 9,(Y, ¥, k)
and (X, ®,n). Applying Theorem 10, we can obtain another order among power
means as follows. Setting f(¢) =¢*, s > 1 forr € (0,c], f(t)=dt", r<1fort € [c,),
where d = ¢/ and o = 0 in this theorem, we obtain obvious inequality

M (Y, W, k) — 0 (Y, W,k) <O<M(X, D, n) — (X, D, n)

under spectra conditions (22).
But, for some o > 0, we can obtain refining of the above inequalities as follows:
Let Csy, C, and Cy, as in Corollary 6. If s >1, 0<r<1, C, <C

s and
spectra condmons (29) hold, then

9),tr'(Y?‘I’?k) - ml (Y7‘P7k) < (XCS‘Y < (XCS‘X g mS(X7¢an) - ml(X7¢7n)

is valid for every o € (0,072“17’)/’2 (1— r)/rz).
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