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STRONGLY A-CONVEX FUNCTIONS AND SOME
CHARACTERIZATION OF INNER PRODUCT SPACES

MIROSEAW ADAMEK

(Communicated by S. Varosanec)

Abstract. In this paper we show that each strongly A -convex function f: D — R with modulus
¢ >0, where D is an nonempty convex subset of inner product space X with norm |||, must
by of the form g+ |-||*, where g is an A -convex function. Moreover, involving the notion of
strongly A -convexity we get a new characterization of inner product space.

1. Introduction

Let (X,]|-]|) be areal normed space, D stand for a convex subset of X and ¢ be a
positive constant. A function f: D — R is called strongly convex with modulus c if

flox (L=0)y) Saf () + (1=1)f(y) = et (1 —1) | x =y, (D

forall x,ye D and r € (0,1).

Such functions play an important role in optimization theory and have been intro-
duced by Polyak in [13]. It has been also investigated by many other authors, among
other, see [9], [10], [14], [15].

A function f: D — R is called strongly A -convex with modulus ¢ (¢ > 0) if

A xy)x+(1=A(x,y))y)
<A )+ (1= 206))f () = A ley) (1= Aey)) | x =7, (@)

forall x,y € D, where A : D> — (0,1) is a fixed function. If we take ¢ = 0, then we get
defining inequality of A -convex functions. In particular, A -convex functions have been
investigated in [2] and [12]. Notice, that each strongly convex function with modulus ¢
is strongly A -convex with modulus ¢ with arbitrary function A, and for A = 1/2 we
get strongly Jensen convex function with modulus c.

In [11] the authors present relations between strongly convex (strongly Jensen
convex) and convex (Jensen convex) functions. They give also a new characterization
of inner product space which enriches the large collection of such characterization (cf.
[11, [4], [5], [6], [7], [8]). The following result gives a generalization of the results
stated in [11].
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2. Main result

At the beginning we present three useful lemmas.
Using elementary properties of an inner product we get Lemma 1.

LEMMA 1. Let (X,||"||) be a real inner product space, then
e+ (L= )y]P =t [lx]® 4 (L= 1) [y]|* = (L =) oe— I, 3)
forall x,y e D and t € R.
Proof. Observe that for all x,y € D and r € R we have
2 2 2
"+ (A=) Iyl = 2(1 =) [ =y
2 2 2 2
= t{lll"+ (A=) [Iyl]" =2 (1 =) ([l = 2 Ge, ) + (V1)
2 2
= (= t(1=0)[lx]"+2:(1 =2) x,y) + (L =1) —1(1=2)) [y
2 2
=2 {|x]|* + 2 (1 —1) {e, ) + (L =1) ]
=[x+ (1 =)y

Which was to be proved. [

In the next lemma we have a characterization of strongly A -convex functions de-
fined on a convex subset of a real inner product space.

LEMMA 2. Let (X,||-||) be a real inner product space, D be a convex subset of X
¢ be a positive constant and A : D> — (0, 1) be a fixed function. A function f:D — R
is strongly A -convex with modulus c if and only if the function g = f — ¢ ||||2 is A-
convex.

Proof. Assume that f: D — R is strongly A -convex with modulus ¢. Multiplying
(3), with r = A(x,y), by —c and adding with both sides to the inequality (2), we get
an equivalent inequality from which follows that function g = f — c||-||* is A -convex.
The proof is finished. O

In [2] the author presents an example of a A -convex function which is not con-
vex, nor is it Jensen convex. Therefore, considering additionally Lemma 2 we get an
example of a strongly A -convex function with modulus ¢ which is not strongly convex
function with modulus ¢, nor is it strongly Jensen convex function with modulus c.
The following lemma presents some relation between strongly A -convex function with
modulus ¢ and strongly convex function with modulus ¢ and it is the analogous result
that we can find in [3] for convex functions.

LEMMA 3. Let (X,||-||) be a real inner product space, D be a convex subset of X
¢ be a positive constant and A : D* — (0,1) be a fixed function. If a function f:D — R
is strongly A -convex with modulus ¢ and continuous, then it must be strongly convex
with modulus c.
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Proof. Suppose that f is not strongly convex with modulus c, i.e.

Flox+(L=0)y) > tf () + (1=1)f () = et (1= 1) e =], O]

for some x,y € D and 7 € (0,1).
Fix x,y € D such that (4) holds for some 7 € (0,1). Define function g: [0,1] — R
by the formula

8(t) = flex+(L=1)y) =1f(x) = (L=1)f(y) + et (1 —1) [ =y
Define set A as an inverse image of the set (0,e) by function g,
A={re[01]:g(r) >0} =g ((0,)).

Because function g is continuous , then A is open in [0, 1] and obviously nonempty.
Moreover, g(0) = g(1) = 0. Thus there exist 71,7, € [0,1] (#; <) such, that

g(t1) =g()=0
and 5)
g(t) >0,

forall ¢ € (t,t). Fix 11, 1o such, that (5) hold and adopt the following notation

xp=tx+(1—n)y, yr=nx+(l-n)y. (6)
and
to = A(xy, 1)t + (1= A(x1,y1))t2. @)
Now notice that
tox+ (1 —10)y = A (x1,y1)x1 + (1 = A (x1,y1))y1 ®)
and
g(to) > 0.

From (5), (6) and the definition of function g we conclude that

fla) =0 f (@) +(1=0)f() —en(1—n) |l —y|? ©
and
Fo) = 0f )+ (1 =) f() —cn(l—n)x—y|?,
Using elementary calculations we get this equality
ab(1—b)+ (1 —a)c(1—c)+a(l —a)(b—c)*>= (ab+ (1 —a)c)(1 — (ab+ (1 —a)c)),

(10)
for all a,b,c € R.
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Finally, to simplify the notation we can write A instead of A(x,y) and from (8),
(9), (10) we obtain

SQxi+ (1= A)y1) = Af(x1) — (1= A) f (1) + A (1= A) [lxy — i
= f(Axi+(1=A)y1) — (A1 + (1= A)r2) f(x) = (1 = (A1 + (1 = A)12)) f ()
oAt (1—11) + (1= A)a(1 = 12)) x = y|* +cA (1 = A) ||(11 — 12) (x — y) ||
= fltox+ (1 —t0)y) —tof(x) — (1 —10) f(¥)
oAt (1—11) + (1= M1 —12) + A(1 = A) (11— 12)%) [|x — >
= f(tox+ (1 —10)y) — tof (x) — (1 —10) f () + cto(1 —10) [ x — y||* = g(t0) > .

Which means that
FQxy+ (1=A)y1) > Af(x1) + (1= A)f(y1) —cA(1 = A) 1 — y1 ||

and we have a contradiction with strong A -convexity of the function f. Thus the
function f must by strongly convex. This completes the proof. [

Similarly as in [1 1] we show, that the assumption that X is an inner product space
is necessary in Lemma 2. We conclude this from the following characterization of inner
product spaces.

THEOREM 1. Let (X, ||-||) be a real normed space. The following conditions are
equivalent to each other:

1. For all ¢ >0, convex subsets D of X, functions A : D* — (0,1) and for all
functions f:D — R, f is strongly A-convex with modulus c if and only if g =
f—cl|l-I* is A-convex;

2. Forall functions A : X2 — (0,1) the function ||-||*: X — R is strongly A -convex
with modulus 1;

3. (X, |Ill) is an inner product space.

Proof. To proof implication (1)=>(2) we take g = 0. Then f = c||-||* is strongly
2 -convex with modulus ¢. Thus ||-||* = 1f is strongly A -convex with modulus 1.
Assume (2). From Lemma 3 we have in particular the following inequality

xX+y
2

2 2 2
= 2 4

)

for all x,y € X . Obviously, this inequality is equivalent to the parallelogram law, which
implies that (X, ||-||) is an inner product space.
Implication (3)=>(1) follows from Lemma 2. []

In the end, taking into account Lemma 2 and results stated in [2], we present two
corollaries.
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COROLLARY 1. Let D be a nonempty, open, convex subset of R"* and A : D* —
) be a fixed function continuous in both variables. If a function f:D — R is

strongly A -convex and locally bounded from above at a point of D, then f is strongly
convex.

COROLLARY 2. Let D be a nonempty, open, convex subset of R" and A : D*> —

(0,1) be afixed function continuously differentiable on D*. If a function f: D — R is
strongly A -convex and Lebesgue measurable, then f is strongly convex.
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