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Abstract. In this paper we show that each strongly λ -convex function f : D → R with modulus
c > 0 , where D is an nonempty convex subset of inner product space X with norm ‖·‖ , must
by of the form g+ ‖·‖2 , where g is an λ -convex function. Moreover, involving the notion of
strongly λ -convexity we get a new characterization of inner product space.

1. Introduction

Let (X ,‖·‖) be a real normed space, D stand for a convex subset of X and c be a
positive constant. A function f : D → R is called strongly convex with modulus c if

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− ct(1− t)‖ x− y‖2 , (1)

for all x,y ∈ D and t ∈ (0,1) .
Such functions play an important role in optimization theory and have been intro-

duced by Polyak in [13]. It has been also investigated by many other authors, among
other, see [9], [10], [14], [15].

A function f : D → R is called strongly λ -convex with modulus c (c > 0) if

f (λ (x,y)x+(1−λ (x,y))y)

� λ (x,y) f (x)+ (1−λ (x,y)) f (y)− cλ (x,y)(1−λ (x,y))‖ x− y‖2 , (2)

for all x,y ∈D , where λ : D2 → (0,1) is a fixed function. If we take c = 0, then we get
defining inequality of λ -convex functions. In particular, λ -convex functions have been
investigated in [2] and [12]. Notice, that each strongly convex function with modulus c
is strongly λ -convex with modulus c with arbitrary function λ , and for λ ≡ 1/2 we
get strongly Jensen convex function with modulus c .

In [11] the authors present relations between strongly convex (strongly Jensen
convex) and convex (Jensen convex) functions. They give also a new characterization
of inner product space which enriches the large collection of such characterization (cf.
[1], [4], [5], [6], [7], [8]). The following result gives a generalization of the results
stated in [11].
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2. Main result

At the beginning we present three useful lemmas.
Using elementary properties of an inner product we get Lemma 1.

LEMMA 1. Let (X ,‖·‖) be a real inner product space, then

‖tx+(1− t)y‖2 = t ‖x‖2 +(1− t)‖y‖2 − t(1− t)‖x− y‖2 , (3)

for all x,y ∈ D and t ∈ R .

Proof. Observe that for all x,y ∈ D and t ∈ R we have

t ‖x‖2 +(1− t)‖y‖2− t(1− t)‖x− y‖2

= t ‖x‖2 +(1− t)‖y‖2− t(1− t)(‖x‖2 −2〈x,y〉+‖y‖2)

= (t− t(1− t))‖x‖2 +2t(1− t)〈x,y〉+((1− t)− t(1− t))‖y‖2

= t2 ‖x‖2 +2t(1− t)〈x,y〉+(1− t)2‖y‖2

= ‖tx+(1− t)y‖2 .

Which was to be proved. �

In the next lemma we have a characterization of strongly λ -convex functions de-
fined on a convex subset of a real inner product space.

LEMMA 2. Let (X ,‖·‖) be a real inner product space, D be a convex subset of X ,
c be a positive constant and λ : D2 → (0,1) be a fixed function. A function f : D → R

is strongly λ -convex with modulus c if and only if the function g = f − c‖·‖2 is λ -
convex.

Proof. Assume that f : D→R is strongly λ -convex with modulus c . Multiplying
(3), with t = λ (x,y) , by −c and adding with both sides to the inequality (2), we get
an equivalent inequality from which follows that function g = f − c‖·‖2 is λ -convex.
The proof is finished. �

In [2] the author presents an example of a λ -convex function which is not con-
vex, nor is it Jensen convex. Therefore, considering additionally Lemma 2 we get an
example of a strongly λ -convex function with modulus c which is not strongly convex
function with modulus c , nor is it strongly Jensen convex function with modulus c .
The following lemma presents some relation between strongly λ -convex function with
modulus c and strongly convex function with modulus c and it is the analogous result
that we can find in [3] for convex functions.

LEMMA 3. Let (X ,‖·‖) be a real inner product space, D be a convex subset of X ,
c be a positive constant and λ : D2 → (0,1) be a fixed function. If a function f : D→R

is strongly λ -convex with modulus c and continuous, then it must be strongly convex
with modulus c.
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Proof. Suppose that f is not strongly convex with modulus c , i.e.

f (tx+(1− t)y) > t f (x)+ (1− t) f (y)− ct(1− t)‖x− y‖2 , (4)

for some x,y ∈ D and t ∈ (0,1) .
Fix x,y ∈ D such that (4) holds for some t ∈ (0,1) . Define function g : [0,1]→ R

by the formula

g(t) = f (tx+(1− t)y)− t f (x)− (1− t) f (y)+ ct(1− t)‖x− y‖2 .

Define set A as an inverse image of the set (0,∞) by function g ,

A = {t ∈ [0,1] : g(t) > 0} = g−1((0,∞)).

Because function g is continuous , then A is open in [0,1] and obviously nonempty.
Moreover, g(0) = g(1) = 0. Thus there exist t1,t2 ∈ [0,1] (t1 < t2) such, that

g(t1) = g(t2) = 0
and

g(t) > 0,
(5)

for all t ∈ (t1, t2) . Fix t1 , t2 such, that (5) hold and adopt the following notation

x1 = t1x+(1− t1)y, y1 = t2x+(1− t2)y. (6)

and
t0 = λ (x1,y1)t1 +(1−λ (x1,y1))t2. (7)

Now notice that

t0x+(1− t0)y = λ (x1,y1)x1 +(1−λ (x1,y1))y1 (8)

and
g(t0) > 0.

From (5), (6) and the definition of function g we conclude that

f (x1) = t1 f (x)+ (1− t1) f (y)− ct1(1− t1)‖x− y‖2 (9)

and
f (y1) = t2 f (x)+ (1− t2) f (y)− ct2(1− t2)‖x− y‖2 ,

Using elementary calculations we get this equality

ab(1−b)+ (1−a)c(1− c)+a(1−a)(b− c)2 = (ab+(1−a)c)(1− (ab+(1−a)c)),
(10)

for all a,b,c ∈ R .
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Finally, to simplify the notation we can write λ instead of λ (x,y) and from (8),
(9), (10) we obtain

f (λx1 +(1−λ )y1)−λ f (x1)− (1−λ ) f (y1)+ cλ (1−λ )‖x1− y1‖2

= f (λx1 +(1−λ )y1)− (λ t1 +(1−λ )t2) f (x)− (1− (λ t1 +(1−λ )t2)) f (y)

+c(λ t1(1− t1)+ (1−λ )t2(1− t2))‖x− y‖2 + cλ (1−λ )‖(t1 − t2)(x− y)‖2

= f (t0x+(1− t0)y)− t0 f (x)− (1− t0) f (y)

+c(λ t1(1− t1)+ (1−λ )t2(1− t2)+ λ (1−λ )(t1− t2)2)‖x− y‖2

= f (t0x+(1− t0)y)− t0 f (x)− (1− t0) f (y)+ ct0(1− t0)‖x− y‖2 = g(t0) > 0.

Which means that

f (λx1 +(1−λ )y1) > λ f (x1)+ (1−λ ) f (y1)− cλ (1−λ )‖x1 − y1‖2

and we have a contradiction with strong λ -convexity of the function f . Thus the
function f must by strongly convex. This completes the proof. �

Similarly as in [11] we show, that the assumption that X is an inner product space
is necessary in Lemma 2. We conclude this from the following characterization of inner
product spaces.

THEOREM 1. Let (X ,‖·‖) be a real normed space. The following conditions are
equivalent to each other:

1. For all c > 0 , convex subsets D of X , functions λ : D2 → (0,1) and for all
functions f : D → R , f is strongly λ -convex with modulus c if and only if g =
f − c‖·‖2 is λ -convex;

2. For all functions λ : X2 → (0,1) the function ‖·‖2 : X → R is strongly λ -convex
with modulus 1 ;

3. (X ,‖·‖) is an inner product space.

Proof. To proof implication (1)⇒(2) we take g = 0. Then f = c‖·‖2 is strongly
λ -convex with modulus c . Thus ‖·‖2 = 1

c f is strongly λ -convex with modulus 1.
Assume (2). From Lemma 3 we have in particular the following inequality

∥
∥
∥
∥

x+ y
2

∥
∥
∥
∥

2

� ‖x‖2 +‖y‖2

2
− 1

4
‖x− y‖2 ,

for all x,y ∈ X . Obviously, this inequality is equivalent to the parallelogram law, which
implies that (X ,‖·‖) is an inner product space.

Implication (3)⇒(1) follows from Lemma 2. �

In the end, taking into account Lemma 2 and results stated in [2], we present two
corollaries.
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COROLLARY 1. Let D be a nonempty, open, convex subset of R
n and λ : D2 →

(0,1) be a fixed function continuous in both variables. If a function f : D → R is
strongly λ -convex and locally bounded from above at a point of D, then f is strongly
convex.

COROLLARY 2. Let D be a nonempty, open, convex subset of R
n and λ : D2 →

(0,1) be a fixed function continuously differentiable on D2 . If a function f : D → R is
strongly λ -convex and Lebesgue measurable, then f is strongly convex.
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