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ESTIMATIONS OF HERON MEANS FOR POSITIVE OPERATORS

MASATOSHI FUJII, SHIGERU FURUICHI AND RITSUO NAKAMOTO

(Communicated by J. Pečarić)

Abstract. The arithmetic-geometric mean inequality induces the path of Heron means through
these two means by Hμ

r (A,B) = r(A�μB)+(1− r)(A∇μB) for each μ ∈ [0,1] , r ∈ R and pos-
itive operators A, B on a Hilbert space. In this note, we estimate Hμ

r (A,B) by the harmonic
mean. As an application of this method, we refine the arithmetic-geometric mean inequality
under the assumption of the strict order A−B � m > 0 .

1. Introduction

The arithmetic-geometric mean inequality has been discussed in various exten-
sions. One of them is the Heron mean, which interpolates between the arithmetic mean
and the geometric one, see Bhatia [1]. That is, for a fixed μ ∈ [0,1] , the Heron mean
for positive operators A and B is defined by

Hμ
r (A,B) = rA �μ B+(1− r)(A ∇μ B)

for r ∈ R . Here A ∇μ B = (1− μ)A+ μB and A �μ B = A
1
2 (A− 1

2 BA− 1
2 )μA

1
2 , the μ -

geometric mean. We also denote the μ -harmonic mean by A !μ B = ((1− μ)A−1 +
μB−1)−1 and A ! B = A ! 1

2
B , simply. Similarly we denote by A ∇ B = A ∇ 1

2
B and

A�B = A� 1
2
B .

Recently, one of the authors [4] proved the following proposition for the Heron
mean.

PROPOSITION 1.1. ([4]) Let A,B be invertible positive operators and r ∈ R .
Then the following inequalities hold.

(i) If r � 2, then rA�B+(1− r)A ∇ B � A ! B.

(ii) If r � 1, then rA�B+(1− r)A ∇ B � A ! B.
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As a weighted version of (ii) in Proposition 1.1, we can easily show that

rA�μB+(1− r)A ∇μ B � A !μ B (r � 1, 0 � μ � 1).

As a matter of fact, we have

rA�μB+(1− r)A ∇μ B � rA�μB+(1− r)A�μB = A�μB � A!μB.

On the other hand, a similar generalization of (i) in Proposition 1.1 does not hold:
We take r = 2 and μ = 2

3 . If A = 1 and B = 2, then it is arranged as the numerical
inequality

2tμ � 1− μ + μt +(1− μ + μt−1)−1. (1)

It is false as follows:

(tμ)3 = 4 and

(
1
2

(
1− μ + μt +(1− μ + μt−1)−1))3

=
(

19
12

)3

� 3.9693 · · ·.

Therefore our interest is to find a constant rμ such that

Hμ
r (A,B) � A !μ B f or r � rμ .

We remark that the inequality (1) holds for 0 � μ � 1/2 and t � 1, or 1/2 � μ � 1
and 0 < t � 1, [4, Lemma 2.3].

In the rest of this section, we discuss Proposition 1.1 itself.

PROPOSITION 1.2. The conditions on r in Proposition F are optimal, i.e.,

inf{r| rA�B+(1− r)A ∇ B � A!B} = 2

and
sup{r| rA�B+(1− r)A ∇ B � A!B} = 1.

Proof. We note that rA�B+(1− r)A ∇ B � A!B (resp. � ) is equivalent to

r � (1+
√

a)2

1+a
(resp. �).

Since 1 � (1+
√

a)2
1+a � 2 and

lim
a→0

(1+
√

a)2

1+a
= 1; lim

a→1

(1+
√

a)2

1+a
= 2,

we have the conclusion. �
Moreover we investigate it from another viewpoint: Let R(t) be the ratio of t+1

2 −
2t

t+1 by t+1
2 −√

t , i.e., R(t) =
t+1− 4t

t+1
t+1−2

√
t
. Then we have R(0) = 1 � R(t) � 2 = R(1) for

t � 0 and R′(t) = 1−t√
t(t+1)2 . As a matter of fact, R(t) = 1+ 2

√
t

t+1 = (1+
√

t)2
1+t and

r � (1+
√

a)2

1+a
⇔ r � R(a).
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If we put C = A− 1
2 BA− 1

2 , then R(C) � r if and only if Hr(A,B) � A ! B .
We have another variant of Proposition 1.1, cf. [4, Corollary 2.7].

PROPOSITION 1.3. If either (i) 0 � μ � 1
2 and 0 < A � B or (ii) 1

2 � μ � 1 and
0 < B � A, then

2A�μB � A ∇μ B+B !μ A.

If either (i ′ ) 0 � μ � 1
2 and 0 < B � A or (ii ′ ) 1

2 � μ � 1 and 0 < A � B, then

2A�1−μB � A ∇μ B+B !μ A

and
A�B � A�μB.

The proof is reduced to the following lemma:

LEMMA 1.4. Put f (t) = (1− μ)+ μt +
(
(1− μ)t−1 + μ

)−1 −2tμ. Then

f (t) = (1− μ)+ μt +
t

(1− μ)+ μt
−2tμ � 2

√
t−2tμ = 2

√
t
(
1− tμ− 1

2

)
.

If either (i) 0 � μ � 1
2 and t � 1 or (ii) 1

2 � μ � 1 and t � 1, then

2tμ � (1− μ)+ μt +((1− μ)t−1 + μ)−1.

If either (i ′ ) 0 < μ � 1
2 and 0 < t � 1 or (ii ′ ) 1

2 � μ � 1 and t � 1, then

2t1−μ � (1− μ)+ μt +((1− μ)t−1 + μ)−1

and √
t � tμ .

Proof of Proposition 1.3. As an easy consequence of the first half, if (i) 0 � μ � 1
2

and t � 1 or (ii) 1
2 � μ � 1 and 0 < t � 1, then f (t) � 0.

The second and third inequalities are obtained by 2
√

t − 2t1−μ = 2
√

t(1− t
1
2−μ)

and tμ − t
1
2 = tμ(1− t

1
2−μ) respectively. �

REMARK 1.5. We find that the sign of f (t) is not definite for the following cases

(a) μ ∈ [0, 1
2 ) and 0 � t � 1,

(b) μ ∈ ( 1
2 ,1] and t � 1,

since we actually have f
(

1
2

) � −0.235364 and f
(

1
50

) � 0.0293694 when μ = 1
4 .

We also have f (2) � −0.470729 and f (50) � 1.46847 when μ = 3
4 , by numerical

computations.
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2. Generalization

Next we consider a generalization of R(t) by defining Rμ(t) for μ ∈ (0,1) ;

Rμ(t) =
1− μ + μt− t

(1−μ)t+μ

1− μ + μt− tμ (t � 0).

It is clear that R 1
2
(t) = R(t) , and that Rμ(0) = 1, Rμ(1) = 2 for all μ ∈ (0,1) and

max{R(t); t � 0} = 2.

PROBLEM 2.1. max{Rμ(t);t � 0} =?

For this problem, we pose an “answer” as a upper bound of Rμ(t) for t � 0.
For this, we note the following lemma mentioned in [4, Lemma 2.3].

LEMMA 2.2. If either (i) 0 � μ � 1
2 and t � 1 , or (ii) 1

2 � μ � 1 and 0 � t � 1 ,
then 2tμ � 1− μ + μt +(1− μ + μ

t )−1 .

To solve Problem 2.1, we define the function fr(t) for r � 2 and μ ∈ [ 1
2 ,1] by

fr(t) = (r−1)(1− μ + μt)+ (1− μ + μt−1)−1− rtμ

= (r−1)(1− μ + μt)+
t

(1− μ)t + μ
− rtμ .

It is easily seen that for a fixed t > 0, fr(t) is increasing for r � 2. As a conse-
quence, it follows that if μ ∈ [ 1

2 ,1] , then

fr(t) � 0 f or r � 2 and 0 < t � 1. (2)

We have the following generalized result.

THEOREM 2.3. For a fixed μ ∈ [ 1
2 ,1) , if r � rμ ≡ 2(2−μ)

3(1−μ) , then

rA �μ B+(1− r)A ∇μ B � A !μ B

for all A,B > 0 .

Proof. Put f (t) = fr(t) = (r−1)(1− μ + μt)+ t
(1−μ)t+μ − rtμ . Thus it suffices

to show that if r � 2(2−μ)
3(1−μ) , then fr(t) � 0 for t � 1. Because it follows from (ii) in

Lemma 2.2 and monotonicity of fr(t) on r that fr(t) � 0 for 0 < t � 1. Now we have

f ′(t) = (r−1)μ +
μ

((1− μ)t + μ)2 − rμtμ−1
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and

f ′′(t) = − 2μ(1− μ)
((1− μ)t + μ)3 − rμ(μ −1)tμ−2

=
μ(1− μ)

((1− μ)t + μ)3t2−μ {r((1− μ)t + μ)3−2t2−μ}.

Next we put g(t) = r((1− μ)t + μ)3 − 2t2−μ , the right half of f ′′(t) . Then we
have

g′(t) = 3r(1− μ)((1− μ)t + μ)2−2(2− μ)t1−μ,

g′′(t) = 6r(1− μ)2((1− μ)t + μ)−2(2− μ)(1− μ)t−μ

and
g′′′(t) = 6r(1− μ)3 +2μ(2− μ)(1− μ)t−μ−1.

Since g′′′(t) � 0, g′′(t) is increasing and

g′′(1) = 6r(1− μ)2−2(2− μ)(1− μ)= 2(1− μ)(3r(1− μ)− (2−μ))
� 2(1− μ)(3r(1− μ)−2(2−μ))� 0.

Therefore g′′(t) � 0 for t � 1, and so g′(t) is increasing on [1,∞) . Since

g′(1) = 3r(1− μ)−2(2− μ)� 0,

we have g′(t) � 0 for t � 1. Furthermore, since g(t) is increasing and g(1) = r−2 �
0, it implies that g(t) � 0 for t � 1. Hence f ′′(t) � 0 and so f ′(t) is increasing.
Moreover, since f ′(1) = 0, we have f ′(t) � 0, that is, f (t) is increasing for t � 1.
Finally, f (1) = 0 implies the desired conclusion f (t) � 0 for t � 1. �

REMARK 2.4. Related to the assumption r � rμ in Theorem 2.3, we have rμ �
r 1

2
= 2, since rμ = 2

3

(
1+ 1

1−μ

)
is increasing as a function of μ ∈ [ 1

2 ,1) .

3. Strict order

Next we consider the above argument under the strict operator order. For conve-
nience, we denote by X > 0 for invertivle positive operators X , σ(X) for the spectrum
of X and mX = minσ(X) = ‖X−1‖−1 for X > 0.

THEOREM 3.1. For given A,B > 0 , put C = A− 1
2 BA− 1

2 .

(i) If 0 � μ � 1
2 and B−A � m > 0, then

c1 � A ∇μ B+B!μA−2A�μB

where
c1 ≡ 2mA{(1+m‖A‖−1)

1
2 − (1+m‖A‖−1)μ} � 0.
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(ii) If 1
2 � μ � 1 and A−B � m > 0, then

min{c2,c3} � A ∇μ B+B!μA−2A �μ B.

where

c2 ≡ 2mA

{(
1−m‖A‖−1) 1

2 − (
1−m‖A‖−1)μ

}
� 0

and
c3 ≡ 2mA

{
(mC)

1
2 − (mC)μ

}
� 0.

To prove it, we prepare the following lemma. The proofs are not difficult compu-
tations so that we omit them.

LEMMA 3.2. For a fixed μ ∈ [0,1] , define gμ(t) = 2
(√

t− tμ)
for t � 0 . Then

(i) If μ ∈ [0, 1
2 ] , then gμ is increasing on [1,∞) .

(ii) If μ ∈ [ 1
2 ,1] , then gμ is decreasing on [1,∞) .

(iii) If μ ∈ [ 1
2 ,1] , then gμ is concave on [0,1] .

(iv) If μ ∈ [0, 1
2 ] , then gμ is increasing on [0,t0] and decreasing on [t0,1] for some

t0 ∈ (0,1) .

(v) gμ(t) � 0 for the following conditions (c) or (d).

(c) μ ∈ [0, 1
2 ] and t � 1

(d) μ ∈ [ 1
2 ,1] and 0 � t � 1 .

Proof of Theorem 3.1.

(i) Since B � A+m, we have

C = A− 1
2 BA− 1

2 � A− 1
2 (A+m)A− 1

2 = 1+mA−1 � 1+m‖A‖−1.

So it follows from (i) of Lemma 3.2 that if t ∈ σ(C) , then gμ is increasing for
t � 1 by 0 � μ � 1

2 . Hence we have

gμ(t) � gμ(1+m‖A‖−1),

so that by Lemma 1.4

(1− μ)+ μt+
t

(1− μ)+ μt
−2tμ � gμ(t) � gμ(1+m‖A‖−1).

Thus we have

(1− μ)+ μC+
C

(1− μ)+ μC
−2Cμ � gμ(1+m‖A‖−1),

That is,
c1 � A ∇μ B+B!μA−2A�μB.



ESTIMATIONS OF HERON MEANS FOR POSITIVE OPERATORS 25

(ii) Since A−m � B, we have

mC � C � A− 1
2 (A−m)A− 1

2 = 1−mA−1 � 1−m‖A‖−1.

Now gμ is concave on [0,1] by (iii) of Lemma 3.2, so that if t ∈ σ(C) , then

min{gμ(mC),gμ(1−m‖A‖−1)} � gμ(t).

Therefore, as in the proof of (i), we have

min{gμ(mC),gμ(1−m‖A‖−1)}mA � A ∇μ B+B!μA−2A�μB. �

REMARK 3.3. Since C � ||C|| and gμ is decreasing on [1,∞) by (ii) of Lemma
3.2, we have gμ(t) � gμ(||C||) . This implies the following result.

If 1
2 � μ � 1 and B−A � 0 (these conditions correspond to (b) in Remark 1.5),

then
c4 � A ∇μ B+B!μA−2A�μB

where
c4 ≡ 2mA

(
||C|| 1

2 −||C||μ
)

� 0.

To study the bounds for A ∇μ B + A!μB− 2A�μB instead of A ∇μ B + B!μA−
2A�μB , we give the following lemma.

LEMMA 3.4. For a fixed μ ∈ [0,1] , define

fμ(t) ≡ (1− μ)+ μt +
t

(1− μ)t + μ
−2tμ

for t � 0 . gμ(t) is defined for t � 0 in Lemma 3.2. We set tμ ≡ μ(2−μ)
(1−μ)(1+μ) . Then we

have the following properties.

(i) fμ(1) = 0 . In addition, fμ(t) � 0 for the following conditions (c) or (d).

(c) μ ∈ [0, 1
2 ] and t � 1

(d) μ ∈ [ 1
2 ,1] and 0 � t � 1 .

(ii) If μ ∈ [0, 1
2 ] , then fμ is increasing on [1,∞) .

(iii) If μ ∈ [ 1
2 ,1] , then fμ is decreasing on [0,1] .

(iv) If μ ∈ [0, 1
2 ] , then fμ is increasing on [tμ ,1)

(v) If μ ∈ [ 1
2 ,1) , then fμ is decreasing on (1,tμ ] .

(vi) If μ ∈ [0, 1
2 ] , then fμ is convex on [1,∞) .

(vii) If μ ∈ [ 1
2 ,1] , then fμ is convex on [0,1] .
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(viii) If μ ∈ [0, 1
2 ] , then fμ is concave on [tμ ,1) .

(ix) If μ ∈ [ 1
2 ,1) , then fμ is concave on (1,tμ ] .

(x) If μ ∈ [0, 1
2 ] and 0 � t � 1 , then gμ(t) � min

{
fμ(t),0

}
.

(xi) If μ ∈ [ 1
2 ,1] and t � 1 , then gμ(t) � min

{
fμ(t),0

}
.

Proof. First of all, we note the following facts. Since we have

f ′μ(t) =
μ

{(1− μ)t + μ}2

((
1−2tμ−1){(1− μ)t + μ}2 +1

)
,

we put dμ(t) ≡ (
1−2tμ−1

){(1− μ)t + μ}2 +1. Then we have

d′
μ(t) = 2(1− μ){(1− μ)t + μ}({(1− μ)t + μ}tμ−2 +(1−2tμ−1)

)
,

so we put hμ(t)≡−(μ +1)tμ−1 +μtμ−2 +1. Then we have h′μ(t) = tμ−3kμ(t) , where
kμ(t) ≡ (1− μ2)t + μ(μ −2) . Then we have k′μ(t) = 1− μ2 .

Since we also have

f ′′μ (t) =
2μ(1− μ)

{(1− μ)t + μ}3

(
tμ−2{(1− μ)t + μ}3 −1

)
,

we put lμ(t)≡ tμ−2 {(1−μ)t+μ}3−1. Then we have l′μ(t)= tμ−3{(1−μ)t+μ}2 kμ(t) .
In addition, we note that tμ � 1 is equivalent to μ � 1

2 .

(i) fμ(1) = 0 is trivial. The non-negativity of fμ(t) has given in the proof of [4,
Lemma2.3].

(ii) For the case μ ∈ [0, 1
2 ] and t � 1, we prove f ′μ(t) � 0. Firstly k′μ(t) � 0 and

kμ(1) = 1− 2μ � 0 imply kμ(t) � 0, that is, h′μ(t) � 0. Since hμ(1) = 0, we
have hμ(t) � 0, that is, d′

μ(t) � 0. Since dμ(1) = 0, we have dμ(t) � 0, that is,
f ′μ(t) � 0.

(iii) For the case μ ∈ [ 1
2 ,1] and 0 < t � 1, we prove f ′μ(t) � 0. Firstly k′μ(t) � 0 and

kμ(0) = μ(μ −2) < 0, kμ(1) = 1−2μ � 0 imply kμ(t) � 0, that is, hμ(t) � 0.
Since hμ(1) = 0 (and limt→0 hμ(t) = ∞), we have hμ(t) � 0, that is, d′

μ(t) � 0.
Since dμ(1)= 0 (and limt→0 dμ(t)=−∞), we have dμ(t) � 0, that is, f ′μ(t) � 0.

(iv) For a fixed μ ∈ [0, 1
2 ] , if tμ � t � 1, then kμ(t) � 0, that is, h′μ(t) � 0. Since

hμ(1) = 0, we have hμ(t) � 0, that is, d′
μ(t) � 0. Since dμ(1) = 0, we have

dμ(t) � 0, that is, f ′μ(t) � 0.

(v) For a fixed μ ∈ [ 1
2 ,1) , if 1 � t � tμ , then kμ(t) � 0, that is, h′μ(t) � 0. Since

hμ(1) = 0, we have hμ(t) � 0, that is, d′
μ(t) � 0. Since dμ(1) = 0, we have

dμ(t) � 0, that is, f ′μ(t) � 0.
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(vi) For the case μ ∈ [0, 1
2 ] and t � 1, we prove f ′′μ (t) � 0. Since kμ(t) � 0 (by

(ii) above), we have l′μ(t) � 0. Since lμ(1) = 0, we have lμ(t) � 0, that is,
f ′′μ (t) � 0.

(vii) For the case μ ∈ [ 1
2 ,1] and 0 < t � 1, we prove f ′′μ (t) � 0. Since kμ(t) � 0 (by

(iii) above), we have l′μ(t) � 0. Since lμ(1) = 0 (and limt→0 lμ(t) = ∞), we have
lμ(t) � 0, that is, f ′′μ (t) � 0.

(viii) For a fixed μ ∈ [0, 1
2 ] , if tμ � t � 1, then kμ(t) � 0, that is, l′μ(t) � 0. Since

lμ(1) = 0, we have lμ(t) � 0, that is, f ′′μ (t) � 0.

(ix) For a fixed μ ∈ [ 1
2 ,1) , if 1 � t � tμ , then kμ(t) � 0, that is, l′μ(t) � 0. Since

lμ(1) = 0, we have lμ(t) � 0, that is, f ′′μ (t) � 0.

(x) For the condition μ ∈ [0, 1
2 ] and 0 � t � 1, we easily find that gμ(t) � 0. We

note

fμ(t) � 2

√
{(1− μ)+ μt}t

(1− μ)t + μ
−2tμ . (3)

If μ ∈ [0, 1
2 ] and 0 < t � 1, then we have

√
{(1− μ)+ μt}t

(1− μ)t + μ
�
√

t (4)

Thus the inequalities (3) and (4) imply gμ(t) � fμ(t) .

(xi) If μ ∈ [ 1
2 ,1] and t � 1, then we also have gμ(t) � 0 and the inequality (4) so

that we have gμ(t) � fμ(t) . �

REMARK 3.5. We find that the sign of fμ(t) is not definite for the following cases

(a) μ ∈ [0, 1
2 ) and 0 � t � 1,

(b) μ ∈ ( 1
2 ,1] and t � 1,

since we actually have f 1
4

( 1
5

) � −0.0374806, f 1
4

( 1
50

) � 0.0783511, f 3
4
(10) �

−0.419903 and f 3
4
(50) � 3.91755, by numerical computations.

THEOREM 3.6. For A,B > 0 , put C ≡ A− 1
2 BA− 1

2 . fμ(t) is defined in Lemma 3.4.
Then we have the following inequalities.

(i) If μ ∈ [0, 1
2 ] and B−A � m > 0 , then

0 � fμ(1+m||A||−1)mA � A∇μB+A!μB−2A�μB � fμ(||C||)||A||.
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(ii) If μ ∈ [ 1
2 ,1] and A−B � m > 0 , then

0 � fμ(1−m||A||−1)mA � A∇μB+A!μB−2A�μB � fμ(mC)||A||.

Proof.

(i) Since B � A+m , we have

||C|| � C ≡ A− 1
2 BA− 1

2 � A− 1
2 (A+m)A− 1

2 � 1+mA−1 � 1+m||A||−1.

From (ii) of Lemma 3.4, fμ(t) is increasing for t � 1 when μ ∈ [0, 1
2 ] and t � 1

for t ∈ σ(C) , we have fμ(1+m||A||−1) � fμ(t) � fμ(||C||) . Thus we have

fμ(1+m||A||−1)mA � A∇μB+A!μB−2A�μB � fμ(||C||)||A||.

(ii) Since A−m � B , we have mC � C � 1−m||A||−1 . From (iii) of Lemma 3.4,
fμ(t) is decreasing for 0 < t � 1 when μ ∈ [ 1

2 ,1] and 0 < t � 1 for t ∈ σ(C) ,
we have fμ(1−m||A||−1) � fμ(t) � fμ(mC) . Thus we have

fμ(1−m||A||−1)mA � A∇μB+A!μB−2A�μB � fμ(mC)||A||. �

We note that Theorem 3.6 give the refinements for the second inequality in [4,
Theorem2.1]. We also show the following results by the similar way to the proof of
Theorem 3.6. The conditions in (i) and (ii) of the following proposition correspond to
those in (a) and (b) of Remark 3.5.

PROPOSITION 3.7. For A,B > 0 , put C ≡ A− 1
2 BA− 1

2 . fμ(t) and tμ are defined
in Lemma 3.4. gμ(t) is also defined in Lemma 3.2. c3 and c4 are given in Theorem 3.1
and Remark 3.3. Then we have the following inequalities.

(i) For a given μ ∈ [0, 1
2 ] , if tμA � B � A−m with m > 0 , then

fμ (mC)mA � A∇μB+A!μB−2A�μB � fμ(1−m||A||−1)||A||.

In particular,
0 � c3 � A∇μB+A!μB−2A�μB.

(ii) For a given μ ∈ [ 1
2 ,1) , if A+m � B � tμA with m > 0 , then

fμ (||C||)mA � A∇μB+A!μB−2A�μB � fμ(1+m||A||−1)||A||.

In particular,
c4 � A∇μB+A!μB−2A�μB.
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Proof.

(i) The condition tμA � B � A−m implies tμ �C � 1 and mC �C � 1−m||A||−1

as tμ � mC . From (iv) of Lemma 3.4, fμ is increasing for tμ � t � 1 so that we
have fμ(mC) � fμ(t) � fμ(1−m||A||−1) , since tμ � t � 1 if t ∈ σ(C) . Thus we
have

fμ (mC)mA � A∇μB+A!μB−2A�μB � fμ(1−m||A||−1)||A||.
From (x) of Lemma 3.4, we especially have, c3 � A∇μB+A!μB−2A�μB.

(ii) The condition A + m � B � tμA implies 1 � C � tμ and 1 + m||A||−1 � C �
||C|| � tμ . From (v) of Lemma 3.4, fμ is decreasing for 1 � t � tμ so that we
have fμ(||C||) � fμ(t) � fμ(1+m||A||−1), since 1 � t � tμ if t ∈ σ(C). Thus
we have

fμ(||C||)mA � A∇μB+A!μB−2A�μB � fμ(1+m||A||−1)||A||.
From (xi) of Lemma 3.4, we especially have, c4 � A∇μB+A!μB−2A�μB. �

Related to the strict positivity of operators, the arithmetic-geometricmean inequal-
ity is refined as follows:

THEOREM 3.8. If A−B is invertible for A,B > 0 , then for each 0 < μ < 1

A ∇μ B−A �μ B > 0.

In particular, if A−B � m > 0 , then

sμ

(
1− m

‖A‖
)

mA � A ∇μ B−A �μ B � sμ

(
mB

‖A‖
)
‖A‖,

where sμ(x) = 1− μ + μx− xμ .

Proof. Put C = A− 1
2 BA− 1

2 . Since 1 does not belong to the spectrum σ(C) of C ,
we have

A∇μB−A�μB = A
1
2 sμ(C)A

1
2 � εA � εmA

for some ε > 0.
Next, if A−B � m > 0, then C has bounds such that

mB

‖A‖ � mBA−1 � C � (A−m)A−1 = 1−mA−1 � 1− m
‖A‖ < 1.

Noting that sμ is convex, decreasing and sμ(x) > 0 on [0,1) , we have

sμ

(
mB

‖A‖
)

� sμ(C) � sμ

(
1− m

‖A‖
)

.

Since A ∇μ B−A �μ B = A
1
2 sμ(C)A

1
2 ,

sμ

(
1− m

‖A‖
)

mA � A ∇μ B−A �μ B � sμ

(
mB

‖A‖
)
‖A‖,

as desired. �
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LEMMA 3.9. If A−B � m for some m > 0 , then B−1−A−1 � m
(‖B‖+m)‖B‖ := m1 .

It is easily proved as

B−1−A−1 � B−1− (B+m)−1 = mB−1(B+m)−1 � m1.

See [3] and [2].
By the use of Lemma 3.9, we have a refinement of the geometric-harmonic mean

inequality.

COROLLARY 3.10. Notation as in above. If A− B � m for some m > 0 and
0 < μ < 1 , then

A �μ B−A !μ B � m2

(‖B1‖+m2)‖B1‖ ,

where B1 = A �μ B and m2 = s1−μ

(
1− m1

‖B−1‖
)

mB .

Proof. Combining Lemma 3.9 with Theorem 3.8, we have

B−1 ∇1−μ A−1−B−1 �1−μ A−1 � s1−μ

(
1− m1

‖B−1‖
)

mB = m2.

If we put B1 = (A �μ B)−1 = B−1 �1−μ A−1 , then it follows from Lemma 3.9 that

A �μ B−A !μ B = (B−1 �1−μ A−1)−1− (B−1 ∇1−μ A−1)−1 � m2

(‖B1‖+m2)‖B1‖ ,

as desired. �
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