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Abstract. We consider the sum of squared logarithms inequality and investigate possible con-
nections with the theory of majorization. We also discuss alternative sufficient conditions on two
sets of vectors a,b ∈ R

n
+ so that

n

∑
i=1

(logai)2 �
n

∑
i=1

(logbi)2 .

Generalizations of some inequalities from information theory are obtained, including a general-
ized information inequality and a generalized log sum inequality, which states for a,b ∈ R

n
+ and

k1, . . . ,kn ∈ [0,∞) :
n

∑
i=1

ai log
m

∏
s=1

(
ai

bi
+ ks

)
� log

m

∏
s=1

(1+ ks) .

1. Introduction – the sum of squared logarithms inequality

The Sum of Squared Logarithms Inequality (SSLI) was introduced in 2013 by
Bı̂rsan, Neff and Lankeit [1], with the authors giving a proof for n ∈ {2,3} . Recently,
Pompe and Neff [12] have shown the inequality for n = 4, in which case it reads: Let
a1,a2,a3,a4,b1,b2,b3,b4 > 0 be given positive numbers such that

a1 +a2 +a3 +a4 � b1 +b2 +b3 +b4 ,

a1 a2 +a1 a3 +a2a3 +a1 a4 +a2 a4 +a3a4 � b1 b2 +b1 b3 +b2b3 +b1 b4 +b2b4 +b3 b4 ,

a1 a2 a3 +a1a2 a4 +a2a3 a4 +a1 a3 a4 � b1 b2 b3 +b1b2 b4 +b2b3 b4 +b1 b3 b4 ,

a1 a2 a3 a4 = b1 b2 b3 b4 .

Then

(loga1)2 +(loga2)2 +(loga3)2 +(loga4)2 � (logb1)2 +(logb2)2 +(logb3)2 +(logb4)2 .

The general form of this inequality can be conjectured as follows.
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DEFINITION 1.1. Let x∈R
n . We denote by ek(x) the k -th elementary symmetric

polynomial, i.e. the sum of all
(n
k

)
products of exactly k components of x , so that

ek(x) := ∑
i1<...<ik

xi1xi2 . . .xik for all k ∈ {1, . . . ,n} ;

note that en(x) = x1 · x2 . . . · xn .

CONJECTURE 1.2. (Sum of squared logarithms inequality) Let a,b ∈ R
n
+ . If

ek(a) � ek(b) for all k ∈ {1, . . . ,n−1}

and en(a) = en(b) , then
n

∑
i=1

(logai)2 �
n

∑
i=1

(logbi)2 . (SSLI)

Alternatively, we can express the same statement as a minimization problem:
Let a ∈ R

n
+ be given and define

Ea :=
{

b ∈ R
n
+ | ek(a) � ek(b) for all k ∈ {1, . . . ,n−1} and en(a) = en(b)

}
.

Then

inf
b∈Ea

{ n

∑
i=1

(logbi)2
}

=
n

∑
i=1

(logai)2 .

The sum of squared logarithms inequality (SSLI) has important applications in
matrix analysis and nonlinear elasticity theory [1, 7, 8, 9, 10, 11]. We notice that the
previous conjecture for n� 2 puts conditions on the elementary symmetric polynomials
of the numbers a1, . . . ,an and b1, . . . ,bn for obtaining (SSLI).

In this article we obtain (SSLI) and the so called sum of powered logarithms in-
equality (3.5) under some alternative conditions. We also introduce some new inequal-
ities for the exponential functions. An extension of the log sum inequality is also ob-
tained, which yields generalizations of the information inequality.

2. Preliminaries

The concept of majorization is of great importance to (SSLI) and related inequal-
ities. In the following we state the basic definitions as well as some fundamental prop-
erties of majorization. For a larger survey we refer to Marshall, Olkin and Arnold [5].

There are various ways to define Majorization. Due to Hardy, Littlewood and
Pólya [4] we can formulate the following theorem:

THEOREM 2.1. Let x,y ∈ R
n
+ , then the following are equivalent:

a) ∑n
i=1 x↓i = ∑n

i=1 y↓i and ∑k
i=1 x↓i � ∑k

i=1 y↓i for all 1 � k � n−1 .

b) ∑n
i=1 f (xi) � ∑n

i=1 f (yi) for all convex continous functions f : R → R .
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If the expressions hold, x is said to be majorized by y, written x ≺ y.

Similarly, the concept of the weak majorization can be fomulated (see Tomic [13] and
Weyl [14]):

THEOREM 2.2. Let x,y ∈ R
n
+ , then the following are equivalent:

a) ∑k
i=1 x↓i � ∑k

i=1 y↓i for all 1 � k � n.

b) ∑n
i=1 f (xi) � ∑n

i=1 f (yi) for all convex monotone increasing continous functions
f : R → R .

If the expressions hold, x is said to be weakly majorized by y, written x ≺w y.
If x is weakly majorized by y, we state, in particular, that it is weakly majorized

from below. Analogously we can also characterize weak majorization from above (
x ≺w y), were the inequality in a) holds with greater or equal for all vectors in de-
scending order and equivalent die inequality in b) for all convex monotone decreasing
functions.

The following lemma, which shows elementary properties of the so-called (weak)
logarithmic majorization, follows directly from the logarithmic laws and the mono-
tonicity of the logarithm.

LEMMA 2.3. (Logarithmic majorization) Let x,y ∈ R
n
+ . Then

logx ≺w logy if and only if x↓1 · . . . · x↓k � y↓1 · . . . · y↓k for all k ∈ {1, . . . ,n} ,

logx ≺w logy if and only if x↑1 · . . . · x↑k � y↑1 · . . . · y↑k for all k ∈ {1, . . . ,n} ,

logx ≺ logy if and only if logx ≺w logy and x1 · . . . · xn = y1 · . . . · yn ,

where we abbreviate logz :=(logz1, logz2, . . . , logzn) for z ∈ R
n
+ .

PROPOSITION 2.4. Let x,y ∈ R
n
+ . Then

logx ≺w logy implies x ≺w y

x ≺w y implies logx ≺w logy .
and

From Theorem 2.1 we can see, the mapping ϕ : R
n → R with x �→ ∑n

i=1 f (xi) where f
is convex has the property

x ≺ y implies ϕ(x) � ϕ(y) .

We call this property Schur-convexity. if −ϕ is Schur-convex, so we call ϕ Schur-
concave. Analogously to Theorem 2.1 and Theorem 2.2 we can generalize to a impor-
tant property of Schur-convex functions:

PROPOSITION 2.5. Let ϕ : D⊆ R
n → R be Schur-convex. If ϕ is also monotone

increasing (resp. monotone decreasing), then

ϕ(x) � ϕ(y) for all x,y ∈ D with x ≺w y (resp. x ≺w y) .
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THEOREM 2.6. The elementary symmetric polynomials ek : R
n → R are Schur-

concave and monotone increasing for all k∈{1, . . . ,n} and even strictly Schur-concave
for k � 2 .

COROLLARY 2.7. Let x,y ∈ R
n
+ . Then x ≺ y implies ek(x) � ek(y) for all k ∈

{1, . . . ,n} . However ek(x) � ek(y) does not imply x ≺ y in general: For that consider
a = (2,2,2) and b = (1,1,1) .

If x ist not only a permutation of y , the inequality between the ek is even strict for
k � 2. In inverse conclusion we can say:

COROLLARY 2.8. If x≺ y and ek(x) = ek(y) for any k ∈ {2, . . . ,n} , then x↓ = y↓
and thus ek(x) = ek(y) for every k ∈ {2, . . . ,n} .

3. Different conditions for SSLI and the sum of powered logarithms inequality

In the following theorems we give different conditions that guarantee the validity
of (SSLI). We will use Chebyshev’s sum inequality in certain cases, which states:

LEMMA 3.1. (Chebyshev’s sum inequality) If a1 � a2 � . . . � an and b1 � b2 �
. . . � bn are two monotone increasing sequences of real numbers, then

n

∑
i=1

ai bi � 1
n

(
n

∑
i=1

ai

)(
n

∑
i=1

bi

)
�

n

∑
i=1

ai bn+1−i . (3.1)

THEOREM 3.2. Let a,b ∈ R
n
+ and there exists a rearrangement of a and b that

satisfy
b1

a1
� b2

a2
� . . . � bn

an
and a1 b1 � a2 b2 � . . . � an bn . (3.2)

If we additionally assume one of the following two conditions

en(a) � en(b) and en(a) · en(b) � 1 , (3.2a)
or

en(a) � en(b) and en(a) · en(b) � 1 , (3.2b)

then we get the sum of squared logarithms inequality (SSLI):

n

∑
i=1

(logai)2 �
n

∑
i=1

(logbi)2 .

Proof. First we assume Condition (3.2a):
Due to the monotonicity of the logarithm it follows from the assumptions that

log
b1

a1
� log

b2

a2
� . . . � log

bn

an
and log(a1 b1) � log(a2 b2) � . . . � log(an bn) .
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Now we can estimate with Chebychev’s inequality (3.1) using ãn+k−1 := log bi
ai

and

b̃n+k−1 := logai bi :

n

∑
i=1

(logbi)2−
n

∑
i=1

(logai)2 =
n

∑
i=1

(
(logbi)2− (logai)2)

=
n

∑
i=1

(logbi− logai)(logbi + logai)

=
n

∑
i=1

log
bi

ai
· logbiai

(3.1)
� 1

n

( n

∑
i=1

log
bi

ai

)( n

∑
i=1

logbiai

)

=
1
n

(
log

n

∏
i=1

bi

ai︸ ︷︷ ︸
en(b)/en(a)

)(
log

n

∏
i=1

biai︸ ︷︷ ︸
en(a)en(b)

)

� 1
n

log1 log1 = 0 .

Finally ∑n
i=1(logyi)2−∑n

i=1(logai)2 � 0 is equivalent to (SSLI).

Next we assume condition (3.2b).

We set ã, b̃ ∈ R
n
+ with ãk := 1

an+1−k
and b̃k := 1

bn+1−k
for k ∈ {1, . . . ,n} , so that we

have (ã1, ã2, . . . , ãn) = (a−1
n ,a−1

n−1, . . . ,a
−1
1 ) and (b̃1, b̃2, . . . , b̃n) = (b−1

n ,b−1
n−1, . . . ,b

−1
1 ) .

Then

b̃k

ãk
=

1
bn+1−k

1
an+1−k

=
an+1−k

bn+1−k
and ãkb̃k =

1
an+1−kbn+1−k

.

Hence

b̃1

ã1
=

an

bn
� b̃2

ã2
=

an−1

bn−1
� . . . � b̃n

ãn
and ã1b̃1 =

1
anbn

� ã2b̃2 =
1

an−1bn−1
� . . . � ãnb̃n .

Furthermore

en(b̃) =
1

en(b)
� 1

en(a)
= en(ã) and en(ã)en(b̃) =

1
en(a)

· 1
en(b)

� 1 ,
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thus ã and b̃ satisfy condition (3.2a). Therefore (SSLI) holds for ã and b̃ , and we find

n

∑
i=1

(log ãi)2 �
n

∑
i=1

(log b̃i)2 ⇔
n

∑
i=1

(
log

1
an+1−i

)2

�
n

∑
i=1

(
log

1
bn+1−i

)2

⇔
n

∑
i=1

(
log

1
ai

)2

�
n

∑
i=1

(
log

1
bi

)2

⇔
n

∑
i=1

(− logai
)2 �

n

∑
i=1

(− logbi
)2

⇔
n

∑
i=1

(
logai

)2 �
n

∑
i=1

(
logbi

)2 �

(3.4)

EXAMPLE 3.3. Neither the conditions in Conjecture 1.2 are stronger than in The-
orem 3.2 nor conversely:

i) With a = (14,2,10) and b = (20,2,7) we have ek(a) � ek(b) for all k ∈ {1, . . . ,
n−1} and en(a) = en(b) but there is no rearrangement of a and b that satisfies
b1
a1

� b2
a2

� b3
a3

and a1 b1 � a2 b2 � a3 b3 .

ii) With a = (6,5,7) and b = (10,8,3) we have 10
6 � 8

5 � 3
7 and 6 · 10 � 5 · 8 �

7 · 3. Because of en(a) = 210 and en(b) = 240 we have en(a) � en(b) and
en(a)en(b) � 1 but not en(a) = en(b) .

iii) With a = (2,2,2) and b = (4,2,1) we have ek(a) � ek(b) for all k ∈ {1, . . . ,
n− 1} and en(a) = en(b) . Moreover 4

2 � 2
2 � 12, 2 · 4 � 2 · 2 � 2 · 1 and

en(a)en(b) � 1.

THEOREM 3.4. (sum of powered logarithms inequality) Let a,b ∈ R
n and p ∈ R

with ai > 1 , bi > 1 and p < 0 . Assume a ≺w b. Then

n

∑
i=1

(logai)p �
n

∑
i=1

(logbi)p . (3.5)

REMARK 3.5. In order for (logai)p and (logbi)p to be well defined for all p∈R ,
we must assume ai > 1 and bi > 1.

Proof. From a ≺w b with Proposition 2.4 we obtain

k

∑
i=1

loga↑i �
k

∑
i=1

logb↑i for all k ∈ {1, . . . ,n} .

Let x,y ∈ R
n
+ with x := loga , y := logb (therefore xi := logai and yi := logbi for all

k ∈ {1, . . . ,n} ) then x≺w y . We now consider the function g : R+ →R with g(z) = zp ,
then

g′(z) = p︸︷︷︸
<0

·zp−1︸︷︷︸
>0

< 0 and g′′(z) = p(p−1)︸ ︷︷ ︸
>0

·zp−2︸︷︷︸
>0

> 0 .
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For this reason g is monotone decreasing and convex. With Theorem 2.1 we obtain
∑n

i=1 xp
i � ∑n

i=1 yp
i . Resubstitution now directly yields the statement. �

REMARK 3.6. a ≺ b is a condition too weak and a ≺ b plus en(a) = en(b) is too
strong for (SSLI):

For a = (3,2,2) and b = (4,2,1) we get a≺ b but 2.17≈∑(logai)2 < ∑(logbi)2 ≈
2.40.

For a = (4,4,4) and b = (10,1,1) we get a≺ b but 5.77≈∑(logai)2 > ∑(logbi)2 ≈
5.30.

f we think a ≺ b implies ek(a) � ek(b) and the only thing we have additionally to
ensure for the use of Conjecture 1.2 to get (SSLI) is en(a) = en(b) then remember: We
have shown a≺ b and en(a) = en(b) implies a↓ = b↓ , therefore only two permutations
of one vector satisfy this condition.

We have shown by Lemma 2.7 that a ≺ b implies ek(a) � ek(b) (note the reverse
inequality).

What about using a ≺ b and en(a) = en(b) as sufficient requirements for (SSLI)?
We can easily show a ≺ b and en(a) = en(b) imply the logarithmic majorization

loga ≺ logb . Since the mapping t �→ t2 is convex, it follows from Theorem 2.1 that
the inequality ∑n

i=1(logai)2 � ∑n
i=1(logbi)2 holds. However, for a ≺ b , we can ap-

ply Corollary 2.7 to find ek(a) � ek(b) , hence Conjecture 1.2 implies ∑n
i=1(logai)2 �

∑n
i=1(logbi)2 and thus ∑n

i=1(logai)2 = ∑n
i=1(logbi)2 . This is not surprising: we already

know (see Remark 2.8) that

a ≺ b and en(a) = en(b) ⇒ a↓ = b↓ .

Thus the vectors a and b ∈ R
n
+ are equal up to permutations.

4. Related inequalities

PROPOSITION 4.1. Let x,y ∈ R
n
+ and m ∈ R+ . Assume additionally logx ≺w

logy, then
n

∑
i=1

emxi �
n

∑
i=1

emyi . (4.1)

Proof. We set ϕ : R
n → R with ϕ(x) = ∑n

i=1 emxi . With Proposition 2.4 we have
x ≺w y . Since x �→ emx is convex and monotone increasing, it follows directly from
Theorem 2.2 that ϕ(x) � ϕ(y) . �

THEOREM 4.2. If the real numbers a,b,c,x,y,z satisfy

a+b+ c = x+ y+ z = 0

and
a2 +b2 + c2 = x2 + y2 + z2 = 0 ,
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then

exy +eyz +ezx <
(
ex2

+ey2
+ez2

)
exp

(
−3 3

√
1
4
a2b2c2

)
(4.2)

and

eab +ebc +eca <
(
ea2

+eb2
+ec2

)
exp

(
−3 3

√
1
4
x2y2z2

)
. (4.3)

Proof. For α,β ,γ ∈ R we obtain (α + β + γ)2 = α2 + β 2 + γ2 + 2αβ + 2β γ +
2γα , therefore under the conditions

ab+bc+ ca=
1
2

(
(a+b+ c)2− (a2 +b2 + c2)

)
=

1
2

(
(x+ y+ z)2− (x2 + y2 + z2)

)
= xy+ yz+ zx

and we can set
p := ab+bc+ ca = xy+ yz+ zx .

Furthermore

x3 + px− xyz = x3 + x2y+ xyz+ x2z− xyz = x2(x+ y+ z) = x2 ·0 = 0

and analogously

y3 + py− xyz = 0 and z3 + pz− xyz = 0 .

Therefore the cubic equation X3 + pX − xyz = 0 has exactly the three solutions X ∈
{x,y,z} .

Following Cardano’s method (see Cardano [2]) the cubic equation X3+pX+q = 0
has exactly three real roots, if and only if

D :=
(q

2

)2
+
( p

3

)3
< 0 .

Therefore we obtain (−xyz
2

)2

+
( p

3

)3
=

x2y2z2

4
+

p3

27
< 0 ,

thus p3 < −27 x2y2z2

4 and therefore

p = xy+ yz+ zx < −3
3

√
x2y2z2

4
. (4.4)

Analogously we obtain from X3 + pX −abc = 0

p = ab+bc+ ca < −3
3

√
a2b2c2

4
. (4.5)
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Now
p = p+ x2− x2 = xy+ yz+ zx+ x2− x2 = yz− x2 ,

thus
yz = x2 + p

and analogously xz = y2 + p and xy = z2 + p . According to (4.5) and the monotonicity
of the exponential function we have

eyz < ex2
exp

(
−3

3

√
a2b2c2

4

)
,

ezx < ey2
exp

(
−3

3

√
a2b2c2

4

)
,

exy < ez2 exp

(
−3

3

√
a2b2c2

4

)

and summing up we obtain (4.2). The proof of (4.3) proceeds analogously. �

THEOREM 4.3. Let I ⊆ R and assume f1, . . . , fn : I → R with

n

∑
i=1

fi(t) = 0 and f1(t) � f2(t) � . . . � fn(t) for all t ∈ I

and g : I → R with

g(t) =
n

∑
i=1

e fi(t) for all t ∈ I .

i) If f ′1(t) � f ′2(t) � . . . � f ′n(t) for all t ∈ I , then g′(t) � 0 for all t ∈ I , respec-
tively g is monotone increasing.

ii) If f ′1(t) � f ′2(t) � . . . � f ′n(t) for all t ∈ I , then g′(t) � 0 for all t ∈ I , respec-
tively g is monotone decreasing.

Proof. The condition ∑n
i=1 fi(t) = 0 for all t ∈ I implies

n

∑
i=1

f ′i (t) =
d
dt

(
n

∑
i=1

fi(t)

)
= 0 for all t ∈ I .

Assume f ′1(t) � f ′2(t) � . . . � f ′n(t) for all t ∈ I . From the monotonicity of
the exponential function and Chebychev’s inequality with ai := e fi(t) , bi := f ′i (t) , we
obtain

g′(t) =
n

∑
i=1

f ′i (t) · e fi(t)
(3.1)
� 1

n

( n

∑
i=1

f ′i (t)︸ ︷︷ ︸
=0

)( n

∑
i=1

e fi(t)
)

= 0 .
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Now assume instead f ′1(t) � f ′2(t) � . . . � f ′n(t) for all t ∈ I . From the monotonicity
of the exponential function and Chebychev’s inequalitywith ai := e fi(t) , bn+k−i := f ′i (t) ,
we obtain

g′(t) =
n

∑
i=1

f ′i (t) · e fi(t)
(3.1)
� 1

n

( n

∑
i=1

f ′i (t)︸ ︷︷ ︸
=0

)( n

∑
i=1

e fi(t)
)

= 0 . �

EXAMPLE 4.4. Consider the functions f1, f2, f3 : R → R with

f1(x) = −x2 +1 , f2(x) = x−1 , f3(x) = x2 − x

and
f ′1(x) = −2x , f ′2(x) = 1 , f ′3(x) = 2x−1 .

Then
f1(x)+ f2(x)+ f3(x) = 0 for all x ∈ R .

Additionally

f1(x) � f2(x) � f3(x) and f ′1(x) � f ′2(x) � f ′3(x) for all x ∈ [1,∞) ,

f2(x) � f3(x) � f1(x) and f ′1(x) � f ′2(x) � f ′3(x) for all x ∈
[
1
4
,1

]
.

Now we define g : R → R with

g(x) = e−x2+1 +e−1+x +ex2−x = e f1(x) +e f2(x) +e f3(x) ,

therefore we can conclude with Theorem 4.3: g is monotone increasing on [1,∞) and
monotone decreasing on [ 1

4 ,1] .

Now we generalize Theorem 4.3

THEOREM 4.5. Let I ⊆ R and f1, . . . , fn : I → R with

n

∑
i=1

fi(t) = 0 , f1(t) � f2(t) � . . . � fn(t)

and
f ′1(t) � f ′2(t) � . . . � f ′n(t) for all t ∈ I

and assume g,h : I → R with h positive and monotone increasing and

gh(t) =
n

∑
i=1

eh(t) fi(t) for all t ∈ I .

Then g′h(t) � 0 for all t ∈ I , which implies that gh is monotone increasing.
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Proof. The condition ∑n
i=1 fi(t) = 0 for all t ∈ I implies

n

∑
i=1

f ′i (t) =
d
dt

(
n

∑
i=1

fi(t)

)
= 0 for all t ∈ I .

With Chebychev’s inequality using ai := fi(t) resp. ai := f ′i (t) and bi := eh(t) fi(t) we
conclude

g′h(t) =
n

∑
i=1

(
h′(t) fi(t)+h(t) f ′(t)

)
eh(t) fi(t)

= h′(t)
( n

∑
i=1

fi(t) · eh(t) fi(t)
)

+h(t)
( n

∑
i=1

f ′i (t) · eh(t) fi(t)
)

(4.6)

(3.1)
� h′(t) · 1

n

( n

∑
i=1

fi(t)︸ ︷︷ ︸
=0

)( n

∑
i=1

eh(t) fi(t)
)

+h(t)
( n

∑
i=1

f ′i (t)︸ ︷︷ ︸
=0

)( n

∑
i=1

eh(t) fi(t)
)

= 0 . �

THEOREM 4.6. Let I ⊆ R and assume f1, . . . , fn : I → R with the properties

n

∑
i=1

fi(t) = 0 , f1(t) � f2(t) � . . . � fn(t) and f ′1(t) � f ′2(t) � . . . � f ′n(t)

for all t ∈ I . Additionally h : D → R is given monotone increasing and convex. In this
regard D ∈ R provides h( fi(t)) is well defined for all i ∈ {1, . . . ,n} and all t ∈ I . We
define furthermore H : I → R with

H(t) =
n

∑
i=1

eh( fi(t)) .

Then H ′(t) � 0 for all t ∈ I and H is monotone increasing.

Proof. The condition ∑n
i=1 fi(t) = 0 for all t ∈ I implies

n

∑
i=1

f ′i (t) =
d
dt

(
n

∑
i=1

fi(t)

)
= 0 for all t ∈ I .

Because h is monotone increasing h′(x) � 0 and h(x) � h(y) for x � y , thus

h′( fi(t)) � 0 and h( f1(t)) � h( f2(t)) � . . . � h( fn(t))

for all t ∈ I . By assumption h is convex and h′ is monotone increasing, thus h′(x) �
h′(y) for x � y , therefore

h′( f1(t)) � h′( f2(t)) � . . . � h′( fn(t))
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for all t ∈ I . If for real numbers a1,a2,b1,b2 the inequalities 0 < a1 � a2 and b1 � b2

are satisfied, then a1 b1 � a2 b2 . This applied iterated, we obtain

h′( f1(t)) · f ′1(t) � h′( f2(t) · f ′2(t) � . . . � h′( fn(t) · f ′n(t)

for all t ∈ I . Finally we can easily show the original statement by applying Cheby-
chev’s inequality once with ai :=h′( fi(t) f ′i (t) and bi := eh( fi(t)) , twice with ai :=h′( fi(t))
and bi := f ′i (t) . We obtain

H ′(t) =
n

∑
i=1

(h ◦ fi)′(t) eh( fi(t)) =
n

∑
i=1

h′( fi(t)) f ′i (t) · eh( fi(t))

(3.1)
� 1

n

( n

∑
i=1

h′( fi(t)) · f ′i (t)
)( n

∑
i=1

eh( fi(t))
)

(4.7)

(3.1)
� 1

n2

( n

∑
i=1

h′( fi(t))
)( n

∑
i=1

f ′i (t)︸ ︷︷ ︸
=0

)( n

∑
i=1

eh( fi(t))
)

= 0 . �

The following theorem was proved by Bı̂rsan, Neff and Lankeit in [1]. Using
Theorem 4.3 (respectively the generalizations Theorem 4.5 or Theorem 4.6) we can
now show an alternative and otherwise very elementary proof:

THEOREM 4.7. Let a,b,c,x,y,z ∈ R with

a � b � c and x � y � z . (4.8)

Furthermore

a+b+ c = x+ y+ z = 0 and a2 +b2 + c2 = x2 + y2 + z2 . (4.9)

Then
ea +eb +ec � ex +ey +ez (4.10)

if and only if a � x .

REMARK 4.8. Using Theorem 4.5 or Theorem 4.6 instead of Theorem 4.3 the
following proof even allows to show the stronger statement unter the conditions of
Theorem 4.7:

ema +emb +emc � emx +emy +emz if and only if a � x for all m ∈ R+ .

Proof. Let us first fix a,b,c . Then we define for simplification r ∈ R+ with
r2 :=a2 + b2 + c2 . From the conditions (4.8) and (4.9) we may uniquely determine y
and z depending on x∈ R+ (With (4.8) x < 0 implies a+b+c< 0+y+z � 0+0+0;
a contradiction to (4.9)). Since z = −x− y we find y2 +(−x− y)2 + x2− r2 = 0. Let x
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and r be given, then we obtain a quadratic equation and we can solve with the quadratic
formula to obtain

y2 +(−x− y)2 + x2− r2 = 2y2 +2xy+2x2− r2 = 0

⇔ y2 + xy+ x2− 1
2
r2 = 0

⇔ y = −1
2
x±
√

1
4
x2 − x2 +

1
2
r2 = −1

2
x±
√
−3

4
x2 +

1
2
r2 .

Inserting these two solutions into z = −x− y , we get

z = −1
2
x∓
√
−3

4
x2 +

1
2
r2 .

From these two possibilities ± for y , only the positive case, ∓ for z only the negative
case remains to satisfy (4.8). Both equations have three real solutions, if and only if

− 3
4x2 + 1

2 r2 � 0. We must have x �
√

2
3 r2 for this. Moreover

x � y ⇔ x � −1
2
x+

√
−3

4
x2 +

1
2
r2 ⇔ 3

2
x �

√
−3

4
x2 +

1
2
r2

⇔ 9
4
x2 � −3

4
x2 +

1
2
r2 ⇔ 3x2 � 1

2
r2 ⇔ x �

√
1
6
r2 .

With Dr :=
[√

1
6 r2,

√
2
3 r2

]
we obtain the differentiable functions y,z : Dr → R and

y(x) = −1
2
x+

√
−3

4
x2 +

1
2
r2 and z(x) = −1

2
x−
√
−3

4
x2 +

1
2
r2 (4.11)

as the unique solutions (x,y(x),z(x)) of (4.8) and (4.9). Because the given a,b,c satisfy
these conditions, obviously a ∈ Dr , b = y(a) and c = y(b) .

Now we define for m ∈ R+ the function g̃ : Dr → R with g̃(x) = emy(x) +emz(x) . We
know y(x) � z(x) and

y′(x) =
1
2
−

3
4x√

− 3
4x2 + 1

2 r2
� 1

2
+

3
4x√

− 3
4x2 + 1

2 r2
= z′(x) .

Thus, we can conclude with Theorem 4.5 or Theorem 4.6 (in both cases we can set
h(t) :=mt . For m = 1 we can use directly Theorem 4.3) that g̃ is monotone increasing.
Additionally x �→ emx is monotone increasing, so building the sum g : R → R with
g(x) = emx +emy(x) +emz(x) is also monotone increasing. Therefore

g(x) � g(a) if and only if x � a ,

which is equivalent to the statement if we set m = 1. �
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5. New Logarithmic inequalities in information theory

First we introduce Jensen’s inequality (cf. Mitrinović, Pečarić, [6, eq. (2.1) p.191])
and the log sum inequality (cf. Cover, Thomas [3, 2.7 p.29]). Then we prove the infor-
mation inequality which is in different notation known under the name Gibbs’ inequal-
ity. The information inequality (cf. Cover, Thomas [3, 2.6 p.28]) is the most funda-
mental inequality in information theory. It asserts that the relative entropy between two
probability distributions p,q : Ω → [0,1] , which is defined by

D(p ‖ q) := ∑
x∈Ω

p(x) log
p(x)
q(x)

(5.1)

(or, if p and q are probability measures on a finite set Ω = {1, . . . ,n} , by

D(p ‖ q) :=
n

∑
i=1

pi log
pi

qi
),

is nonnegative.

LEMMA 5.1. (Jensen’s inequality) Let I ⊆ R be an interval, f : I → R be a con-
vex function, λ1, . . . ,λn positive numbers with λ1 + . . . + λn = 1 and x1, . . . ,xn ∈ I .
Then

f

( n

∑
i=1

λi xi

)
�

n

∑
i=1

λi f (xi) . (5.2)

Note: With n = 2 we have directly the definition of convexity of f .

With Jensen’s inequality we can prove the so called log sum inequality:

LEMMA 5.2. (stronger log sum inequality) Let a1, . . . ,an , b1, . . . ,bn ∈ R+ and
k � 0 , then

n

∑
i=1

ai log

(
ai

bi
+ k

)
�
(

n

∑
i=1

ai

)
log

(
1

∑n
i=1 bi

n

∑
i=1

ai + k

)
. (5.3)

We have equality if and only if a1
b1

= a2
b2

= . . . = an
bn

.

REMARK 5.3. For k = 0 we get the log sum inequality:

n

∑
i=1

ai log
ai

bi
�
(

n

∑
i=1

ai

)
log

(
1

∑n
i=1 bi

n

∑
i=1

ai

)
. (5.4)
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Proof. With f (x) = x log(x+ k) , λi :=bi/∑n
i=1 bi , xi :=ai/bi and (5.2) we get

n

∑
i=1

ai log

(
ai

bi
+ k

)
=
( n

∑
i=1

bi

) ∑n
i=1 bi

ai
bi

log
(

ai
bi

+ k
)

∑n
i=1 bi

=
n

∑
i=1

λi xi log(xi + k)

=
n

∑
i=1

λi f (xi)
(5.2)
� f

( n

∑
i=1

λi xi

)
=
( n

∑
i=1

bi

)( n

∑
i=1

λi xi

)
log

( n

∑
i=1

λi xi + k

)

=
( n

∑
i=1

bi

)(
∑n

i=1 ai

∑n
i=1 bi

log

(
∑n

i=1 ai

∑n
i=1 bi

+ k

)
=
( n

∑
i=1

ai

)
log

(
∑n

i=1 ai

∑n
i=1 bi

+ k

)
. (5.5)

If c := a1
b1

= a2
b2

= . . . = an
bn

, we have xi = c and we get

f

( n

∑
i=1

λi xi

)
= f

( n

∑
i=1

λi c

)
= f (c) =

n

∑
i=1

λi f (c) =
n

∑
i=1

λi f (xi) .

If there is an i ∈ {1, . . . ,n−1} with ai
bi
= ai+1

bi+1
then we get

n

∑
i=1

λi f (xi) > f

( n

∑
i=1

λi xi

)
. �

PROPOSITION 5.4. (Gibbs’ inequality / Information inequality) Let Pn denote the
set of probability measures on an n-element set, that is Pn = {p ∈ R

n
+ | ∑n

i=1 pi = 1} .
The following four expressions (the first three are named Gibbs’ inequality, the last
Information inequality) are equivalent and hold for all a,b ∈ Pn :

i) sup
ξ∈Pn

{ n

∏
i=1

ξ ai
i

}
=

n

∏
i=1

aai
i , ii) inf

ξ∈Pn

{ n

∑
i=1

ai (− logξi)
}

=
n

∑
i=1

ai (− logai) ,

iii)
n

∑
i=1

ai (− logbi) �
n

∑
i=1

ai (− logai) , iv) D(a ‖ b) =
n

∑
i=1

ai log
ai

bi
� 0 . (5.6)

Proof. First we prove the equality of the four expressions:

sup
b∈Pn

{ n

∏
i=1

bai
i

}
=

n

∏
i=1

aai
i ⇔ inf

b∈Pn

{
−

n

∏
i=1

bai
i

}
= −

n

∏
i=1

aai
i (5.7)

⇔ −
n

∏
i=1

bai
i � −

n

∏
i=1

aai
i

⇔ − log
n

∏
i=1

bai
i � − log

n

∏
i=1

aai
i ⇔ −

n

∑
i=1

logbai
i � −

n

∑
i=1

logaai
i

⇔
n

∑
i=1

ai(− logbi) �
n

∑
i=1

ai(− logai) ⇔
n

∑
i=1

ai(logai− logbi) � 0

⇔
n

∑
i=1

ai log
ai

bi
� 0 ⇔ D(a ‖ b) � 0 .
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Now let a,b∈Pn . With the stronger log sum inequality and because ∑n
i=1 ai=∑n

i=1 bi=1
we get

n

∑
i=1

ai log

(
ai

bi
+ k

)
�
(

n

∑
i=1

ai

)
log

(
1

∑n
i=1 bi

n

∑
i=1

ai + k

)
= log(1+ k) . (5.8)

With k = 0 we obain inequality case iv) (information inequality). �

REMARK 5.5. Analogously we can denote inequality (5.8) as the stronger infor-
mation inequality.

COROLLARY 5.6. (generalized log sum inequality) Let a,b∈R
n
+ and k1, . . . ,kn ∈

[0,∞) . Then

n

∑
i=1

ai log
m

∏
s=1

(
ai

bi
+ ks

)
�
( n

∑
i=1

ai

)
log

m

∏
s=1

(
1

∑n
i=1 bi

n

∑
i=1

ai + ks

)
. (5.9)

Proof. With m numbers k1, . . . ,km ∈ [0,1) we obtain by m times building sums
of the stronger log sum inequality (5.3)

m

∑
s=1

(
n

∑
i=1

ai log

(
ai

bi
+ ks

))
�

m

∑
s=1

(
n

∑
i=1

ai log

(
1

∑n
i=1 bi

n

∑
i=1

ai + ks

))
.

With use of distributivity and laws of logarithms we directly obtain the desired re-
sult. �

COROLLARY 5.7. (generalized information inequality) Let a,b∈Pn and k1, . . . ,kn ∈
[0,∞) . Then

n

∑
i=1

ai log
m

∏
s=1

(
ai

bi
+ ks

)
� log

m

∏
s=1

(1+ ks) . (5.10)

Proof. We simplify (5.9) under the condition a,b ∈ Pn , therefore ∑n
i=1 ai =

∑n
i=1 bi = 1. �
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[4] G. H. HARDY, J. E. LITTLEWOOD, AND G. PÓLYA, Inequalities, Cambridge University Press, 1952.
[5] A. MARSHALL, I. OLKIN, AND B. ARNOLD, Inequalities: Theory of majorization and its applica-

tions: Theory of majorization and its applications, Springer Series in Statistics, Springer, 2010.
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