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GENERALIZED JENSEN–STEFFENSEN AND RELATED INEQUALITIES

JULIJE JAKŠETIĆ, JOSIP PEČARIĆ AND MARJAN PRALJAK

(Communicated by N. Elezović)

Abstract. We introduce a new tool for comparing two linear functionals that are positive on
convex functions. We generalize Jensen-Steffensen and related inequalities.

1. Introduction

Jensen-Steffensen inequality is proved by Steffensen in [9]:

THEOREM 1.1. If ϕ : I → R is a convex function, x is a real monotonic n-tuple
such that xi ∈ I (i = 1, . . . ,n) , and p is a real n-tuple such that

0 � Pk � Pn (k = 1, . . . ,n), Pn > 0

is satisfied, then

ϕ

(
1
Pn

n

∑
i=1

pixi

)
� 1

Pn

n

∑
i=1

piϕ (xi) , (1)

where Pk =
k
∑
i=1

pi. If ϕ is strictly convex, then inequality (1) is strict unless x1 = x2 =
· · · = xn.

For later purpose, let us introduce the Jensen-Steffensen functional Ax,p with

Ax,p(ϕ) =
1
Pn

n

∑
i=1

piϕ (xi)−ϕ

(
1
Pn

n

∑
i=1

pixi

)
.

Obviously, (1) can be expressed with Ax,p(ϕ) � 0.
An integral analogue of (1) was also given by Steffensen. Here we consider the

integral analogue of Jensen-Steffensen’s inequality given by Boas [2].
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THEOREM 1.2. Let ϕ : I → R be a continuous convex function where I is the
range of the continuousmonotonic function (either increasing or decreasing) f : [a,b]→
R and λ : [a,b] → R be either continuous or of bounded variation satisfying

λ (a) � λ (x) � λ (b) for all x ∈ [a,b], λ (b) > λ (a).

Then

ϕ

⎛
⎝ b∫

a

f (x)dλ (x)
/ b∫

a

dλ (x)

⎞
⎠�

b∫
a

ϕ( f (x))dλ (x)
/ b∫

a

dλ (x). (2)

Here, similarly, we define the Jensen-Boas functional

B f ,λ
a,b (ϕ) =

b∫
a

ϕ( f (x))dλ (x)

b∫
a

dλ (x)
−ϕ

⎛
⎜⎜⎜⎝

b∫
a

f (x)dλ (x)

b∫
a

dλ (x)

⎞
⎟⎟⎟⎠ .

Boas [2] also proved a generalization of Theorem 1.2, the so called Jensen-Boas
inequality (see [6] and [7] pp. 59.).

THEOREM 1.3. Let f : [a,b] → R be continuous with range I and λ : [a,b] → R

be continuous or of bounded variation such that

λ (a) � λ (x1) � λ (y1) � λ (x2) � · · · � λ (yn−1) � λ (xn) � λ (b)

for all xk ∈ (yk−1,yk) (y0 = a,yn = b) and λ (b) > λ (a). If f is continuous and mono-
tonic (either increasing or decreasing) in each of the n intervals (yk−1,yk) , then for
every continuous convex function ϕ : I → R inequality (2) holds.

The following generalization of Jensen-Steffensen’s inequality is also known as
the Jensen-Brunk inequality (see [3]).

THEOREM 1.4. Let f : [a,b] → R be a continuous and increasing function with
range I, λ : [a,b]→ R be continuous or of bounded variation and λ (b) > λ (a). Then
inequality (2) holds for every convex function ϕ : I → R if and only if

x∫
a

( f (x)− f (t))dλ (t) � 0 and

b∫
x

( f (x)− f (t))dλ (t) � 0

for all x ∈ [a,b].

We have the same inequality with different conditions (see [7] pp. 62).
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THEOREM 1.5. Let f : [a,b] → R be continuous with range I and λ : [a,b] → R

be either continuous or of bounded variation with λ (b) > λ (a). Then (2) holds for
every continuous convex function ϕ : I → R if and only if∣∣∣∣∣∣

b∫
a

( f (x)− f (t))dλ (t)

∣∣∣∣∣∣�
b∫

a

| f (x)− f (t)|dλ (t)

for every x ∈ [a,b].

We close this section with one companion inequality to Jensen’s inequality (see
[5]).

THEOREM 1.6. Let (Ω,A ,μ) be a measure space with 0 < μ(Ω) < ∞ and let
ϕ : I → R be a convex function defined on an open interval I. If f : Ω → I is such that
f ,ϕ( f ),ϕ ′

+( f ) and fϕ ′
+( f ) are all in L1(μ), then for any u,v ∈ I we have

ϕ(u)+ ϕ ′
+(u)(x −u) � y � ϕ(v)+

1
μ(Ω)

∫
Ω

( f − v)ϕ ′
+( f )dμ , (3)

where

x =
1

μ(Ω)

∫
Ω

f dμ , y =
1

μ(Ω)

∫
Ω

ϕ( f )dμ .

Further, when ϕ is strictly convex, we have equality in the left inequality in (3) if and
only if f (t) = u almost everywhere on Ω , while we have equality in the right inequality
in (3) if and only if f (t) = v almost everywhere on Ω.

Using Theorem 1.6 we can define the two Matić-Pečarić functionals:

Mf ,μ,u(ϕ) =
1

μ(Ω)

∫
Ω

ϕ( f )dμ −ϕ(u)−ϕ ′
+(u)(x −u) (4)

and

M f ,μ,v(ϕ) = ϕ(v)+
1

μ(Ω)

∫
Ω

( f − v)ϕ ′
+( f )dμ − 1

μ(Ω)

∫
Ω

ϕ( f )dμ . (5)

REMARK 1.7. As is pointed out in [5], if
∫
Ω

ϕ ′
+( f )dμ �= 0 and if

v =
∫
Ω

fϕ ′
+( f )dμ

/∫
Ω

ϕ ′
+( f )dμ

belongs to I, then the right inequality in (3) reduces to Slater’s inequality (see [8]):

1
μ(Ω)

∫
Ω

ϕ( f )dμ � ϕ

⎛
⎝∫

Ω

fϕ ′
+( f )dμ

/∫
Ω

ϕ ′
+( f )dμ

⎞
⎠ .
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REMARK 1.8. If we take u = v = x in (3) then we get Dragomir-Goh inequality
(see [4]):

0 � y −ϕ(x) � 1
μ(Ω)

∫
Ω

( f − v)ϕ ′
+( f )dμ .

REMARK 1.9. Minimization of the functional (5) over v ∈ I is also considered in
[5]. To be quite precise, we have to assume, additionally, that the function ϕ : I → R is
differentiable on I. Then

v �→ ϕ(v)+
1

μ(Ω)

∫
Ω

( f − v)ϕ ′( f )dμ − 1
μ(Ω)

∫
Ω

ϕ( f )dμ

attains its global minimum for at least one v ∈ I which satisfies

ϕ ′(v) =
1

μ(Ω)

∫
Ω

ϕ ′( f )dμ .

When ϕ is strictly convex, v is, obviously, uniquely defined with

v = (ϕ ′)−1

⎛
⎝ 1

μ(Ω)

∫
Ω

ϕ ′( f )dμ

⎞
⎠ .

In this paper we will compare the aforementioned functionals on the class of 3-
convex functions at a point that was introduced in [1]. From the obtained inequalities
we will construct linear functionals for which we will prove mean value results and use
them to construct new families of exponentially convex functions.

2. Main results

Throughout this section, I denotes an interval (open, closed or semi-open in either
direction) in R. Also, for further convenience, we denote by en the functions en(t) =
tn, n ∈ N. The following is a class of functions introduced in [1].

DEFINITION 2.1. Let ϕ : I → R and c ∈ I◦ , where I◦ is the interior of I . We say
that ϕ ∈ K c

1 (I) (resp. ϕ ∈ K c
2 (I)) if there exists a constant Kϕ such that the function

Φ(x) = ϕ(x)− Kϕ
2 e2(x) is concave (resp. convex) on I ∩ (−∞,c] and convex (resp.

concave) on I∩ [c,∞) .

REMARK 2.2. A function ϕ ∈ K c
1 (I) is said to be 3-convex at point c . It was

shown in [1] that a function ϕ is 3-convex on an interval if and only if it is 3-convex
at every point of the interval. It was also shown in [1] that if ϕ ′′(c) exists, then Kϕ =
ϕ ′′(c) .

The following theorem is our main result.
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THEOREM 2.3. Let x= (x1, . . . ,xn),y =(y1, . . . ,ym) be two real monotonic tuples
from I such that

max(x1, . . . ,xn) � c � min(y1, . . . ,ym), (6)

and p = (p1, . . . , pn),q = (q1, . . . ,qm) are real tuples such that

0 � Pk � Pn, Pn > 0, (k = 1, . . . ,n);
0 � Qi � Qm, Qm > 0 (i = 1, . . . ,m).

(7)

If Ax,p(e2) = Ay,q(e2) , i. e.

1
Pn

n

∑
i=1

pix
2
i −
(

1
Pn

n

∑
i=1

pixi

)2

=
1

Qm

m

∑
i=1

qiy
2
i −
(

1
Qm

m

∑
i=1

qiyi

)2

, (8)

then for every ϕ ∈ K c
1 (I)

Ax,p(ϕ) � Ay,q(ϕ). (9)

Proof. Let Φ(x) = ϕ(x)− Kϕ
2 e2(x) , where Kϕ is the constant from Definition 2.1.

Since Φ : I∩ (−∞,c] → R is concave, Jensen-Steffensen’s inequality (1) implies

0 � Ax,p(−Φ) = −Ax,p(ϕ)+
Kϕ

2
Ax,p(e2). (10)

Similarly, Φ : I∩ [c,∞) → R is convex, so

0 � Ay,q(Φ) = Ay,q(ϕ)− Kϕ

2
Ay,q(e2). (11)

Adding up (10) and (11) we obtain

0 =
Kϕ

2
(Ay,q(e2)−Ax,p(e2)) � Ay,q(ϕ)−Ax,p(ϕ),

which completes the proof. �

REMARK 2.4. It is obvious from the proof that we have, in fact, proven

Ax,p(ϕ) � Kϕ

2
Ax,p(e2) =

Kϕ

2
Ay,q(e2) � Ay,q(ϕ).

Furthermore, inequality (9) holds if equality (8) is replaced by the weaker condition

Kϕ (Ay,q(e2)−Ax,p(e2)) � 0.

Since ϕ ′′−(c) � Kϕ � ϕ ′′
+(c) (see [1]), if, additionally, ϕ is convex (resp. concave), this

condition can be further weakened to Ay,q(e2)−Ax,p(e2) � 0 (resp. � 0).

By the same reasoning we can compare the Jensen-Steffensen functionals under
the Jensen-Boas conditions.
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THEOREM 2.5. Let c ∈ I◦ and let f : [a1,b1] → R and g : [a2,b2] → R be con-
tinuous monotonic functions (either increasing or decreasing) with ranges I∩ (−∞,c]
and I∩ [c,∞) respectively. Let λ : [a1,b1] → R and μ : [a2,b2] → R be continuous or
of bounded variation satisfying

λ (a1) � λ (x1) � λ (y1) � λ (x2) � · · · � λ (yn−1) � λ (xn) � λ (b1)

for all xk ∈ (yk−1,yk) (y0 = a1,yn = b1) and λ (b1) > λ (a1) and

μ(a2) � μ(u1) � μ(v1) � μ(u2) � · · · � μ(vm−1) � μ(um) � μ(b2)

for all uk ∈ (vk−1,vk) (v0 = a2,vm = b2) and μ(b2) > μ(a2).
If ϕ ∈ K c

1 (I) is continuous and Bf ,λ
a1,b1

(e2) = Bg,μ
a2,b2

(e2) , i. e.

b1∫
a1

dλ (x)
b1∫
a1

f 2(x)dλ (x)−
(

b1∫
a1

f (x)dλ (x)

)2

(
b1∫
a1

dλ (x)

)2

=

b2∫
a2

dμ(x)
b2∫
a2

g2(x)dμ(x)−
(

b2∫
a2

g(x)dμ(x)

)2

(
b2∫
a2

dμ(x)

)2 (12)

then
B f ,λ

a1,b1
(ϕ) � Bg,μ

a2,b2
(ϕ). (13)

Using the Jensen-Brunk inequality we have the following theorem.

THEOREM 2.6. Let c ∈ I◦ and let f : [a1,b1] → R and g : [a2,b2] → R be con-
tinuous increasing functions with ranges I ∩ (−∞,c] and I ∩ [c,∞) respectively. Let
λ : [a1,b1] → R and μ : [a2,b2] → R be continuous or of bounded variation satisfying
λ (b1) > λ (a1), μ(b2) > μ(a2). Let

x∫
a1

( f (x)− f (t))dλ (t) � 0 and

b1∫
x

( f (x)− f (t))dλ (t) � 0

for all x ∈ [a1,b1], and let

x∫
a2

(g(x)−g(t))dμ(t) � 0 and

b2∫
x

(g(x)−g(t))dμ(t) � 0

for all x ∈ [a2,b2].
If (12) is satisfied, then for any continuous ϕ ∈ K c

1 (I) inequality (13) holds.
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Using Theorem 1.5 we have the same comparison for functionals.

THEOREM 2.7. Let c∈ I◦ and let f : [a1,b1]→R and g : [a2,b2]→R be contin-
uous functions with ranges I∩ (−∞,c] and I∩ [c,∞) respectively. Let λ : [a1,b1] → R

and μ : [a2,b2] → R be continuous or of bounded variation satisfying λ (b1) > λ (a1),
μ(b2) > μ(a2). Let∣∣∣∣∣∣

b1∫
a1

( f (x)− f (t))dλ (t)

∣∣∣∣∣∣�
b1∫

a1

| f (x)− f (t)|dλ (t)

for all x ∈ [a1,b1] and∣∣∣∣∣∣
b2∫

a2

(g(x)−g(t))dμ(t)

∣∣∣∣∣∣�
b2∫

a2

|g(x)−g(t)|dμ(t) � 0

for all x ∈ [a2,b2].
If (12) is satisfied, then for any continuous ϕ ∈ K c

1 (I) inequality (13) holds.

Now we compare the Matić-Pečarić functionals.

THEOREM 2.8. Let (Ω1,A1,μ1) and (Ω2,A2,μ2) be two measure spaces with
0 < μi(Ωi) < ∞, i = 1,2 and let ϕ ∈ K c

1 (I), I an open interval. Let f : Ω1 → I ∩
(−∞,c) be a function such that f ,ϕ( f ),ϕ ′

+( f ) and fϕ ′
+( f ) are all in L1(μ1), let

g : Ω2 → I∩(c,∞) be a function such that g,ϕ(g),ϕ ′
+(g) and gϕ ′

+(g) are all in L1(μ2)
and let u ∈ I∩ (−∞,c) and v ∈ I∩ (c,∞). If

u2 +
1

μ1(Ω1)

∫
Ω1

( f −2u) f dμ1 = v2 +
1

μ2(Ω2)

∫
Ω2

(g−2v)gdμ2, (14)

then
Mf ,μ1,u(ϕ) � Mg,μ2,v(ϕ).

and
M f ,μ1,u(ϕ) � Mg,μ2,v(ϕ).

Proof. Notice that

Mf ,μ1,u(e2) = M f ,μ1,u(e2) = u2 +
1

μ1(Ω1)

∫
Ω1

( f −2u) f dμ1

and

Mg,μ2,v(e2) = Mg,μ2,v(e2) = v2 +
1

μ2(Ω2)

∫
Ω2

(g−2v)gdμ2.

Therefore, condition (14) is equivalent to the condition Mf ,μ1,u(e2) = Mg,μ2,v(e2) and
to the condition M f ,μ1,u(e2) = Mg,μ2,v(e2) . The rest of the proof follows the lines of
the proof of Theorem 2.3. �
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REMARK 2.9. Conditions (14) has a more general form than condition (12). In-
deed, if we put u = 1

μ1(Ω1)
∫

Ω1

f dμ1 and v = 1
μ2(Ω2)

∫
Ω2

gdμ2 in (14), then we get (12).

Using Theorem 2.8 and Remark 1.7 we get the following corollary.

COROLLARY 2.10. Let all of the assumptions of Theorem 2.8 be satisfied with

u =
∫

Ω1

fϕ ′
+( f )dμ1

/∫
Ω1

ϕ ′
+( f )dμ1,

v =
∫

Ω2

gϕ ′
+(g)dμ2

/∫
Ω2

ϕ ′
+(g)dμ2,

where we assume
∫

Ω1

ϕ ′
+( f )dμ1 �= 0,

∫
Ω2

ϕ ′
+(g)dμ2 �= 0 . Then

ϕ

⎛
⎝∫

Ω1

fϕ ′
+( f )dμ1

/∫
Ω1

ϕ ′
+( f )dμ1

⎞
⎠− 1

μ1(Ω1)

∫
Ω1

ϕ( f )dμ1

� ϕ

⎛
⎝∫

Ω2

gϕ ′
+(g)dμ2

/∫
Ω2

ϕ ′
+(g)dμ2

⎞
⎠− 1

μ2(Ω2)

∫
Ω2

ϕ( f )dμ2. (15)

Similarly, using Theorem 2.8 and Remark 1.9 we get the following corollary.

COROLLARY 2.11. Let all of the assumptions of Theorem 2.8 be satisfied with ϕ
strictly convex and

u = (ϕ ′)−1

⎛
⎝ 1

μ1(Ω1)

∫
Ω1

ϕ ′( f )dμ1

⎞
⎠ ,

v = (ϕ ′)−1

⎛
⎝ 1

μ2(Ω2)

∫
Ω2

ϕ ′(g)dμ2

⎞
⎠ .

If ũ ∈ I∩ (−∞,c) and ṽ ∈ I∩ (c,∞) are any other two points satisfying M f ,μ1,ũ(e2) =
Mg,μ2,ṽ(e2) , then

1
μ2(Ω2)

∫
Ω2

ϕ(g)dμ2− 1
μ1(Ω1)

∫
Ω1

ϕ( f )dμ1

� ϕ(v)+
1

μ2(Ω2)

∫
Ω2

(g− v)ϕ ′
+(g)dμ2 −ϕ(u)− 1

μ1(Ω1)

∫
Ω1

( f −u)ϕ ′
+( f )dμ1

� ϕ(ṽ)+
1

μ2(Ω2)

∫
Ω2

(g− ṽ)ϕ ′
+(g)dμ2 −ϕ(ũ)− 1

μ1(Ω1)

∫
Ω1

( f − ũ)ϕ ′
+( f )dμ1. (16)
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REMARK 2.12. We observe that inequalities (15) and (16) are not linear over ϕ
anymore.

3. Mean value results

In this section we will construct new linear functionals as certain differences of
the linear functionals from the previous section. We will make use of the linearity of
these newly introduced functionals to derive two mean value results.

For tuples x,p ∈ R
n and y,q ∈ R

m that satisfy the assumptions of Theorem 2.3,
i. e. such that x ∈ In and y ∈ Im are monotonic and (6), (7) and (8) hold, we define the
linear functional

Λ1(ϕ) = Λ1(ϕ ;x,p,y,q) = Ay,q(ϕ)−Ax,p(ϕ). (17)

The linear functional Λ1 depends on the choice of the tuples x,p,y and q , but we will
omit them from the notation when they are clear from the context. By Theorem 2.3, for
every continuous ϕ ∈ K c

1 (I) we have Λ1(ϕ) � 0.
Similarly, under the assumptions of Theorem 2.5 (or Theorem 2.6 or Theorem

2.7), we define the linear operator

Λ2(ϕ) = Λ2(ϕ ; f ,λ ,a1,b1,g,μ ,a2,b2) = Bg,μ
a2,b2

(ϕ)−Bf ,λ
a1,b1

(ϕ);

under the assumptions of Theorem 2.8, we define the linear operators

Λ3(ϕ) = Λ3(ϕ ; f ,μ1,u1,g,μ2,u2) = Mg,μ2,u2(ϕ)−Mf ,μ1,u1(ϕ)

and

Λ4(ϕ) = Λ4(ϕ ; f ,μ1,v1,g,μ2,v2) = Mg,μ2,v2(ϕ)−M f ,μ1,v1(ϕ).

We will state the mean value results for the linear functional Λ1 , but analogous
results hold for the remaining linear functionals Λi , i = 2,3,4. The first mean value
result is of Lagrange type.

THEOREM 3.1. Let −∞ < a < c < b < ∞ and I = [a,b] , let x,p,y and q be as in
Theorem 2.3 and let Λ1 be given by (17). Then for ϕ ∈C3([a,b]) there exists ξ ∈ [a,b]
such that

Λ1(ϕ) =
ϕ ′′′(ξ )

6

⎡
⎣ 1

Qm

m

∑
i=1

qiy
3
i −
(

1
Qm

m

∑
i=1

qiyi

)3

− 1
Pn

n

∑
i=1

pix
3
i +

(
1
Pn

n

∑
i=1

pixi

)3
⎤
⎦ . (18)
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Proof. Since ϕ ∈C3([a,b]) , there exist m = min
x∈[a,b]

ϕ ′′′(x) and M = max
x∈[a,b]

ϕ ′′′(x) .

The functions

ϕ1(x) = ϕ(x)− m
6

e3(x),

ϕ2(x) =
M
6

e3(x)−ϕ(x)

satisfy ϕ ′′′
i (x) � 0, i = 1,2, so they are three times differentiable 3-convex functions.

Therefore, ϕ1,ϕ2 ∈K c
1 (I) (see Remark 2.2) and by Theorem 2.3 we have Λ1(ϕi) � 0,

i = 1,2, so
m
6

Λ1(e3) � Λ1(ϕ) � M
6

Λ1(e3). (19)

Since e3 is 3-convex, by Theorem 2.3 we have

0 � Λ1(e3) =
1

Qm

m

∑
i=1

qiy
3
i −
(

1
Qm

m

∑
i=1

qiyi

)3

− 1
Pn

n

∑
i=1

pix
3
i +

(
1
Pn

n

∑
i=1

pixi

)3

.

If Λ1(e3) = 0, then (19) implies Λ1(ϕ) = 0 and (18) holds for every ξ ∈ [a,b] . Other-
wise, dividing (19) by 0 < Λ1(e3)/6 we get

m � 6Λ1(ϕ)
Λ1(e3)

� M,

so continuity of ϕ ′′′ insures existence of ξ ∈ [a,b] satisfying (18). �
The next theorem is a Cauchy type mean value result.

THEOREM 3.2. Let c, I,x,p,y,q and Λ1 be as in Theorem 3.1 and let ϕ ,ρ ∈
C3([a,b]) . If Λ1(ρ) �= 0 , then there exists ξ ∈ [a,b] such that either

Λ1(ϕ)
Λ1(ρ)

=
ϕ ′′′(ξ )
ρ ′′′(ξ )

,

or ϕ ′′′(ξ ) = ρ ′′′(ξ ) = 0 .

Proof. Define τ ∈C3([a,b]) by τ(x) = αϕ(x)−β ρ(x), where α = Λ1(ρ) , β =
Λ1(ϕ). Due to the linearity of Λ1 we have Λ1(τ) = 0. Now, by Theorem 3.1 there
exist ξ ,ξ1 ∈ [a,b] such that

0 = Λ1(τ) =
τ ′′′(ξ )

6
Λ1(e3),

0 �= Λ1(ρ) =
ρ ′′′(ξ1)

6
Λ1(e3).

Therefore, Λ1(e3) �= 0 and

0 = τ ′′′(ξ ) = αϕ ′′′(ξ )−β ρ ′′′(ξ ),

which gives the claim of the theorem. �
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4. Exponential convexity

The linear functionals introduced in the previous section will be used in the con-
struction of new families of exponentially convex functions and some related results
will be derived. We will first start with some basic definitions and results on exponen-
tial convexity.

DEFINITION 4.1. A function ψ : I → R , where I is an interval in R , is k -
exponentially convex in the Jensen sense on I if

k

∑
i, j=1

ξiξ jψ
(

xi + x j

2

)
� 0

holds for all choices ξi ∈ R and xi ∈ I , i = 1, . . . ,k .
A function ψ : I → R is k -exponentially convex on I if it is k -exponentially

convex in the Jensen sense and continuous on I .

REMARK 4.2. It is clear from the definition that 1-exponentially convex func-
tions in the Jensen sense are in fact non-negative functions.

Also, k -exponentially convex functions in the Jensen sense are n -exponentially
convex in the Jensen sense for every n � k , n ∈ N .

DEFINITION 4.3. A function ψ : I → R is exponentially convex in the Jensen
sense on I if it is k -exponentially convex in the Jensen sense on I for every k ∈ N .
A function ψ : I → R is exponentially convex on I if it is exponentially convex in the
Jensen sense and continuous on I .

REMARK 4.4. A function ψ : I → R is log-convex in the Jensen sense, i. e.

ψ
(

x1 + x2

2

)2

� ψ(x1)ψ(x2), for all x1,x2 ∈ I, (20)

if and only if

ξ 2
1 ψ(x1)+2ξ1ξ2ψ

(
x1 + x2

2

)
+ ξ 2

2 ψ(x2) � 0

holds for every ξ1,ξ2 ∈ R and x1,x2 ∈ I , i. e., if and only if ψ is 2-exponentially
convex in the Jensen sense. If ψ(x1) = 0 for some x1 and [a,b] ⊂ I is an arbitrary
interval containing x1 , then it follows from (20) and non-negativity of ψ (see Remark
4.2) that ψ vanishes on [a1,b1] , where a1 = (a+x1)/2 and b1 = (x1 +b)/2. Applying
the same reasoning to intervals [a,a1] and [b1,b] we obtain sequences an ↘ a and
bn ↗ b with ψ vanishing on [an,bn] . Thus ψ is zero on (a,b) and a function that
is 2-exponentially convex in the Jensen sense is either identically equal to zero or it is
strictly positive and log-convex in the Jensen sense.

The following lemma is equivalent to the definition of convex functions (see [7,
pg 2]).
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LEMMA 4.5. A function ψ : I → R is convex if and only if the inequality

(x3− x2)ψ(x1)+ (x1− x3)ψ(x2)+ (x2− x1)ψ(x3) � 0

holds for all x1,x2,x3 ∈ I such that x1 < x2 < x3 .

We will also need the following result (see [7, pg 2]).

LEMMA 4.6. If ψ is a convex function on an interval I and if x1 � y1 , x2 � y2 ,
x1 �= x2 and y1 �= y2 , xi,yi ∈ I for i = 1,2 , then the following inequality holds

ψ(x2)−ψ(x1)
x2 − x1

� ψ(y2)−ψ(y1)
y2 − y1

. (21)

If the function ψ is concave then the sign of the above inequality is reversed.

For the rest of the paper we will state results for the linear functional Λ1 , but
analogous results hold for the remaining linear functionals Λi , i = 2,3,4. In what
follows, the n th order divided difference of a function ϕ at n + 1 mutually distinct
points x0,x1, . . . ,xn is denoted by [x0,x1, . . . ,xn]ϕ and defined recursively by

[xi]ϕ = ϕ(xi), i = 0,1, . . . ,n

and

[x0,x1, . . . ,xn]ϕ =
[x1,x2, . . . ,xn]ϕ − [x0,x1, . . . ,xn−1]ϕ

xn − x0
.

A function ϕ : I → R is said to be n -convex if [x0,x1, . . . ,xn]ϕ � 0 for all choices of
n+1 distinct points x0, . . . ,xn ∈ I . In case n = 2 we obtain convex functions, i. e. 2-
convex functions are just convex functions. The next theorem will enable us to construct
families of exponentially convex functions.

THEOREM 4.7. Let c, I,x,p,y and q be as in Theorem 2.3 and let Λ1 be given
by (17). Furthermore, let ϒ = {ϕt : I → R | t ∈ J} ⊂ K c

1 (I) , where J is an interval in
R , be a family of 3 -convex functions at point c ∈ I◦ such that for every three mutually
different points x0,x1,x2 ∈ I∩ (−∞,c] and y0,y1,y2 ∈ I∩ [c,∞) the mappings

t �→ −[x0,x1,x2]ϕt +
1
2
Kϕt

and

t �→ [y0,y1,y2]ϕt − 1
2
Kϕt

are k -exponentially convex. Then the mapping t �→ Λ1(ϕt) is k -exponentially convex
in the Jensen sense on J . If the mapping t �→ Λ1(ϕt) is continuous on J , then it is
k -exponentially convex on J .
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Proof. For ξi ∈ R and ti ∈ J , i = 1, . . . ,k , we define the function

ϕ(x) =
k

∑
i, j=1

ξiξ jϕ ti+t j
2

(x)

and let

Kϕ =
k

∑
i, j=1

ξiξ jKϕ ti+t j
2

, Φ(x) = ϕ(x)− Kϕ

2
x2.

Due to the assumptions, for x0,x1,x2 ∈ I ∩ (−∞,c] the mapping t �→ −[x0,x1,x2]ϕt +
1
2Kϕt = −[x0,x1,x2]Φt is k -exponentially convex in the Jensen sense. Therefore

[x0,x1,x2]Φ = [x0,x1,x2]ϕ − 1
2
Kϕ

=
k

∑
i, j=1

ξiξ j

(
[x0,x1,x2]ϕ ti+t j

2
− 1

2
Kϕ ti+t j

2

)
=

k

∑
i, j=1

ξiξ j[x0,x1,x2]Φ ti+t j
2

� 0.

Similarly, [y0,y1,y2]Φ � 0 for y0,y1,y2 ∈ I∩ [c,∞) and this implies that ϕ is 3-convex
at c . Therefore, by Theorem 2.3

0 � Λ1(ϕ) =
k

∑
i, j=1

ξiξ jΛ1(ϕ ti+t j
2

).

Hence, the mapping t �→ Λ1(ϕt) is k -exponentially convex. If it is also continuous, it
is k -exponentially convex by definition. �

If the assumptions of Theorem 4.7 hold for all k ∈ N , then we immediately get the
following corollary.

COROLLARY 4.8. Let c, I,x,p,y,q and Λ1 be as in Theorem 4.7. Furthermore,
let ϒ = {ϕt : I → R | t ∈ J} ⊂ K c

1 (I) , where J is an interval in R , be a family of
3 -convex functions at point c ∈ I◦ such that for every three mutually different points
x0,x1,x2 ∈ I∩ (−∞,c] and y0,y1,y2 ∈ I∩ [c,∞) the mappings

t �→ −[x0,x1,x2]ϕt +
1
2
Kϕt

and

t �→ [y0,y1,y2]ϕt − 1
2
Kϕt

are exponentially convex. Then the mapping t �→ Λ1(ϕt ) is exponentially convex in the
Jensen sense on J . If the mapping t �→ Λ1(ϕt ) is continuous on J , then it is exponen-
tially convex on J .

Another corollary of Theorem 4.7 is the following.
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COROLLARY 4.9. Let c, I,x,p,y,q and Λ1 be as in Theorem 4.7. Furthermore,
let ϒ = {ϕt : I → R | t ∈ J} ⊂ K c

1 (I) , where J is an interval in R , be a family of
3 -convex functions at point c ∈ I◦ such that for every three mutually different points
x0,x1,x2 ∈ I∩ (−∞,c] and y0,y1,y2 ∈ I∩ [c,∞) the mappings

t �→ −[x0,x1,x2]ϕt +
1
2
Kϕt

and

t �→ [y0,y1,y2]ϕt − 1
2
Kϕt

are 2 -exponentially convex in the Jensen sense. Then the following statements hold:

(i) If the mapping t �→ Λ1(ϕt ) is continuous on J , then for r,s,t ∈ J such that r <
s < t we have

Λ1(ϕs)t−r � Λ1(ϕr)t−sΛ1(ϕt )s−r. (22)

(ii) If the mapping t �→ Λ1(ϕt ) is strictly positive and differentiable on J , then for
all s, t,u,v ∈ J such that s � u and t � v we have

μs,t(ϒ) � μu,v(ϒ),

where

μs,t(ϒ) =

⎧⎪⎪⎨
⎪⎪⎩
(

Λ1(ϕs)
Λ1(ϕt)

) 1
s−t

, s �= t,

exp

(
d
ds (Λ1(ϕs))

Λ1(ϕs)

)
, s = t.

(23)

Proof. (i) By Theorem 4.7 the mapping t �→ Λ1(ϕt) is 2-exponentially convex.
Hence, by Remark 4.4, this mapping is either identically equal to zero, in which case
inequality (22) holds trivially with zeros on both sides, or it is strictly positive and log-
convex. Therefore, for r,s,t ∈ J such that r < s < t Lemma 4.5 with g(t) = logΛ1(ϕt)
gives

(t − s) logΛ1(ϕr)+ (r− t) logΛ1(ϕs)+ (s− r) logΛ1(ϕt) � 0.

This is equivalent to inequality (22).
(ii) By (i) , the mapping t �→ Λ1(ϕt) is log-convex on J , which means that the

function t �→ logΛ1(ϕt ) is convex on J . Hence, by using Lemma 4.6 with s � u , t � v ,
s �= t , u �= v , we obtain

logΛ1(ϕs)− logΛ1(ϕt)
s− t

� logΛ1(ϕu)− logΛ1(ϕv)
u− v

,

that is,
μs,t(ϒ) � μu,v(ϒ).

Finally, the limiting cases s = t are u = v are obtained by applying standard continuity
argument. �
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As an example of application of the above results, consider now the family of
functions

ϒ1 = {ϕt : I → R | t ∈ R}, I ⊂ (0,∞),

defined by

ϕt(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
t(t−1)(t−2) x

t , t �= 0,1,2

1
2 lnx, t = 0,

−x lnx, t = 1,
1
2x2 lnx, t = 2.

(24)

Since ϕ ′′′
t (x) = xt−3 � 0, the functions ϕt are three times differentiable 3-convex func-

tions. Therefore, ϕt ∈ K c
1 (I) for every c ∈ I◦ and Kϕt = ϕ ′′

t (c) (see Remark 2.2).
Moreover, the function

ϕ(x) =
k

∑
i, j=1

ξiξ jϕ ti+t j
2

(x)

satisfies

ϕ ′′′(x) =
k

∑
i, j=1

ξiξ jϕ ′′′
ti+t j

2

(x) =

(
k

∑
i=1

ξie
ti−3

2 lnx

)2

� 0,

so ϕ is also in K c
1 (I) with Kϕ = ϕ ′′(c) . Furthermore, since Φ = ϕ − Kϕ

2 e2 is con-
vex on I∩ [c,∞) and Kϕ = ∑k

i, j=1 ξiξ jKϕ ti+t j
2

, for every three mutually different points

y0,y1,y2 ∈ I∩ [c,∞) we have

0 � [y0,y1,y2]Φ = [y0,y1,y2]ϕ − 1
2
Kϕ =

k

∑
i, j=1

ξiξ j

(
[y0,y1,y2]ϕ ti+t j

2
− 1

2
Kϕ ti+t j

2

)
.

Therefore, the mapping t �→ [y0,y1,y2]ϕt − 1
2Kϕt is k -exponentially convex in the Jensen

sense. Analogously one can show that the same holds for the mapping t �→−[x0,x1,x2]ϕt

+ 1
2Kϕt . As this holds for all k ∈ N , we see that the family ϒ1 satisfies the assumptions

of Corollary 4.8. Hence, by Corollary 4.8, the mapping t �→ Λ1(ϕt ) is exponentially
convex in the Jensen sense. It is straightforward to check that it is also continuous, so
the mapping t �→ Λ1(ϕt) is exponentially convex.

Applying Theorem 3.2 for the functions ϕ = ϕs and ρ = ϕt given by (24) and
defined on a segment I = [a,b] ⊂ (0,∞) , we conclude that there exist ξ ∈ I such that

ξ =
(

ϕ ′′′
s

ϕ ′′′
t

)−1(Λ1(ϕs)
Λ1(ϕt)

)
=
(

Λ1(ϕs)
Λ1(ϕt)

) 1
s−t

, s �= t.
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Moreover, μs,t(ϒ1) given by (23) for the family ϒ1 can be calculated in the limiting
cases s → t as well and it is equal to

μs,t(ϒ1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Λ1(ϕs)
Λ1(ϕt)

) 1
s−t

, s �= t,

exp
(

2Λ1(ϕsϕ0)
Λ1(ϕ0)

− 3s2−6s+2
s(s−1)(s−2)

)
, s = t �= 0,1,2,

exp
(

Λ1(ϕ2
0 )

Λ1(ϕ0)
+ 3

2

)
, s = t = 0,

exp
(

Λ1(ϕ0ϕ1)
Λ1(ϕ1)

)
, s = t = 1,

exp
(

Λ1(ϕ0ϕ2)
Λ1(ϕ2)

− 3
2

)
, s = t = 2.

By Corollary 4.9 (ii) , μs,t(ϒ1) are monotone in parameters s and t .
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Faculty of Mechanical Engineering and Naval Architecture

University of Zagreb
Croatia

e-mail: julije@math.hr

Josip Pečarić
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